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Evan Camrud

Abstract. This paper proposes a new definition for a conformable derivative. The
strengths of the new derivative arise in its simplicity and similarity to fractional
derivatives. An inverse derivative (integral) exists showing similar properties to
fractional integrals. The derivative is scalable, and exhibits particular product and
chain rules. When looked at as a function with a parameter, the ratio derivative
Kα[f ] of a function f converges pointwise to f as α → 0, and to the ordinary
derivative as α→ 1. The conformable derivative is nonlinear in nature, but a related
operator behaves linearly within a power series and Fourier series. Furthermore, the
related operator behaves completely fractionally when acting within an exponential-
based Fourier series.
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1 Introduction

The concept of derivatives of non-integer order, commonly known as fractional derivatives,
first appeared in a letter between L’Hopital and Leibniz in which the question of a half-
order derivative was posed [2]. Since then, many formulations of fractional derivatives have
appeared, but one would expect a single definition to emerge out of the many. One might
“guess” at what a perfect definition would look like, possibly expecting the following to be
true:

1. dα

dxα
xn = Γ(n+1)

Γ(n+1−α)
xn−α for n ≥ 0 and α ≤ n+ 1,

2. dα

dxα
eλx = λαeλx, which, assuming the derivative is linear, implies

3. dα

dxα
sin(λx) = λα sin(λx+ π

2
α), and

4. dα

dxα
cos(λx) = λα cos(λx+ π

2
α).

This is a result of noticing the patterns of traditional derivatives, and interpolating their
results. Thus far, no proposed definition satisfies all four of the above. In the words of
Richard Herrmann, “Up to now there is no ultimate definition of a fractional derivative”
[1, p.19]. Even so, a commonly used definition for the fractional derivative is the Riemann-
Liouville definition, which is a generalization of Cauchy’s formula for repeated integration:

1
Γ(α)

∫ x
a
f(τ)(x − τ)α−1dτ with a as an integration limit. This, however, is by definition a

fractional integral. To make the fractional integral into a derivative, a full derivative of the
fractional integral is taken. This definition also introduces surprising results, such as the
fractional derivative of a constant not being constant [1, p.15-21].

The Grünwald-Letnikov derivative holds properties that work well with the exponential
function. It arises from a binomial generalization of repeated limit-based derivatives [1, p.22].
The Grünwald-Letnikov derivative obeys property 2 above and is also very useful in that it
can take complex fractional values [1, p.23].

While they do not satisfy all of the aforementioned four properties, the Riemann-Liouville
and Grunwald-Letnikov derivatives indeed satisfy the four properties in the following defini-
tion, which we will take as the definition of a fractional derivative, as defined by Ortigueira
and Machado [4, p.2-3].

Defintion 1. Let α ∈ [0, 1]. An operator Dα is a fractional differential operator if it satisfies
the following four properties:

1. Linearity: Dα(af+bg) = aDα(f)+bDα(g) for all a, b ∈ C and f, g ∈ Dom(Dα), where
Dom(Dα) is the domain of the operator Dα

2. D0[f ] = f for all functions f

3. D1[f ] = f ′ for all f ∈ Dom(D1)

4. The Index Law: DβDα[f ] = Dβ+α[f ] for all f ∈ Dom(Dβ ◦Dα) ∩Dom(Dβ+α).
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Because of the difficulty inherent in defining derivatives that satisfy all four of these
properties, a new class of fractional-power derivatives have recently surfaced that only satisfy
the second and third properties. These derivatives are known as “conformable” derivatives,
defined by Anderson and Ulness [2, p.2] as follows.

Defintion 2. Let α ∈ [0, 1]. A differential operator Dα is conformable if and only if D0 is the
identity operator and D1 is the classical differential operator, that is, Dα satisfies conditions
2 and 3 of Definition 1.

In this paper we introduce a new conformable derivative that is not linear and does
not satisfy the index law. We define this derivative in Section 2 and continue in Section 3
by observing its many properties and peculiarities. Section 4 demonstrates a linearization
procedure of our new derivative, and the paper is concluded in Section 5.

2 Definition of the Conformable Ratio Derivative

In this section, we define the conformable ratio derivative and its inverse operator, on a small
set of real functions, and a larger set of complex functions.

Defintion 3. For f(x) ≥ 0, differentiable and f ′(x) ≥ 0, the conformable ratio derivative
(represented by the Kα operator) is defined by

Kα[f(x)] = lim
ε→0

f(x)1−α
(
f(x+ ε)− f(x)

ε

)α
, α ∈ [0, 1].

Note that

1. K0[f(x)] = limε→0 f(x)1−0
(
f(x+ε)−f(x)

ε

)0

= limε→0 f(x) = f(x), and

2. K1[f(x)] = limε→0 f(x)1−1
(
f(x+ε)−f(x)

ε

)1

= limε→0

(
f(x+ε)−f(x)

ε

)
= f ′(x).

Therefore this definition holds as a conformable derivative.
However, it may quickly be seen that by limit laws and the definition of the classical

derivative this becomes simply

Kα[f ] = f 1−α(f ′)α = f

(
f ′

f

)α
, α ∈ [0, 1]. (1)

To clarify from the earlier stipulations, if either f < 0 or f ′ < 0, then either f 1−α or (f ′)α will
be complex, eliminating the operator’s closure on real functions. This alternative formulation
prompts the moniker “ratio” derivative, as the operator takes a powered ratio of the function
with its first derivative. By the chain rule, one may also obtain the definition

Kα[f ] = αα
((
f

1
α

)′)α
, α ∈ (0, 1], (2)
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which allows for the construction of a second limit-based definition:

Kα[f ] = lim
ε→0

(
α
f

1
α (x+ ε)− f 1

α (x)

ε

)α
, α ∈ (0, 1].

The definition from equation (2) allows for the definition of an inverse operator K−1
α such

that

K−1
α [f ] = α−α

(∫ x

0

f
1
α (x)dx

)α
, α ∈ (0, 1]. (3)

One may verify that

Kα[K−1
α [f ]] = Kα

[
α−α

(∫ x

0

f
1
αdx

)α]
= ααα−α

(
d

dx

∫ x

0

f
1
αdx

)α
= α0(f

1
α )α = f,

and

K−1
α [Kα[f ]] = K−1

α

[
αα
((
f

1
α

)′)α]
= α−ααα

(∫ x

0

(
f

1
α

)′
dx

)α
= α0(f

1
α )α = f.

Note that equations (1), (2), and (3) may be generalized to analytic complex functions,
while keeping real values of α as follows. For f analytic in domain D ∈ C\R−0 (where R−0
are the nonpositive real numbers),

Kα[f(z)] = f 1−α(z)(f ′(z))α = f(z)

(
f ′(z)

f(z)

)α
, α ∈ [0, 1],

Kα[f(z)] = αα
(
d

dz
f

1
α (z)

)α
, α ∈ (0, 1],

K−1
α [f(z)] = α−α

(∫ z

0

f
1
α (z)dz

)α
, α ∈ (0, 1],

where we use the principal branch for the complex power and log functions.
From this point onward, when introducing a new property, the function f will be a

complex function analytic in domain D, with the principal branch used for the complex power
and log functions, unless otherwise explicitly stated (that is, a property will be introduced
with the “real” adjective).

3 Properties of the Ratio Derivative

In this section, we observe the conformable ratio derivative’s nonlinearity, scalability, a
property regarding powers of the operator, and a special case where the index law is upheld.
We continue in this section by observing the properties of the product and chain rules, the
continuity of the operator as a function, and finally its relation to other fractional derivatives.
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One property of the ratio derivative is that it is nonlinear in nature. That is, given f, g
analytic in D, and λ, µ ∈ C, in general

Kα[λf + µg] 6= λKα[f ] + µKα[g], λ, µ ∈ C.

However, the ratio derivative is scalable.

Proposition 1. For λ ∈ C, Kα[λf ] = λKα[f ].

Proof.

Kα[λf ] = (λf)1−α(λf ′)α = λ1−αλαf 1−α(f ′)α = λf 1−α(f ′)α = λKα[f ].

�

Remark: This allows for a slight enlargement of the family of real functions allowed when
taking the derivative. Thus if either f(x) ≥ 0, differentiable and non-decreasing, or f(x) ≤ 0,
differentiable and non-increasing, then the derivative exists and Kα[−f ] = −Kα[f ].

The derivative also “favors” functions in the form f = gα. This manifests in taking
multiple derivatives of functions in this form.

Proposition 2. Let g be analytic on D, and let α ∈ C. For all n ∈ N,

(Kα)n[gα] = αnα
(
g(n)
)α

where g(n) denotes the usual nth derivative of g.

Proof.

We proceed by induction. If n = 1, by definition,

(Kα)1[gα] = αα(g′)α.

For the n = 2 case,

(Kα)2[gα] = Kα

[
Kα[gα]

]
= Kα[αα(g′)α] = α2α(g′′)α.

Suppose the n = m case holds. Then for n = m+ 1
(Kα)m+1[gα] = Kα[(Kα)m[g]] = Kα[αmα

(
g(m)

)α
] = α(m+1)α

(
g(m+1)

)α
.

�
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An application of this proposition with g = f
1
α yields

(Kα)n[f ] = αnα
(

(f
1
α )(n)

)α
,

where f (n) denotes the usual nth derivative of f .
Note that this property holds for all integer powers of n, where (Kα)0 is the identity

operator, and negative values of n represent positive powers of the inverse operator:

(Kα)0[f ] = α0
((
f

1
α

)(0)
)α

=
(
f

1
α

)α
= f,

and

(Kα)−1[f ] = α−α
((
f

1
α

)(−1)
)α

= α−α
(∫ z

0

f
1
α (z)dz

)α
= K−1

α [f ].

Finally, we observe that the ratio derivative obeys the index law when applied to eλz:

KαKβ[eλz] = KβKα[eλz] = Kα+β[eλz] = λα+βeλz.

3.1 Product and Chain Rules

Because the ratio derivative is nonlinear, the derivative’s “product” and “chain” rules are
also nonlinear. Applying the derivative to a product of functions one obtains

Kα[f · g] = (f · g)1−α(fg′ + f ′g)α.

When applied to real functions, take note that the product of the functions must be non-
negative, differentiable, and non-decreasing, or non-positive, differentiable, and non-increasing.
It is very interesting to note that with above result one sees the product rule “appear” and
“disappear” as α→ 0 and α→ 1 respectively.

The chain rule is similar in nature. Applying the derivative to a composition of functions
yields

Kα[f ◦ g] =
(
f(g)

)1−α(
f ′(g)g′

)α
=
(
f(g)

)1−α(
f ′(g)

)α · (g′)α,
where again we see the emergence of the ordinary chain rule as α→ 1.

3.2 Continuity of the Operator as a Function of Alpha

A notable quality of the ratio derivative is that if we fix f analytic on D, z0 ∈ D, and regard
Kα[f(z0)] as a function of α, then the function is continuous. In other words, the value of
Kα[f(z0)] varies continuously with α for every fixed f and z0 ∈ D. (Note well, this statement
may be made similarly with a real, differentiable function and respective real domain.)

Proposition 3. Let D ⊂ C\R−0 be a domain, and let f be analytic on D. Then for all ε > 0,

for all z ∈ D, for all α ∈ [0, 1], there exists δ > 0 such that
∣∣∣Kα+δ[f(z)]−Kα[f(z)]

∣∣∣ < ε.
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Proof.

Let f be analytic in D. Let ε > 0, and let z0 ∈ D.

If either f(z0) = 0 or f ′(z0) = 0, then∣∣∣Kα+δ[f(z0)]−Kα[f(z0)]
∣∣∣ = |0− 0| = 0 < ε.

Otherwise, let f(z0) = a and f ′(z0) = b.

Then ∣∣∣Kα+δ[f(z0)]−Kα[f(z0)]
∣∣∣ = |a|1−α|b|α

∣∣∣( b
a

)δ
− 1
∣∣∣

≤ |a|1−α|b|α
∣∣∣∣∣∣∣ ba ∣∣∣δ( cos

(
δArg(b/a)

)
+ i sin

(
δArg(b/a)

))
− 1

∣∣∣∣
≤ |a|1−α|b|α

∣∣∣∣∣∣∣ ba∣∣∣δ(1 +O(δ)
)
− 1

∣∣∣∣ = O(δ),

for δ � 1, and consequently
∣∣∣Kα+δ[f(z0)]−Kα[f(z0)]

∣∣∣→ 0 as δ → 0.

�

3.3 Relation to Fractional Derivatives

In some scenarios, the conformable ratio derivative behaves similarly to fractional deriva-
tives. One may compare its effects on elementary functions with those of other fractional
derivatives.

One real function, f(x) = λx, shows an interesting result:

Kα[λx] = λx1−α · 1α = λx1−α, α ∈ [0, 1].

The Riemann-Liouville fractional derivative (with zero as the integration limit) applied gives

Dα
0 [λx] = λ

d

dx

1

Γ(1− α)

∫ x

0

(x− τ)−ατdτ =
λ

(1− α)Γ(1− α)
x1−α, α ∈ [0, 1].

The two derivatives give the same functional form for f(x) = λx, but differ by a scalar
multiple.

Another relation to fractional derivatives was previously mentioned in the earlier state-
ment that Kα[eλz] = λαeλz. This is the same result that nearly all fractional derivatives,
including the GrÃ1

4
nwald-Letnikov derivative, produce when computed for the exponential

[2, p.16].
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4 Linearization of Proposed Derivative

In this section we propose a linear version of the conformable ratio derivative. This expands
its uses, especially in differential equations, although the results are nearly always limited to
series notation.

The nonlinearity of the ratio derivative, along with the fact that it does not follow the
index rule, sets it apart from conventional fractional derivatives. This limits its application
in some instances, namely differential equations. However, it was noted that the operator
behaves similarly to fractional derivatives for the functions f(z) = λz, λ ∈ C and f(z) =
eλz, λ ∈ C.

Therefore, by creating a power series built from the operator applied to monomials, it
can exhibit linear properties, even though Kα[

∑∞
n=−∞ cnz

n] 6=
∑∞

n=−∞ cnKα[zn]. Defining a

related operator to pass through a summation yields Kα which behaves on a Laurent series
as follows:

Kα[f(z)] = Kα

[ ∞∑
n=−∞

cnz
n

]
=

∞∑
n=−∞

cn ·Kα[zn] =
∞∑

n=−∞

cnn
αzn−α,

for all α ∈ [0, 1] where f(z) =
∑∞

n=−∞ cnz
n.

Similarly this process may be applied for the inverse derivative within the power series:

K
−1

α [f(z)] =
∞∑

n=−∞

cn ·K−1
α [zn] =

∞∑
n=−∞

cn(n+ 1)−αzn+α.

For all α ∈ [0, 1].
An even better application of the operator’s fractional derivative character occurs when

applying it within an exponential-based Fourier series. By again using Kα we see that

Kα[f(z)] =
∞∑

n=−∞

cn ·Kα[einπz] =
∞∑

n=−∞

cn(inπ)αeinπz =
∞∑

n=−∞

cn(nπ)αeiπ(nz+α
2

),

for all α ∈ R where f(z) =
∑∞

n=−∞ cne
inπz.

In this case the proposed derivative is both linear and follows the index law. What is
important to note is that the single result applies for all real values of α, including zero (the
identity) and the negative reals (indicating the fractional integral exists in the exact same
form as the fractional derivative). For all functions that may be represented by a Fourier
series, this definition of a fractional derivative is very easy to utilize, giving it potential for
applications in many areas of physics.

5 Conclusion

A definition for a new conformable derivative, called the conformable ratio derivative, was
proposed. This definition has the advantage of being local in character and can behave
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as a continuous function with a parameter. The proposed definition’s properties were also
discussed. The product and chain rule applied to this definition provide interesting results
on the emergence of these properties in integer-valued derivatives. A small number of con-
formable differential equations may be solved by conventional means with this definition
as well. The definition’s relation to fractional derivatives was also explored and two linear
series-definitions were given. The second, a fractional definition for Fourier series, holds a
single result for all real values of alpha, and thus is a very applicable definition. Though the
operator may exist in the realm of nonlinearity, this continuously conformable derivative is
a very powerful tool for understanding calculus at a deeper level.
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