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Abstract. We study and catalog isoperimetric, planar tilings by unit-area Cairo and Pris-
matic pentagons. In particular, in counterpoint to the five wallpaper symmetry groups
known to occur in Cairo-Prismatic tilings, we show that the five with order three rotational
symmetry cannot occur.
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1 Introduction

In 2012 Chung et al. [C] proved that perimeter-minimizing, edge-to-edge tilings of the plane
by unit-area, convex pentagons are given by any combination of Cairo and Prismatic tiles. Both
Cairo and Prismatic pentagons contain two right angles, three angles of 2π/3, and equal perimeter.
However, the lengths of the individual edges differ between the two shapes (see Figure 1).

Figure 1: When the pentagons are in the orientation above, the “top” of a Prismatic pentagon, the
figure on the left, is formed by two edges of length a = (2/3)

√
6−3

√
3≈ 0.5977, the edges that

constitute the left and right sides are of length b = (3+
√

3)
√

2−
√

3/3≈ 0.8165 and the base has
length c = 2

√
2−
√

3≈ 1.0353. The Cairo pentagon, right, consists of four edges of length b and
a lone edge of length a.

Chung et al. also showed that infinitely many tilings can be formed from these two pentagons.
See Figure 2 for many examples.

In this paper we are particularly interested in the wallpaper groups of Cairo-Prismatic tilings.
Wallpaper groups are symmetry groups used to classify two-dimensional patterns that contain
translational symmetry in two distinct directions. Tilings with wallpaper groups consist of a base
pattern that is repeated over and over again in two directions so that it fills the entire space. A
familiar example is real-world wrapping paper. Because a roll of wrapping paper must be divided
amongst many presents, it cannot portray only a single, unified portrait. Instead it must consist of
a chosen base pattern, like a snowman for example, whose image is repeated until it fills the entire
roll.
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Figure 2: Above are examples of Cairo-Prismatic tilings included in the work of Chung et al. The
first and second images are tilings using solely Cairo and Prismatic pentagons, respectively [C,
Figures 1-5, 9-12, and 16-22].

There are seventeen different wallpaper groups and they arise from the additional types of
symmetries that a tiling might contain. Other than the required translational symmetry, wallpaper
groups can also exhibit rotational symmetry of order 1, 2, 3, 4 or 6 or contain axes of reflections and
glide reflections. See Figure 3 for a table of the seventeen wallpaper groups and their symmetries.
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Figure 3: The 17 wallpaper groups and their respective symmetries.

We will now analyze a few concrete examples of wallpaper groups in order to better familiarize
the reader with this concept.

Figure 4 illustrates the wallpaper group p1. Imagine starting at one of the cats, the base figure,
and then translating the entire figure up, down, or diagonally until you reach an area that held a
cat originally. At the end of this process the figure wold look indistinguishable from how it began.
This translational equivalence in two directions is what makes this image a wallpaper group. The
cat wallpaper is p1 because it contains only this translational symmetry, that is, you cannot reflect
or rotate it and get back the same image.

Figure 4: An example of a design with wallpaper group p1.

Figure 5 illustrates the wallpaper group p4. The tiling can be translated up and down or left and
right and maintain equivalence, and thus has the required two-axis translational symmetry required
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of a wallpaper group. Notice also that one could rotate the figure 90◦, 180◦, 270◦, and, trivially,
360◦ around the center of the squares without changing the image. The tiling therefore displays
order-4 rotational symmetry. Notice how there is not just one center of rotational symmetry but, in
fact, there is one at the center of each square (this must be the case in order to have translational
symmetry). Because the tiling has the required translational symmetry, order four rotational sym-
metry, and no reflection or glide reflection symmetries, it is an example of the wallpaper group
p4.

Figure 5: An example of a design with wallpaper group p4.

As stated above, the different wallpaper groups are distinguished by different reflectional and
glide reflectional symmetries, in addition to translational and rotational symmetry. While rotations
are centered around each base figure of the tiling, reflections and glide reflections occur along a
parallel reflection axis. The reader is no doubt familiar with the concept of reflections. How-
ever, glide reflections are slightly more obscure. A glide reflection is a reflection followed by a
translation.

Figure 6 provides an example of a glide reflection outside the context of tilings. The triangle in
the bottom right is the product of a glide reflection of the triangle in the top left, with the bottom left
triangle serving as the intermediate step. In order for a tiling to contain glide reflectional symmetry
the tiling must remain unchanged after reflecting and then translating the entire figure along the
appropriate axes.
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Figure 6: An illustration of a glide reflection.

Shifting our focus back to Cairo-Prismatic tilings, the symmetry group of the tiling in the
upper left corner of Figure 2 is a wallpaper group because it contains two linearly independent
translations. The tiling in the third row second column has order 3 rotational symmetry but does
not contain translational symmetries. Therefore, it is not a wallpaper group. Finally, the tiling in
the third row fourth column has no nontrivial symmetries.

Chung et al. found Cairo-Prismatic tilings with symmetries of four different wallpaper groups
(p1, p2, p4g, and cmm). Maggie Miller then went on to find four additional Cairo-Prismatic tilings
including the Double Pillbox (upper left corner of Figure 7), which adds p4 to the known wallpaper
group symmetries.

Figure 7: Maggie Miller found four additional Cairo-Prismatic tilings [M2, Figures 2, 3, 4, and 5].

Since the work of Miller eight additional Cairo-Prismatic tilings have been discovered, though
no additional wallpaper group symmetries. The first three were discovered by Samantha Petti, by
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Victor Luo, and by Lilliana Morris and Byron Perpetua- students in Colin Adams’s Tiling class at
Williams College (Figure 8).

Figure 8: Cairo-Prismatic tilings from a Tiling course at Williams College [M2, Figures 7, 8, and
13].

On January 24, 2015, The National Museum of Mathematics exhibited a working set of Cairo
and Prismatic tiles. Visitors, Christian Green and the pair Silvano Bernabel and Daniel Tilkin,
discovered two new Cairo-Prismatic tilings (Figure 9).

Figure 9: Christian Green’s tiling is on the left while the Cairo-Prismatic tiling discovered by
Silvano Bernabel and Daniel Tilkin is shown on the right [M2, Figures 9 and 10].

The latest three were found at The National Museum of Mathematics staff session (Figure 10).
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Figure 10: These three latest Cairo-Prismatic tiling discoveries come from Alex Gelman, Ester
Schewel and Gemma Gearhart, and David Anderson and Heather Gordon, respectively [M2, Figure
23].

We will begin in Section 2 of this paper with a survey of the wallpaper groups previously found
in Cairo-Prismatic tilings. Section 3 will then begin with a proof that a Cairo-Prismatic tiling
cannot have a center of order six rotational symmetry. This eliminates the wallpaper groups p6 and
p6m from consideration as symmetry groups of Cairo-Prismatic tilings. The proof relies on the fact
that the interior angles of Cairo and Prismatic pentagons are too large. We then move on to consider
wallpaper groups with order three rotational symmetry- p3, p31m and p3m1. Here, we examine the
behavior of Prismatic chains (maximal, connected sets of parallel Prismatic pentagons) and prove
that Cairo-Prismatic tilings cannot exhibit these wallpaper groups either. We first show that around
any center of order three rotational symmetry there must exist three Prismatic chains. Then, by
discovering contradictions if we assume the chains to be either finitely or infinitely long, we find
that Cairo-Prismatic tilings cannot contain symmetries of p3, p31m or p3m1.

2 Tilings with Wallpaper Groups p1, p2, p4, p4g and cmm

Chung et al. [C] proved the existence of Cairo-Prismatic tilings with symmetries of wallpaper
groups p1, p2, p4g and cmm (Figures 11-14). Shortly thereafter Maggie Miller discovered a Cairo-
Prismatic tiling with the symmetries of the wallpaper group p4 (Figure 15). These are the only five
wallpaper groups discovered in Cairo-Prismatic tilings.
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Figure 11: An example of a Cairo-Prismatic tiling with symmetries of wallpaper group p1, the most
simple of wallpaper groups. The tiling is colored in a manner that highlights the two independent
directions of translational symmetry [C, Figure 6].

Figure 12: Cairo-Prismatic tiling with symmetries of wallpaper group p2. It has translational
symmetry in two directions (the minimum requirement for a wallpaper group) as well as centers
of order two rotational symmetry [C, Figure 7].

Figure 13: Cairo-Prismatic tiling with symmetries of wallpaper group p4g. The tiling has transla-
tional symmetry, centers of order two and four rotational symmetry and both reflection and glide
reflection axes [C, Figure 8].
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Figure 14: Cairo-Prismatic tiling with symmetries of wallpaper group cmm. The tiling has transla-
tional symmetry, centers of order two rotational symmetry, and both reflection and glide reflection
axes [C, Figure 10].

Figure 15: Cairo-Prismatic tiling with symmetries of wallpaper group p4. It has translational
symmetry and centers of order two and four rotational symmetry [M2, Figure 2].

3 No Tilings with Wallpaper Groups p6, p6m, p3, p31m and
p3m1

This section contains the theorems proving that a Cairo-Prismatic tiling cannot contain the sym-
metries of wallpaper groups p6, p6m, p3, p31m or p3m1. The impossibility of p6 and p6m follow
directly from the fact that Cairo-Prismatic tilings cannot contain centers of order six rotational
symmetry (Theorem 3.1). However, a Cairo-Prismatic tiling can indeed contain a center of order
three rotational symmetry (see Figure 16).
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Figure 16: The aptly named Windmill Cairo-Prismatic tiling contains a single center of order three
rotational symmetry. However, because it is not translationally symmetric it does not contain the
symmetries of a wallpaper group [C, Figure 11].

In order to exclude order three rotations in Cairo-Prismatic wallpaper groups (Theorem 3.13)
we will need to study the large-scale behavior of Prismatic pentagons in a tiling. But first we
consider order six rotations.

Theorem 3.1. No Cairo-Prismatic tiling exists with symmetries of the wallpaper groups p6 or
p6m.

Proof. Suppose that such a tiling exists and let p be a center of order six rotation. If a center of
order six rotational symmetry lies in the interior of a tile then the tile must have 6n sides for some
n ∈ N. Because pentagons have only five sides, p is not an interior point. If p lies on an edge but
is not a vertex point then there exists a neighborhood around p containing only that edge and the
interior of the two pentagons meeting along this edge. This area does not have order six rotational
symmetry and thus p must be a vertex point. The number of angles about a vertex of order six
rotational symmetry must be a multiple of six. This contradicts the fact that the smallest angles in
a Cairo or Prismatic pentagon is π/2. Therefore, a Cairo-Prismatic tiling cannot contain a center
of order six rotational symmetry and, because wallpaper groups p6 and p6m both contain these
centers, there are no Cairo-Prismatic tilings with symmetries of wallpaper groups p6 or p6m.

To rule out order three rotations in a Cairo-Prismatic wallpaper group, we now focus on the
Prismatic tiles.

While examining Cairo-Prismatic tilings we noticed that every time a Prismatic pentagon ap-
pears in a tiling it is part of a larger, connected set of parallel Prismatic tiles. We call these structures
Prismatic chains. We also noticed that every Prismatic chain is either infinitely long or finitely long
with additional perpendicular Prismatic chains forming on each side. In every example of the finite
case the branching process seems to be infinite. For an example of infinite Prismatic chains refer
to the tilings in the third row, second and third columns of Figure 2. Both contain three infinitely
long Prismatic chains. For an example of the infinite branching of the finite case, see Figure 17
below.
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Figure 17: The Cairo-Prismatic tiling Space Pills contains only finite Prismatic chains, seen here
in red, and thus exhibits an infinite branching process [M2, Figure 24].

After experimenting with the different possible centers of order 3 rotational symmetry in a
Cairo-Prismatic tiling, we determined that sprouting from any such possible center must be a Pris-
matic pentagon, and consequently a Prismatic chain, and its two 120◦ rotated copies. The proof that
a Cairo-Prismatic wallpaper group cannot have order three rotational symmetry thus comes down
to showing that these Prismatic chains can be neither infinite nor finite, thereby contradicting their
existence.

The following definitions serve to formalize the discussion above by providing concrete defi-
nitions for our objects.

Definition 3.2. Cairo-Prismatic tilings are edge-to-edge tilings of the plane consisting of Cairo
and Prismatic pentagons. A Prismatic chain is a maximal, connected set of parallel Prismatic tiles.
A row of Prismatic pentagons is a maximal, connected subset of a Prismatic chain consisting only
of Prismatics connected along edges of length b (See Figure 1). The sides of a row are the edges
of length b not adjacent to Prismatic pentagons in the row. The outer edges of a row are edges of
length a adjacent to the sides of the row. Due to the uniqueness of the side of length c, each row
in a Prismatic chain is attached to another row of equal width along edges of length c. We call
these two rows, row pairs. If an outer edge is not attached to a Prismatic pentagon in the Prismatic
chain we will say the outer edge is isolated. The width of a Prismatic chain is a local measurement
equal to the number of Prismatic pentagons in a row. The length of a Prismatic chain is equal to
the number of row pairs it contains.
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Figure 18: Plaza has twelve infinitely long and wide Prismatic chains with a single finite chain in
the center of length one containing two rows of width one (all of which are pictured here in yellow)
[C, Figure 13].

The first few propositions below work towards a climax, Proposition 3.8, which shows that any
finite Prismatic chain has perpendicular Prismatic chains branching off of each of its sides.

Definition 3.3. A Prismatic gap is a 120◦ angle formed by two edges of length a.

Proposition 3.4. A Prismatic gap in a Cairo-Prismatic tiling can only be filled by a single Pris-
matic pentagon along its edges of length a.

Proof. Cairo and Prismatic pentagons only contain 90◦ and 120◦ interior angles. Between the
Cairo and Prismatic there is only one interior angle of 120◦ created by two edges of length a (the
top of the Prismatic in Figure 1). A Prismatic gap is thus necessarily filled by this angle.

Proposition 3.5. Adjacent Prismatic row pairs differ in width by at most one.

Proof. There are 2n edges of length a both at the top and bottom of a row pair- two from each of
the n Prismatic pentagons in each row. Of these 2n edges all but the two outer edges are adjacent
to two other edges of length a in the row. These 2n−2 edges meet at 120◦ angles (see Figure 19).

Figure 19: The top of a row pair of width four consists of eight edges of length a and necessarily
forms three Prismatic gaps both above and below it. Only the outer edges, edges 1 and 8 and the
corresponding edges on the bottom, do not necessarily contribute to Prismatic gaps.
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Thus, there are n− 1 Prismatic gaps both above and below and the lower bound has been
achieved. If a row pair had width n and one of its adjacent row pairs had width n+ 2 or greater
this would contradict the lower bound. Thus, n+ 1 is an upper bound on the width of a row pair
adjacent to a row pair of width n.

Proposition 3.6. Assume a Prismatic row pair has isolated outer edges on a side. Then there must
exist two Cairo pentagons connected along the side of the row pair, whose edges of length a form
a Prismatic gap perpendicular to the original chain.

Proof. Consider a Prismatic row pair with isolated outer edges on its right side (see Figure 20).

Figure 20: A row pair with isolated outer edges, here denoted 1 and 2, on its right side and its
adjacent row pairs.

There are three edges of length a between the Cairo and Prismatic pentagons and so three
possible combinations along edges of length a. However, one is not edge to edge (see Figure 21).

Figure 21: This move is not possible because it places an edge of length a, here labeled 1, next to
an edge of length b.

Another possible move is adding a Prismatic parallel to the chain but this contradicts the fact
that the outer edge is isolated (see Figure 22).
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Figure 22: If a parallel Prismatic pentagon was attached to the outer edge the edge would not be
isolated.

Therefore, there is only one possible move along these edges- adding a Cairo along its lone
edge of length a. Making only necessary moves this gives us Figure 23.

Figure 23: Adding Cairo pentagons to the outer edges creates a 120◦ exterior angle adjacent to
the row pair. This gap is formed by two edges of length b and so can only be filled by a Cairo
pentagon along its top (see Figure 1). Thus, two Cairo pentagons must be placed in this specific
orientation adjacent to the row pair. These two "interior" Cairo pentagons create a Prismatic gap
perpendicular to the original chain.

We must consider the case where the row pair containing isolated outer edges is at the end
of the chain. Here, the move shown in Figure 6 is edge-to-edge. However, just as when adding
a Cairo pentagon, this move creates a 120◦ exterior angle adjacent to two edges of length b (see
Figure 24).
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Figure 24: Attaching a Prismatic in this orientation creates the same 120◦ exterior angle and two
edges of length b as in Figure 23.

Thus, this move necessarily forms the same Prismatic gaps seen in Figure 23 (see Figure 25).

Figure 25: By adding a Prismatic pentagon to the top isolated outer edge and a Cairo pentagon to
the bottom edge this figure emphasizes how both moves result in the same Prismatic gap.

The figures depict only the right side of a row pair but the conclusions carry over to the left
side as well by symmetry.

Proposition 3.7. A finite, non-trivial Prismatic chain contains a Prismatic row pair such that the
two outer edges on its right side are isolated and a row pair with the same property on its left side.

Proof. Consider a row pair of width one that forms one of the ends of the Prismatic chain. Let this
denote the top of the chain. Because the chain is finite and non-trivial, it necessarily contains a row
pair such that the adjacent row pair lying further from the top has smaller width. Consider the row
pair with this property lying closest to the top of the chain and denote it P. If P has width n then
by Proposition 3.5 the row pair below it has width n−1. If the row pair above P has width n−1
then all four outer edges of P are isolated and so the proposition is satisfied (see Figure 26).
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Figure 26: If a row pair of width n is adjacent to two row pairs of width n−1 then the outer edges
of the row pair of width n are isolated. Above is the case where n = 2.

Now, the row pair above P cannot have width n+1 because this would contradict the fact that
P is the closest row pair to the top such that the adjacent row pair below it has smaller width. Thus,
the only remaining case is where the row pair above P has width n. The placement of n−1 of these
adjacent Prismatic pentagons are determined because they must fill the n−1 inner Prismatic gaps.
But, the last Prismatic can be placed along either outer edge (see Figure 27).

Figure 27: There are two possible orientations for the row pair of width n above P corresponding
to when the undetermined Prismatic pentagon is on the left or right side.

Without loss of generality consider the case where the row pair above P is on the right and
denote this row pair Q. Once again, because of the choice of P, only row pairs of width n or n−1
lie above Q. If the row pair above Q is on the left the proposition is satisfied (See Figure 28).
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Figure 28: The above shows the case where the row pair above Q is on the left. We see that P
satisfies the proposition for the left side and Q for the right.

If instead a row pair of width n−1 is added above Q the proposition is once again satisfied for
both sides (see Figure 29).

Figure 29: The above shows the case where a row pair of width n−1 is added above Q. P satisfies
the proposition for the left side and Q for the right.

The only case left to consider is when the row pair above Q is on the right. Because the
Prismatic chain in question is finite there can not exist an infinite number of row pairs on the right
above P. Suppose some finite number of row pairs where the undetermined Prismatic is placed
on the right exist above P and that the next row pair is of width n− 1. The proposition is then
satisfied- P will always satisfy the proposition for the left side and the last row pair on the right
will satisfy the proposition for the right side. If instead the next row pair is on the left then once
again P satisfies the proposition for the left side and the last row pair on the right satisfies the right
side.

Proposition 3.8. On both sides of a finite Prismatic chain there exists two Cairo pentagons, con-
nected along the side of the row pair, whose edges of length a form a Prismatic gap perpendicular
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to the original chain.

Proof. By Propositon 3.7 a finite Prismatic chain contains a row pair with isolated outer edges on
the right side and a row pair with isolated outer edges on the left side. By Proposition 3.6 these
two areas must be filled by two Cairo pentagons whose edges of length a in turn form a Prismatic
gap perpendicular to the original chain.

Thus, we know that in a complete edge-to-edge Cairo-Prismatic tiling on both sides of a finite
Prismatic chain there necessarily exist additional Prismatic chains perpendicular to the original. If
these perpendicular Prismatic chains are also finite then they too have Prismatic chains branching
from both sides. Because these chains must be perpendicular to the chains that were perpendicular
to the original chain, they are parallel to the original chain. If every Prismatic chain is finite then
there exists an infinite branching process consisting of orthogonal Prismatic chains.

Definition 3.9. A Prismatic family is a maximal, connected set of Prismatic chains and the Cairo
pentagons that form Prismatic gaps filled by the chains in the family. We will often consider an
arbitrary Prismatic chain to serve as the zero-order chain. The first-order Prismatic chains then fill
the Prismatic gaps adjacent and perpendicular to the zero-order chain, second-order chains fill the
first-order Prismatic gaps and so on.

Given a Prismatic family, a Prismatic path is a connected subset of the family consisting of a
single Prismatic chain in the family from each order and the Cairo tiles connecting these chains.

We now prove that a Cairo-Prismatic tiling with symmetries p3, p31m or p3m1 must contain
three Prismatic chains at 120◦ angles.

Proposition 3.10. Around a center of order three rotational symmetry in a Cairo-Prismatic tiling
there necessarily exist a Prismatic pentagon and its 120◦ and 240◦ rotated copies.

Proof. At a center of order three rotational symmetry, three congruent tiles meet with interior
angles of 120◦ and equal edge lengths. The three tiles are either Cairo or Prismatic. If the three
tiles are Prismatic, the proposition holds trivially (see Figure 30). If the three tiles are Cairo then
there are three options for moves along the edges of length a of these Cairo. Two of these moves are
along Prismatic pentagons (Figures 31 and 32). If instead the outside edges are adjacent to Cairo
tiles, adding a few necessary tiles shows us that again there must be three Prismatic pentagons at
120◦ angles (see Figure 32).

Figure 30: Three Prismatic pentagons forming the center of order three rotational symmetry.
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Figure 31: When three Cairo pentagons form the center of order three rotational symmetry, two of
the three possible moves along their edges of length a involve adding Prismatic pentagons.

Figure 32: Above, the Cairo pentagons that form the center of order three rotational symmetry
attach to three additional Cairo pentagons along edges of length a. As in the proof of Proposition
3.6 this creates 120◦ angles formed by edges of length b. The only way to tile these gaps are with
Cairo pentagons along their tops (Figure 1) and so this necessarily leads to the scenario on the
right.

Note that, because the three Prismatic pentagons in Proposition 3.10 are neither perpendicular
nor parallel, they constitute three different Prismatic chains and generate three separate Prismatic
families. The following proposition will be a major tool for our final proof in which we show the
impossibility of these three Prismatic families.

Proposition 3.11. Distinct Prismatic chains cannot intersect at a Prismatic tile. Prismatic paths
from different Prismatic families cannot intersect at a Prismatic tile.

Proof. Assume two Prismatic chains, C and C′, contain the same Prismatic tile. Then, C∪C′ is
connected. In addition, the tile contained in C∩C′ must be parallel to both chains and so C and C′

must be parallel. So, C∪C′ is a maximal, connected set of parallel Prismatic pentagons containing
C and C′. However, this contradicts the existence of C and C′.

Now, assume a Prismatic path of family F intersects another Prismatic path of family F ′ at a
Prismatic tile. By Definition 3.9 every Prismatic pentagon in a Prismatic family is contained in a
Prismatic chain and so there exists Prismatic chains from each family, D and D′, each of which
contain the tile. By the above paragraph D and D′ must be equal. Thus, F ∩F ′ is nonempty and,
because by Definition 3.9 both F and F ′ are maximal and connected, F and F ′ must be equal.
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Proposition 3.12. A Cairo-Prismatic tiling with symmetries p3, p31m or p3m1 cannot contain an
infinitely long Prismatic chain.

Proof. Assume a Cairo-Prismatic tiling with symmetries p3, p31m or p3m1 did contain an in-
finitely long Prismatic chain C. Consider this chain’s orientation with respect to a center of order
three rotational symmetry. By this symmetry two more infinitely long Prismatic chains exist, one
of which is the original chain rotated 120◦ clockwise with respect to the center of rotation and an-
other that is rotated 120◦ counterclockwise. By translational symmetry we have three such infinite
chains around every center of rotational symmetry (which by Figure 3 lie in a hexagonal grid).

Consider either rotated copy of C and denote it C′. By translation of C′, there is a similar
chain C′′ which intersects C at a tile. This contradicts Proposition 3.11. Therefore, Cairo-Prismatic
tilings with symmetries p3, p31m and p3m1 cannot contain an infinitely long Prismatic chain.

Theorem 3.13. A Cairo-Prismatic tiling cannot attain the symmetries of wallpaper groups p3,
p3m1 or p31m.

Proof. Suppose that there is a tiling T with wallpaper symmetry group p3, p31m or p3m1 and
hence with centers of order three rotational symmetries. By Proposition 5.11 around every center
of rotational symmetry T contains three Prismatic pentagons and thus three Prismatic chains sep-
arated by 120 rotations. Consider one such chain C and its 120-degree rotation C′ as in Figure 30.
By Proposition 5.12, T cannot contain infinitely long Prismatic chains. Thus, C and C′ must be
finite. By Proposition 5.8, because both C and C′ are finite, there exist Prismatic chains perpendic-
ular to C and C′ branching off on each side of the original chains, and so on. Consider branching of
C left, left, right, left, and continuing to alternate right, left, forming a Prismatic path P. Similarly
consider the branchings of C′ right, right, left, right, and continuing to alternate left, right, forming
a Prismatic path P′. The paths P and P′ must either pass through the center of rotational symmetry
or intersect. There are three possible centers of order three rotational symmetry, as in Figures 27,
28 and 29. P and P′ clearly cannot pass through Figure 29 because it is too densely packed with
Cairo pentagons. In the other two cases, the space between the initial Prismatic pentagons of C and
C′ is at most two tiles wide and so P and P′ cannot pass through the centers represented in Figures
27 and 28 without intersecting. Therefore, P and P′ must intersect, contradicting Proposition 5.10.
Therefore, a Cairo-Prismatic tiling cannot exhibit symmetries p3, p31m or p3m1.
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Figure 33: Assuming a center of three-fold symmetry, we construct two intersecting prismatic
paths P and P′ which intersect, a contradiction.

Remark 3.14. Note that Cairo-Prismatic tilings that do not have wallpaper group symmetries, such
as Windmill (See Figure 16), may contain centers of order 3 rotational symmetry. This is because
without the requirement for translation symmetry the Prismatic chains can grow infinitely long.
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