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Sums of Reciprocals of Irreducible
Polynomials over Finite Fields

Spencer Nelson

Abstract. We will revisit a theorem first proved by L. Carlitz in 1935 in which
he provided an intriguing formula for sums involving the reciprocals of all monic
polynomials of a given degree over a finite field of a specified order. Expanding on this
result, we will consider the equally curious case where instead of adding reciprocals
all monic polynomials of a given degree, we only consider adding reciprocals of those
that are irreducible.
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1 Introduction
Let q = pr for some prime p and positive integer r, and let Fq denote the finite field with q
elements. Recall that not only are all finite fields of prime power order, but there exists a
unique finite field of order pr for every prime p and positive integer r (up to isomorphism).
Additionally, let Fq[x] denote the ring of polynomials over Fq and F∗q = Fq r {0} denote the
set of nonzero elements in Fq.

In 1935, L. Carlitz proved that for 1 ≤ k ≤ q,∑
f∈Pn

q

1

fk
=

1[∏n
i=1

(
x− xqi

)]k , (1)

where Pnq denotes the set of all monic polynomials of degree n over Fq [1]. This result was then
reproved by Hicks et al. in 2012 using a simpler induction-based argument [2]. The expression
above is peculiar by itself but becomes even more enticing when working through specific
examples. We invite the reader to compute this sum by hand for a few relatively small cases
in order to appreciate the surprising amount of cancellation that occurs in the numerator of
this expression. It is worth mentioning that Carlitz arrived at a closed formula for

∑
f∈Pn

q

1
fk

for all values of n and k, but the expression becomes increasingly more complicated when
k > q.

Hicks et.al. [2] point out that the integers and Fq[x] bear many similarities such as unique
factorization into irreducible elements. In the integers, of course, the irreducible elements
are the prime numbers, whose history is both rich and extensive. Since the irreducible
polynomials in Fq[x] are the analogue to the prime numbers in Z, it seemed like a natural
question to consider (1) but restricted only to the subset of polynomials that are irreducible.
From here on, we will let Inq denote the set of all monic irreducible polynomials of degree
n over the finite field with q elements and we will also let hn,q(x) denote the product of all
monic irreducible polynomials of degree n over Fq.

If n = 1, we have that Pnq = Inq since all linear polynomials are also irreducible. So we
will begin by considering the case n = 2. All monic irreducible polynomials of certain degrees
over certain finite fields can be found as an appendix in the text of Lidl and Niederreiter [3],
which we relied on to carry out calculation of these sums. To begin, observe that∑

f∈I23

1

f
=

1

x2 + 1
+

1

x2 + x+ 2
+

1

x2 + 2x+ 2

=
[(x2 + x+ 2)(x2 + 2x+ 2)] + [(x2 + 1)(x2 + 2x+ 2)] + [(x2 + 1)(x2 + x+ 2)]

h2,3(x)

=
(x4 + 1) + (x4 + 2x3 + 2x+ 2) + (x4 + x3 + x+ 2)

h2,3(x)

=
2

h2,3(x)

= − 1

h2,3(x)
.
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As the order of the field increases, the cardinality of I2q increases. Additionally, the
algebra involved becomes cumbersome to carry out by hand. To remedy this, we utilized
the polynomial module in Python, which is part of the Numpy scientific computing package.
We will omit the explicit calculation of this sum over F5 but the curious reader may verify
that we have ∑

f∈I25

1

f
=

4x10 + 2x6 + 4x2

h2,5(x)
= −(x5 − x)2

h2,5(x)
.

Further, the sum over F7 is

∑
f∈I27

1

f
=

6x28 + 4x22 + x16 + 4x10 + 6x4

h2,7(x)
= −(x7 − x)4

h2,7(x)
.

Collectively, these results led to the following conjecture:

∑
f∈I2q

1

f
= −(xq − x)q−3

h2,q(x)
. (2)

In Section 2, we prove that the formula in (2) is indeed true. We will also provide a closed
form formula for the sum of the reciprocals of all monic irreducible cubic polynomials. Once
we have this information, we will also be able to determine the sum of the reciprocals of
all monic reducible polynomials of degree 2 and 3 by using (1). So for future use, we will
let Rn

q denote the set of monic reducible polynomials of degree n over Fq. We will then
conclude in Section 3 by discussing some ideas for future study and some of the difficulties
we encountered attempting to find a closed form formula for the sum of the reciprocals of
monic irreducible quartic polynomials.

2 Sums of Reciprocals of Irreducible Polynomials

Before proving the formula proposed in (2) and a formula for the sum of the reciprocals of
all monic irreducible cubic polynomials, we need to take note of a few facts that our proof
will rely on. The first of these is a particular fact about polynomials over finite fields that
appears as Theorem 3.20 in the text of Lidl and Niederreiter [3].

Theorem 1. The product of all monic irreducible polynomials over Fq of degree dividing n
is equal to xqn − x. That is, ∏

d|n

hd,q(x) = xq
n − x.

The next fact that is a lemma that will provide the foundation for our proof strategy.
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Lemma 2. Let f and g be nonzero polynomials over Fq each having degree less than or equal
to n for some positive integer n. If f(t) = g(t) for n+1 distinct values of t ∈ Fq, then f = g.

Proof. Suppose that ti ∈ Fq, where i ∈ Z and 1 ≤ i ≤ n + 1, are distinct values at which f
and g agree. Since deg f ≤ n and deg g ≤ n, it follows that deg(f − g) ≤ n. If we let ti ∈ Fq
be some value for which f and g agree, then we have that f(ti) = g(ti) which implies that
f(ti)− g(ti) = 0 and further that ti is a root of f − g. Since ti was arbitrary, ti is a root of
f − g for all 1 ≤ i ≤ n+ 1 and (x− ti) is a factor of f − g. However this implies that f − g
must have degree at least n + 1, but we know that deg(f − g) ≤ n. Hence it must be the
case that f − g = 0 and further that f = g.

The following lemma is known as Wilson’s Theorem when performing arithmetic in Fp.
We will expand this idea to Fq and utilize it later on to perform cancellations to our advan-
tage.

Lemma 3. In a finite field Fq, the product of all α ∈ F∗q is equal to −1. That is
∏
α∈F∗

q

α = −1.

Proof. To start, consider the polynomial f(x) = x2− 1 over Fq, whose roots are ±1. Since a
polynomial of degree n over a field can have at most n roots, we know that ±1 are the only
elements of Fq satisfying x2− 1 = 0, or equivalently x2 = 1. Hence ±1 are the only elements
of Fq that are self-inverses.

Upon multiplying every element of F∗q, we may pair each element of F∗q with its inverse so
they combine to give 1 since multiplication is commutative in F∗q. After pairing each element
with its inverse, −1 is the only term that remains that is not equal to 1 because it is the
only self-inverse element of F∗q. Hence the overall product is −1.

With all of the requisite mathematics in place, we now provide a proof of equation (2).

Theorem 4. Let I2q denote the set of monic irreducible quadratic polynomials over Fq for
q ≥ 3. Then, ∑

f∈I2q

1

f
= −(xq − x)q−3

h2,q(x)
. (2)

Proof. We will begin by first determining the cardinality of I2q . We know that Fq2 is the
splitting field extension for all f ∈ I2q . Further, for all σ ∈ Fq2 rFq, of which there are q2− q
such elements, we know that there is some fσ ∈ I2q that is the minimal polynomial of σ over
Fq. However fσ is the minimal polynomial for σq, the conjugate of σ, as well. Hence the
cardinality of I2q is 1

2
(q2 − q). For the sake of convenience, let k = |I2q | and enumerate the

polynomials of I2q as f1, f2, . . . , fk.
Now if we expand our sum we have∑

f∈I2q

1

f
=

1

f1
+

1

f2
+ · · ·+ 1

fk
,
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which we may simplify by obtaining h2,q(x) as a common denominator∑
f∈I2q

1

f
=

(f2 · f3 · · · fk) + (f1 · f3 · · · fk) + · · ·+ (f1 · f2 · · · fk−1)
h2,q(x)

. (3)

Examining the numerator of (3), we see that each individual term is the product of k − 1
quadratics from I2q . Then it follows that the degree of the numerator in (3) is less than or
equal to 2(k − 1) = q2 − q − 2. Also from (2), the degree of the numerator of our desired
result is equal to q(q−3) = q2−3q. Since the denominators of (2) and (3) are equal, showing
that their numerators are equal establishes the theorem. Since the degree of the numerators
in (3) and (2) are less than q2− q− 1, showing that the numerators of these two expressions
agree for all q2−q elements of Fq2rFq implies that they are equal by lemma 2 and completes
the proof.

Let β1, β2, . . . , β2k be the elements of Fq2 r Fq and enumerate them so that β2 is the
conjugate of β1, that is, β2 = βq1 . We know that the minimal polynomial of β1 is some
polynomial contained in I2q ; so without loss of generality, let it be f1 ∈ I2q . When evaluating
the numerator of (3) at β1, every term containing f1 will be equal to 0 since β1 is a root of
f1. Hence the entire numerator evaluated at β1 is equal to f2(β1) · f3(β1) · · · fk(β1). Now
since the elements of Fq2 rFq are precisely the roots of the polynomials of I2q , we may write
h2,q(x) as

h2,q(x) =
∏

β∈Fq2rFq

(x− β) = (x− β1)(x− β2) · · · (x− β2k) (4)

Further, since all monic linear polynomials over Fq are irreducible, we have that∏
α∈Fq

(x− α) = xq − x

by Theorem 1. If we let α1, . . . , αq−1 denote the nonzero elements of Fq, we arrive at another
formulation of h2,q(x) given by

h2,q(x) =
[(x− β1)(x− β2) · · · (x− β2k)] · [(x)(x− α1) · · · (x− αq−1)]

xq − x
, (5)

which is obtained by multiplying (4) by (xq − x)/(xq − x) and deliberately leaving xq − x as
the product of all monic linear polynomials over Fq in the numerator. Since β1 and β2 are the
roots of f1(x), we have f1(x) = (x−β1)(x−β2) and also that h2,q(x) = f1(x) · · · f2(x) · · · fk(x).
Now using the formulation of h2,q(x) from (5), we derive

f2(x) · f3(x) · · · fk(x) =
h2,q(x)

f1(x)

=
[(x− β1)(x− β2) · · · (x− β2k)] · [(x)(x− α1) · · · (x− αq−1)]

(xq − x) · (x− β1)(x− β2)

=
[(x− β3) · · · (x− β2k)] · [(x) · · · (x− αq−1)]

xq − x
.
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Evaluating f2(x) · f3(x) · · · fk(x) at β1 gives

f2(β1) · f3(β1) · · · fk(β1) =
[(β1 − β3) · · · (β1 − β2k)] · [(β1) · · · (β1 − αq−1)]

βq1 − β1
.

which we may then multiply by (β1 − β2)/(β1 − β2) to obtain

f2(β1) · f3(β1) · · · fk(β1) =
(β1 − β3) · · · (β1 − β2k) · (β1) · · · (β1 − αq−1)(β1 − β2)

(βq1 − β1)(β1 − β2)
. (6)

Now we note that every nonzero element of Fq2 appears in the numerator of (6), which, by
lemma 3, implies that

f2(β1) · f3(β1) · · · fk(β1) = −
1

(βq1 − β1)(β1 − β2)
=

1

(βq1 − β1)2
.

However, the numerator of our desired result is −(xq−x)q−3, which is equal to −(βq1−β1)q−3
when evaluated at β1. Therefore we must show that these two quantities are equal, that is,

1

(βq1 − β1)2
= −(βq1 − β1)q−3,

or equivalently that −(βq1 − β1)q−1 = 1. Now note that

−(βq1 − β1)q−1 = −(βq1 − β1)q

βq1 − β1

= −β
q2

1 − β
q
1

βq1 − β1

= −β1 − β
q
1

βq1 − β1
= 1.

Hence the numerator in (2) and (3) agree for all β ∈ Fq2 rFq since β1 was arbitrary. Hence,
by lemma 2, we have that ∑

f∈I2q

1

f
= −(xq − x)q−3

h2,q(x)
.

Since we have closed form expressions for both the sum of reciprocals of monic irreducible
quadratic polynomials as well as all monic polynomials due to Carliz, it is a routine algebraic
exercise to determine the sum of reciprocals of all reducible quadratic polynomials over Fq.
We certainly have ∑

f∈R2
q

1

f
=
∑
f∈P2

q

1

f
−
∑
f∈I2q

1

f
.
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Then using Carlitz’s formulation for the sum of reciprocals of all monic polynomials coupled
with our formulation for the sum of reciprocals of monic irreducible quadratics, we have∑

f∈R2
q

1

f
=

1∏2
i=1(x− xq

i)
−
[
−(xq − x)q−3

h2,q(x)

]
.

By Theorem 1, we have that

xq
2 − x =

∏
d|2

hd,q(x) = h1,q(x) · h2,q(x),

and since h1,q(x) = xq − x, it follows that

h2,q(x) =
xq

2 − x
xq − x

.

Therefore,

1∏2
i=1(x− xq

i)
−
[
−(xq − x)q−3

h2,q(x)

]
=

1

(x− xq)(x− xq2)
+

(xq − x)q−2

xq2 − x

=
1

(xq2 − x)(xq − x)
+

(xq − x)q−1

(xq2 − x)(xq − x)

=
1 + (xq − x)q−1

(xq2 − x)(xq − x)
.

If we then multiply this expression by (xq − x)/(xq − x), we obtain∑
f∈R2

q

1

f
=

(xq − x) + (xq − x)q

(xq2 − x)(xq − x)2

=
xq − x+ xq

2 − xq

(xq2 − x)(xq − x)2

=
xq

2 − x
(xq2 − x)(xq − x)2

=
1

(xq − x)2
.

Having determined the sum of the reciprocals of monic irreducible quadratics, it is a
natural next step to consider the sum of reciprocals of monic irreducible cubics. Rather than
computing the sum

∑
f∈I3q

1
f
for a number of specific cases and then conjecturing a formula,

we proceeded with the proof as in Theorem 4 until the calculations simplified to what we
believed the sum was equal to. We then went about proving that our conjecture was indeed
correct.



Page 32 RHIT Undergrad. Math. J., Vol. 17, No. 2

Theorem 5. Let I3q denote the set of monic irreducible cubic polynomials over Fq for q ≥ 4.
Then, ∑

f∈I3q

1

f
=

[h2,q(x)]
3 · (xq2 − x)q−4

h3,q(x)
. (7)

Proof. We will again begin by determining the cardinality of I3q . We know that Fq3 is the
splitting field extension for all f ∈ I3q . Additionally, for all σ ∈ Fq3 r Fq, of which there are
q3 − q such elements, we know that there is some fσ ∈ I3q that is the minimal polynomial
of σ over Fq. However fσ is the minimal polynomial for σq and σq2 , the conjugates of σ, as
well. Hence the cardinality of I3q is 1

3
(q3− q); so let k = |I3q | and enumerate the polynomials

of I3q as f1, f2, . . . , fk.
Now if we expand our sum we have∑

f∈I3q

1

f
=

1

f1
+

1

f2
+ · · ·+ 1

fk
,

which we may simplify by obtaining h3,q(x) as a common denominator

∑
f∈I3q

1

f
=

(f2 · f3 · · · fk) + (f1 · f3 · · · fk) + · · ·+ (f1 · f2 · · · fk−1)
h3,q(x)

. (8)

Since each individual term appearing in the numerator of (8) is the product of k − 1 cubic
polynomials, the degree of the numerator in (8) is less than or equal to 3(k−1) = q3− q−3.
Recall from Theorem 4 that |I2q | = 1

2
(q2− q), which implies that the degree of the numerator

of (7) is equal to q3 − q2 − 3q. Since the degree of the numerator of (7) and the degree of
the numerator of (8) are both less than q3 − q − 1, showing that they agree for all q3 − q
elements of Fq3 r Fq implies they are equal by lemma 2 and completes the proof.

So let β1, β2, . . . , β3k be the elements of Fq3 rFq and enumerate them in such a way that
β2 and β3 are the conjugates of β1, that is, β2 = βq1 and β3 = βq

2

1 . We know that the minimal
polynomial of β1 is some polynomial contained in I3q . Then, without loss of generality, let
it be f1 ∈ I3q . Upon evaluating the numerator of (8) at β1, every term containing f1 will
be equal to 0 since β1 is a root of f1. Hence the entire numerator evaluated at β1 is equal
to f2(β1) · f3(β1) · · · fk(β1). Since the elements of Fq3 r Fq are precisely the roots of the
polynomials of I3q , we may write h3,q(x) = (x − β1)(x − β2) · · · (x − β3k). Further, since
f1(x) = (x− β1)(x− β2)(x− β3), we have that

f2(x) · f3(x) · · · fk(x) =
h3,q(x)

f1(x)

=
(x− β1)(x− β2)(x− β3) · · · (x− β3k)

(x− β1)(x− β2)(x− β3)
= (x− β4)(x− β5) · · · (x− β3k).
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Now if we let α1, . . . , αq−1 denote the nonzero elements of Fq, we know that

xq − x = (x)(x− α1) · · · (x− αq−1)

by Theorem 1. Therefore we have that

f2(x) · f3(x) · · · fk(x) =
(x− β4)(x− β5) · · · (x− β3k)(x)(x− α1) · · · (x− αq−1)

xq − x
,

which is obtained by multiplying (x − β4)(x − β5) · · · (x − β3k) by (xq − x)/(xq − x) and
deliberately writing xq−x as (x)(x−α1) · · · (x−αq−1) in the numerator. Hence, the numerator
of (8) when evaluated at β1 is

f2(β1) · f3(β1) · · · fk(β1) =
(β1 − β4) · · · (β1 − β3k)(β1) · · · (β1 − αq−1)

βq1 − β1
. (9)

We may then multiply (9) by
(β1 − β2)(β1 − β3)
(β1 − β2)(β1 − β3)

to obtain

(β1 − β4)(β1 − β5) · · · (β1 − β3k)(β1)(β1 − α1) · · · (β1 − αq−1)(β1 − β2)(β1 − β3)
(βq1 − β1)(β1 − β2)(β1 − β3)

. (10)

Since every nonzero element of Fq3 appears in the numerator (10), the entire numerator of
(10) is equal to −1 by lemma 3 and so we have

f2(β1) · f3(β2) · · · fk(β1) = −
1

(βq1 − β1)(β1 − β2)(β1 − β3)
= − 1

(βq1 − β1)2(β
q2

1 − β1)
. (11)

Now note that
βq

3

1 − β
q
1

βq1 − β1
= −1,

which we may substitute for −1 in (11) to obtain

f2(β1) · f3(β2) · · · fk(β1) =
βq

3

1 − β
q
1

(βq1 − β1)3(β
q2

1 − β1)

=
(βq

2

1 − β1)q

(βq1 − β1)3(β
q2

1 − β1)

=

(
βq

2

1 − β1
βq1 − β1

)3

· (βq
2

1 − β1)q−4.
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By Theorem 1 we have that h2,q(x) =
xq

2 − x
xq − x

and so h2,q(β1) =
βq

2

1 − β1
βq1 − β1

, which implies

that

f2(β1) · f3(β2) · · · fk(β1) =

(
βq

2

1 − β1
βq1 − β1

)3

· (βq
2

1 − β1)q−4 = [h2,q(β1)]
3 · (βq

2

1 − β1)q−4.

However this is precisely the same as the numerator of (7) evaluated at β1. Since β1 was
arbitrary, the numerator of (7) and (8) agree for all q3 − q elements of Fq3 r Fq. Then by
lemma 2 we have ∑

f∈I3q

1

f
=

[h2,q(x)]
3 · (xq2 − x)q−4

h3,q(x)
.

Just as before, we can use Carlitz’s formulation along with our findings to determine the
sum of the reciprocals of all reducible monic cubic polynomials over Fq. So then we have
that ∑

f∈R3
q

1

f
=
∑
f∈P3

q

1

f
−
∑
f∈I3q

1

f
=

1∏3
i=1(x− xq

i)
− [h2,q(x)]

3 · (xq2 − x)q−4

h3,q(x)
. (12)

Further, we have

xq
3 − x =

∏
d|3

hd,q(x) = h1,q(x) · h3,q(x)

by Theorem 1 and since h1,q(x) = xq − x, we have that h3,q(x) =
xq

3 − x
xq − x

. Replacing h3,q(x)

with
xq

3 − x
xq − x

in (12) yields

1

(x− xq)(x− xq2)(x− xq3)
− [h2,q(x)]

3 · (xq − x) · (xq2 − x)q−4

xq3 − x
,

which simplifies to

−1 + [h2,q(x)]
3 · (xq − x)2 · (xq2 − x)q−3

(xq3 − x)(xq2 − x)(xq − x)
.
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Now if we replace h2,q(x) with
xq

2 − x
xq − x

and multiply by (xq − x)/(xq − x), we obtain

∑
f∈R3

q

1

f
= −

1 +
(
xq

2−x
xq−x

)3
· (xq − x)2 · (xq2 − x)q−3

(xq3 − x)(xq2 − x)(xq − x)
· x

q − x
xq − x

= − (xq − x) + (xq
2 − x)q

(xq3 − x)(xq2 − x)(xq − x)2

= − xq − x+ xq
3 − xq

(xq3 − x)(xq2 − x)(xq − x)2

= − 1

(xq2 − x)(xq − x)2
.

3 Concluding Remarks

There are a number of directions that we could inquire further about for this particular topic.
In Carlitz’s original paper, he deduced a closed form expression for the sum of the reciprocals
of all monic polynomials raised to some integer power. For future studies, it would be worth
exploring expressions such as

∑
f∈Inq

1
fk
.

The most obvious avenue to examine would be to determine the sum, not involving any
powers, for Inq where n ≥ 4. Having had determined

∑
f∈I3q

1
f
by working as if we knew what

the correct answer was, we believed we could repeat the same process for I4q . So, we began
by determining the cardinality of I4q . First, we know that Fq4 is the splitting field extension
for all f ∈ I4q . Additionally, every σ ∈ Fq4 r Fq2 has a minimal polynomial contained in
I4q and since |Fq4 r Fq2| = q4 − q2 and the minimal polynomial for σ is also the minimal
polynomial for the conjugates of σ, we have that |I4q | = 1

4
(q4− q2); so let k denote |I4q | from

here on and enumerate the polynomials of I4q as f1, f2, . . . , fk.
We then expand the sum and obtain h4,q(x) as a common denominator; so we have

∑
f∈I4q

1

f
=

(f2 · f3 · · · fk) + (f1 · f3 · · · fk) + · · ·+ (f1 · f2 · · · fk−1)
h4,q(x)

. (13)

Now since every term in the numerator of (13) is the product of k − 1 quartics, we know
that the degree of the numerator is less than or equal to 4(k − 1) = q4 − q2 − 4. Now let
β1, β2, . . . , β4k be the elements of Fq4 r Fq2 and enumerate them in such a way that β2, β3,
and β4 are the conjugates of β1, that is β2 = βq1 , β3 = βq

2

1 , β4 = βq
3

1 . Now we know that
the minimal polynomial of β1 is some polynomial in I4q ; so, without loss of generality, let
it be f1 ∈ I4q . Now if we evaluate the numerator of (13) at β1, then every term containing
f1 is equal to 0 since β1 is a root of f1; so we have that the entire numerator is equal to
f2(β1) · f3(β1) · · · fk(β1) when evaluated at β1.
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Since the elements of Fq4 rFq2 are precisely the roots of the polynomials belonging to I4q
and h4,q(x) = f1(x) · f2(x) · · · fk(x), we have

h4,q(x) =
∏

β∈Fq4rFq2

(x− β).

Since h4,q(x) = f1(x) · f2(x) · · · fk(x) and f1(x) = (x− β1)(x− β2)(x− β3)(x− β4), we have

f2(x) · f3(x) · · · fk(x) =
h4,q(x)

f1(x)

=
(x− β1)(x− β2)(x− β3)(x− β4) · · · (x− β4k)

(x− β1)(x− β2)(x− β3)(x− β4)
= (x− β5)(x− β6) · · · (x− β4k).

Now recall that h1,q(x) =
∏
α∈Fq

(x − α) and h2,q(x) =
∏

α∈Fq2rFq

(x − α) from earlier. Since

xq
2 − x = h1,q(x) · h2,q(x) by Theorem 1, we have that

xq
2 − x = h1,q(x) · h2,q(x) =

∏
α∈Fq

(x− α)

 ·
 ∏
α∈Fq2rFq

(x− α)

 =
∏
α∈Fq2

(x− α).

So if we let α1, α2, . . . , αq2−1 denote the nonzero elements of Fq2 , we have

f2(x) · f3(x) · · · fk(x) =
(x− β5)(x− β6) · · · (x− β4k)(x)(x− α1) · · · (x− αq2−1)

xq2 − x
,

which is obtained by multiplying (x − β5)(x − β6) · · · (x − β4k) by (xq
2 − x)/(xq2 − x) and

deliberately leaving xq2 − x as (x)(x− α1) · · · (x− αq2−1) in the numerator. Further we may
multiply this expression by

(x− β2)(x− β3)(x− β4)
(x− β2)(x− β3)(x− β4)

so that we have

f2(x) · f3(x) · · · fk(x) =
(x− β5) · · · (x− β4k)(x)(x− α1) · · · (x− αq2−1)(x− β2)(x− β3)(x− β4)

(xq2 − x)(x− β2)(x− β3)(x− β4)
.

(14)
Evaluating (14) at β1 gives

f2(β1) · f3(β1) · · · fk(β1) =
(β1 − β5) · · · (β1 − β4k)(β1) · · · (β1 − αq2−1)(β1 − β2)(β1 − β3)(β1 − β4)

(βq
2

1 − β1)(β1 − β2)(β1 − β3)(β1 − β4)
.

(15)
Now since every nonzero element of Fq4 appears in the numerator of (15), by lemma 3, we
have that

f2(β1) · f3(β1) · · · fk(β1) = −
1

(βq
2

1 − β1)(β1 − β2)(β1 − β3)(β1 − β4)
.
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We may now simplify this expression so that we have

f2(β1) · f3(β1) · · · fk(β1) = − 1

(βq
2

1 − β1)(β1 − β2)(β1 − β3)(β1 − β4)

=
1

(βq1 − β1)(β
q2

1 − β1)2(β
q3

1 − β1)
.

Now note that

−1 =
βq

4

1 − β
q
1

βq1 − β1
,

and so we have

f2(β1) · f3(β1) · · · fk(β1) =
1

(βq1 − β1)(β
q2

1 − β1)2(β
q3

1 − β1)

= − βq
4

1 − β
q
1

(βq1 − β1)2(β
q2

1 − β1)2(β
q3

1 − β1)

= − (βq
3

1 − β1)q

(βq1 − β1)2(β
q2

1 − β1)2(β
q3

1 − β1)

= −

(
βq

3

1 − β1
βq1 − β1

)2

· (β
q3

1 − β1)q−3

(βq
2

1 − β1)2
.

Since h3,q(x) =
xq

3 − x
xq − x

by Theorem 1, we have

f2(β1) · f3(β1) · · · fk(β1) = −

(
βq

3

1 − β1
βq1 − β1

)2

· (β
q3

1 − β1)q−3

(βq
2

1 − β1)2
= −[h3,q(β1)]2 ·

(βq
3

1 − β1)q−3

(βq
2

1 − β1)2
.

Now at this point, we may express (βq
3

1 − β1)q−3 as [h1,q(β1) · h3,q(β1)]q−3 and (βq
2

1 − β1)2 as
[h1,q(β1) · h2,q(β1)]2 using Theorem 1 and while we can cancel the two h1,q(β1) terms that
appear in the denominator, we cannot cancel the two h2,q(β1) terms in any obvious manner.
In all attempts to reduce this expression further, we were unable to cancel [h2,q(β1)]2 while
still keeping the degree of the polynomial small enough to invoke lemma 2. This same problem
arises for Inq where n ≥ 4 since we only introduce more conjugate terms in the denominator.
For future studies, it may be necessary to rely on our old technique of computing the sum
for a number of specific cases and then conjecturing a formula or to adopt an entirely new
proof strategy all together.
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