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A General Model for Variations of the Even Cycle Problem

Rana Kunkar, Don Macatangay, Rachel Pepich
[llinois State University

May 15, 2009

Abstract

We consider three related problems in graph theory: determining if a directed graph has a
directed even cycle, determining if a two edged-colored graph has an alternating colored
even cycle, and determining if a directed graph has an anti-directed even cycle. We show
that each of these, and two other variations, are special cases of a more general graph

problem. We also show that one of these variations is NP-complete.
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Section 1: Introduction
We present a general model to represent 5 different variations of the even cycle problem:
1. Even cycle problem (EC). Given a directed graph D, determine if D has a directed
cycle of even length.
2. Alternating cycle problem (AC). Given a 2-colored graph D, determine if D has a
cycle with alternating colors.
3. Alternating directed cycle problem (ADC). Given a directed 2-colored graph D,
determine if D has an alternating directed cycle.
4. Anti-directed cycle problem (AD). Given a directed graph D, determine if D has
an anti-directed cycle.
5. Alternating anti-directed cycle problem (AAC). Given a directed 2-colored graph
D, determine if D has an alternating anti-directed cycle.

There is a cycle of the desired type in the original graph if and only if there is a
corresponding cycle in the general model.

The classic even cycle problem (EC), simply to determine if a directed graph has a directed
even cycle, was originally put forth by Polya in 1913 in an effort to evaluate matrix
permanents. Partial results were found by Kasteleyn [5], and the problem of finding an
efficient algorithm was solved by McCuaig [6].

Another even cycle variation involves cycles of alternating colors (AC). In this problem we
are given a graph with edges that are colored one of two different colors. We ask if the
graph has an alternating cycle, which is a cycle where edges alternate between the two
colors (i.e.color 1, color 2, color 1, color 2,.....). Clearly such a cycle has an even number of
edges. A method for determining if such a cycle exists was given by Grossman and
Haggkvist [3].

The third basic problem involves determining if there is an anti-directed cycle (AD) in a
directed graph. In an anti-directed cycle the edge orientation alternates, i.e. no two
consecutive edges form a directed path. Definition: An anti-directed cycle is a cycle that
alternates between following the given direction of a digraph and going against the given
direction; it is even by nature. The manuscript put forth by Gannon [1] gives conditions
that guarantee an anti-directed cycle, but does not give an efficient general algorithm for
determining if there is one.

We combine these three types to make two more problem variations: finding an alternating
directed cycle (ADC) and an alternating anti-directed cycle (AAC). Finding a directed cycle
with alternating colors has been shown to be NP-complete by Gutin, Sudakov, and Yeo.[4]

In complexity theory, NP-complete problems (standing for Nondeterministic Polynomial
time) have two properties; any given solution to the problem can be verified quickly and if
the problem can be solved quickly, then so can every problem in NP. The time required to
solve the problem using any currently known algorithm increases very quickly as the size
of the problem grows. Thus we do not expect to be able to find an efficient general
algorithm to solve such a problem.
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We prove here that the fifth problem, that of finding an anti-directed cycle with alternating
colors, is also NP-complete. Thus of our five variations, two (EC and AC) have known
efficient solutions, two (ADC and AAC) are NP-complete, and one (AD) is unknown status.

Section 2: General Model

We give a general model that can be used to express each of the five cases of the even cycle
problem. In particular, a specially constructed bipartite graph can be used as the general
model. Note that experimenting with a bipartite graph as a general model was natural
considering that all cycles in a bipartite graph are forced to be even. For example, the
classic result put forth by McCuaig [6] for the directed even cycle problem began by
translating the problem into one on bipartite graphs. Let B be a bipartite graph (in some
cases B may instead be a directed bipartite graph) with vertex parts X = {x;, x5, ..., X }
and Y = {y,,¥2, ..., ¥m}. We call acycle in B a “choice cycle” if for each i, the cycle includes
at most one vertex of {x;, y;}. There is a choice cycle in the bipartite graph if and only if
there is an even cycle of the desired type in the original graph for each of the five cases.

1. First consider the even directed cycle problem on a digraph D with vertex set {1,2,...,m}.
We set up a bipartite graph with vertex parts X = {x,x,, ..., Xy} and Y = {y4,y2, ..., ¥ }-
For eacharci — j in D, we include directed edges x; — y; and y; = x; in B. An example is
given in Figure 1.

Dirgctad,
Even Cycle Vi
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4 ¥ el
s >

3 e 4 5

- =3
X L ¥ V=
G L. ? L E .1:-&

Figure 1. Construction for the EC problem

It is straightforward to check that there is a directed even cycle, i; = i, = - = i}, = iy, in
D if and only if the corresponding bipartite graph has directed choice cycles
Xiy 2 Vi, = Xig = " 2 Vi, 7 Xy
and
Vi, 2 Xi, 2 Yiy 7 7 Xy, 7 Viy-
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These are choice cycles because no subscript is repeated. Therefore, a directed even cycle
in the original graph exists if and only if two directed cycles exist in the bipartite graph.

2. When translating a graph with alternating colors, again each edge ij corresponds to two
arcs. Now the columns of the bipartite graph are labeled red outgoing and green outgoing
with red edges directed to the right and green edges directed to the left; so red edge ij
corresponds to arcs x; — y; and x; — y;, while green edge ij corresponds to arcs y; = x;
and y; — x;. The number of edges in the bipartite graph is double the number of edges in
the original once again, but this time because the colored edges in the original graph do not
have direction. An example is given in Figure 2.

Cycle of Atemating Colors

7

Figure 2. Construction for the AC problem

Once again, an alternating cycle in the original corresponds to two directed choice cycles in
the bipartite digraph.

3. When translating a directed graph with alternating colors into the bipartite graph,
combine the methods used in the first two variations. We label the first column in the
bipartite graph Red out /Green in and label the other column Green out / Red in. A
directed cycle in the bipartite graph means that a directed cycle with alternating colors is
present in the original graph. Thus, an arc ij in the original graph will generate in the
bipartite graph arc x; — y; if the original is green, and arc y; — x; if the original is red. An
example is given in Figure 3.
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Figure 3. Construction for the ADC problem

By using this procedure, the cycle y; = x, = y, = x3 = y; exists in the bipartite graph
because a directed cycle of alternating color exists in the original graph. It is easy to check
that the original has an alternating directed cycle if and only if the constructed graph has a
directed choice cycle.

4. Translating a directed graph into the bipartite graph model when seeking an anti-
directed cycle is very similar to translating the directed graph when seeking a directed
cycle in Variation #1. The columns of the bipartite graph are labeled the same and the
edges are translated using the same procedure used in Variation #1. In this instance
though, the edges do not need to be reflected/doubled and need not be directed in the
bipartite graph. So arc ij generates edge x; — y; in the bipartite construction, which has a
directed choice cycle if and only if the original digraph has an anti-directed cycle. An
example is given in Figure 4.

Anti-Directed Cycle

o

Figure 4. Construction for the AD problem

Page |5



5. Translating a directed graph with alternating colors into the bipartite graph when
seeking an anti-directed cycle is very similar to translating a directed graph with
alternating colors when seeking a directed cycle in Variation #3.

Theorem 1: The problem of finding an alternating, directed cycle is equivalent to the
problem of finding an alternating, anti-directed cycle.

Proof: By its definition, an anti-directed cycle alternates between following the given
direction and going against the given direction. A cycle of alternating colors is a cycle with
edges that alternate between two colors. Trying to find an anti-directed cycle with
alternating colors combines these two types; therefore, since both are alternating in some
way, edges of color 1 will follow the given direction and edges of color 2 will go against the
given direction. Reversing the direction of color 1 or color 2 will then make the edges of
the cycle all follow the new given directions. Therefore, by reversing the direction of all
arcs of one color in an anti-directed cycle of alternating color, the cycle becomes directed.
This implies that finding an anti-directed cycle of alternating color in a given graph is
equivalent to finding a directed cycle of alternating color.

Since we have already shown that a directed graph with alternating colors can be
translated into the general model of the directed bipartite graph, the anti-directed graph
with alternating colors can also be translated by the above statement. An example is
shown in Figure 5.

Anti-Directed Cycle with Alternating Colors
AT

1 2 3 1 2 3
) change direction of one
A color, say red N u 1
4 P P Now we want an 4 .5 . 6
/ alternating Directed Cycle
" )
\ o o

=~ -
-

Figure 5. Construction for the AAC problem

Therefore, each of these five variations of the even cycle problem can be translated into the
problem of finding a choice cycle or choice directed cycle in a bipartite graph or directed
graph.
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Section 3: NP-completeness of the AAC problem
Using Theorem 1 from the 5t variation of the even cycle problem, we will show that
finding an anti-directed cycle with alternating colors is NP-Complete.

Theorem 2. Finding an alternating, anti-directed cycle (AAC) is NP-Complete

Gutin, Sudakov, and Yeo proved the NP-Completeness of the alternating, directed cycle
problem (ADC) [4]. By our Theorem 1, the alternating, anti-directed cycle problem (AAC)
is polynomially equivalent to the ADC problem, so both are NP-complete. We provide a full
proof by reduction of the 3-SAT problem to an instance of an AAC problem, based closely
on the proof in Gutin.

3-SAT problems can be defined as follows: We are given a finite set U of variables, and a
collection of m clauses, C = {cy, ¢, ..., ¢, }. Each clause consists of 3 literals (which are each
a variable "x" from U, or its negation "not x"). The 3-SAT problem is to determine if there is
a truth assignment (T/F) to the variables of U so that each clause in C contains at least one
literal whose value is "true". Note that if variable "x" is assigned a "true" value, then "not x"
is "false".

(see reference [2] for more background on 3-SAT problems)

Proof:

Begin with any instance of the 3-SAT problem. Let us denote U = {u,, u,, ..., u;} as the set
of k possible variables. Let us denote C = {c;, 3, ..., ¢;y} as the m clauses in the 3-SAT
problem such that every clause has 3 literals. Let us also denote each of these literals

as v(; 1), where i = {the clause that the literal is in} and [ = {the position of the literal in
clause i, I < 3}.

We then construct a 2-colored digraph D which has an alternating, anti-directed cycle if and
only if C (the set of clauses) is satisfiable. The vertices in digraph D consist of two disjoint
sets:

X ={x;:1<1i <m+ 2} and coordinates

Y ={(,0),(,1),(,1),(,2),03,2),..,0,t),7,0),(,t + 1)}, wherej=1,2, ...k and t=6m.

The edges in digraph D fall into three disjoint sets. Subscript R/B denotes the arc’s color as
Red/Blue. Two of the sets (B and P below) remain the same, regardless of the variables that
appear in the clauses.

B = {(xm+2'xm+1)Rl (xm+2' (1'0) )Bl ( (kr t+ 1)1x1)B} U {( (pr t+ 1)1 (p + 1r 0) )B: 1 < p < k - 1}

P = { ((]' 1)1 (j; O))R ’ ((]; 1)1 (j' 2))3 ’ ((1' 3)' (j; 2))R AR ((1' t— 1)1 (jr t))B ) ((1' t), (j' t + 1))R} V)
((6.0,0.D),.(G:D.G2),, ((:3.0:2) -, (G:t=D, (D), (G:D, G, e + D)
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Figure 6 shows an example digraph with all needed vertices and only arc sets B and P for
U = {uy,uy,u3}and C = {cy, c,}. Here k=3, m=2, t=12.

Clause 1 Clause 2
ViaapPiazpPing VizapVizzVizy
¥1 X2 xs\"
0.0 a2 03 04 08 - 08 0D (1.8) 09 010 RENEEE 113
——— € — — % >

an 1.2 K] 0.8 (1.5 {1.8) an .8 0.9 aim (L) 1,12

(2.0 > < > < > < e < 3= < e (213)
@ 22) (2.3) (2.4) (2.5) (2,6) @2 2.8 2.9 @21 @) {212
e < > L > £ > < = < >
@1 22 2,3 2.9 25 (2.6) n (2.8) ] 2,10 (2.11) 219

(3.0) < ———> < > < > <

Gy AL 3,3 (36 an (3.8 (3.9 G GAD T (312 (3.13)

< > < > < —> < >— < —>—
@ 32 B33 (34) 35 38 an &9 ag @I @In 3.17)

Figure 6. Edge sets B and P.

The third set of edges will depend on the clauses. Each variable in a clause will correspond
to one of the coordinates of Y. This mapping gives us our third set of edges,

Q = {(coord.v(l-'l),xi)R ) (coord.v(i,l),le)B }; i=12,..m;l=1,23

where if the variable v(; ;y corresponds with literal u;, then

(J,6=1D)+2) ifvupy= w,

coora. v {(j,6(i -1 +2) if V) = Uj

Page |8



Figure 7 combines Figure 6 with edge set Q for ¢; = (a, b, E) and ¢, = (a, b, E). So, for
example, from clause 1 we have red and blue edges going from (1,2) to x; and x; , from
(2,4) to x; and x, , and from (2,1) to x; and x, .

Clause 1 Clause 2
(a.b,b) (a,b,T)
Viap ViazypPine) VizapVizzyViza)

>
1.2)

(1.3

G0 < < > < > < > < > < <

' an @ (3 @4 (3.5 @6) @0 38 @9~ @G @I @12 - J613
— - L e L e < > < e S e
an 5.2 &9 6o G5 Qa6 6.7 ) 6o G0 @m EXF]

Figure 7. The constructed digraph

We claim that there is an alternating, anti-directed cycle in this graph if and only if these 2
clauses are satisfiable. We see that the truth assignment

a=true, b=false, c=false
holds. Therefore, there must be at least one alternating, anti-directed cycle in this graph.

Figure 8 shows one from Figure 7. (In the proof, this alternating, anti-directed cycle will
correspond directly to the given truth assignment).
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Clause 1
[a, b, E}

Vi1 Vir20 Vg

Clause 2

(B0

Viz 19 Vi227: Vi gy

(1.,0)
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(1,10

(115
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an G2 G3) Go @5 @8 Gn a8 Be G0 @) @D

Figure 8. An alternating, anti-directed cycle corresponding to valid truth assignment {a=true,
b=false, c=false}.

We now prove that C is satisfiable in any 3-SAT problem if an only if D has an alternating
cycle.

Looking at the structure of the construction of D, it is straightforward to check the
structure that any possible alternating, anti-directed cycle must have. There is an
alternating, anti-directed cycle if and only if the cycle consists of pieces of the form

(0)
X1 < €00rd. V(1) = X < €C00Td.V(z,) = X3 <, e, ™ Xy < COOTA. Vi1 ) = Xmy1 < Xima2
and
Xmez = (1,0) « (1,1) - (1,2) « - = (1,6m) « (1,6m + 1)
(1) __or .
Xm+2 d (110) « (111) - (112) i (1, 6m) «— (1,6m + 1)
and
16m+1)-(2,0) «(21) - (22) <> (2,6m) « (2,6m+1)
(2) or
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(L,6m+1) = (2,0) « (2,1) - (2,2) « - = (2,6m) « (2,6m+1)

and
(k—1,6m+1) - (k,0) « (k,1) - (k,2) « -+ - (k,6m) « (k,6m + 1) - x;

(k) or
(k—1,6m+1) > (k,0) « (k1) > (k,2) « - > (k,6m) « (k,6m + 1) > x;

Such a cycle will exist if and only if in line ( 0) we can choose “coord” vertices that do not
appear in the lines chosen from each of the parts (1), (2),.., (k). The choices of the
“coord” vertices in (0) in such a cycle determines the truth assignments for the
corresponding 3-SAT problem; including arc x; « coord.v(;;, in the alternating, anti-
directed cycle means that in the 3-SAT problem clause i will be satisfied by literal u; if

v = U (sou; is assigned a “true” value), or clause i will be satisfied by literal i, if

Vo = W (sou; is assigned a “false” value). But since each “coord” vertex corresponds to a
literal with a “true” value, this will be possible if and only if :

(i) each clause contains a true literal, because of line ( 0)

(i) variable truth assignments are consistent (we do not use u; and i, both true to satisfy

clauses, because then neither string in line ( j ) can be used in the cycle).
Thus the clauses in C are only satisfiable if and only if the constructed digraph D has an

alternating, anti-directed cycle. Since the constructed digraph has (m + 2) + k (6m + 2)
vertices, the reduction is clearly polynomial time.

Page |11



References

[1]

[2]

[3]

[4]

[5]

[6]

Gannon, Dan, et al. "Anti-Directed Even Cycles." Manuscript.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, (Bell Telephone Laboratories, 1979). G. Polya, Aufgafe 424, Arch.
Math. Phys. (3) 20(1913) 271

Grossman, Jerrold W. and Roland Haggkvist. "Alternating Cycles in Edge- Partitioned
Graphs." Journal of Combinatorial Theory, (1983): 77-81.

G. Gutin, B. Sudakov, and A. Yeo, “Note on alternating directed cycles”, Discrete Math.
19 (1998) 101-107.

P.W. Kasteleyn, “Graph Theory and Chrystal Physics”, in: F. Harary, ed., Graph Theory
and Theoretical Physics, (Academic Press, New York 1967) 43-110

W. McCuaig, N.Robertson, P.D. Seymour and R. Thomas, “Permanents, Pfaffian
Orientations, and Even Directed Circuits”, Symposium on the Theory of Computing,
(1997) 402-405.

Page |12



	General Models for Variations of the Even Cycle Problem
	Recommended Citation

	References

