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ISOPERIMETRIC REGIONS IN A WEIGHTED 2-DIMENSIONAL
LATTICE

DEIVIDAS SEFERIS

To my mother

Abstract. We investigate isoperimetric regions in the 1st quadrant of the
2�dimensional lattice, where each point is weighted by the sum of its coordi-
nates. We analyze the isoperimetric properties of six types of regions located
in the �rst quadrant of the Cartesian plane: squares, rectangles, quarter cir-
cles, diamonds, crosses and triangles. To compute volume and perimeter of
each region we use summation and integration methods which give compara-
ble but not identical results. Among our candidates the diamond has the least
perimeter for given volume.

1. Introduction

The object of interest in this paper is to investigate isoperimetric regions on the
2-dimensional lattice (Z+ [ f0g)� (Z+ [ f0g). We use the following de�nitions of
weighted perimeter and volume in the plane to formulate the isoperimetric problem:

De�nition 1. For a set S of ordered pairs of whole numbers we de�ne:
(1) V ol(S) = sum of all coordinates of points of S:
(2) Per(S) = sum of all coordinates of points of S at least one of whose four

neighbors is not in S:

Geometrically, S is a region on the Cartesian plane whose points are either
completely surrounded by four other points in S, or are adjacent to some point(s)
that is not in S. A very simple case is the 3 � 3 square depicted in Figure 0:1.
According to our de�nition, we �nd volume of this region by adding up x and
y coordinates of all of its nine points, which gives us volume 18. When �nding
perimeter it is easy to see that only the middle point A would not contribute since
all of its neighbors are in S (axis points always count toward perimeter). Thus, the
perimeter is just the sum of the coordinates of the eight outer points of the square,
giving perimeter of 16.
The problem we address in this paper is the following:
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Figure 1. A 3� 3 square

Problem 1. For given V ol(S) = n, �nd S to minimize perimeter.

To illustrate the problem, consider again n = 18 � the volume of the 3 � 3
square A of Figure 0:1. The perimeter of this region is 16. Is square the perimeter-
minimizing shape for n = 18? It turns out that it is not. Soybel pointed out that
a cross (Figure 0:2), de�ned as f(2; 0); (1; 1); (2; 1); (3; 1); (2; 2)g with an additional
outer point (0; 3), has less perimeter. In this case S still has volume n = 18 but
Per(S) = 15 < 16. This example illustrates that for any given volume there might
be a variety of di¤erent shapes of that volume such as: lines, squares, rectangles,
circles, diamonds etc. Our main interest in this paper is to �nd a solution to the
isoperimetric problem on the 2�dimensional lattice for any such given volume n.

Results

Figure 0:3 shows our best candidates for solutions to the isoperimetric Problem
2 in (Z+ [ f0g) � (Z+ [ f0g) with weight x + y: We conjecture that diamond is
best. In particular, for given volume n least perimeter regions grow like n2=3, just
as for the classical isoperimetric problem in R3:

Previous Research

The isoperimetric problem on the 2�dimensional lattice is itself an extension of
an isoperimetric sequences problem developed by Miller et al. (2009) [Mi] . In their
paper authors showed that least weighted perimeter on the 1�dimensional lattice
in N is asymtotically related to the classical isoperimetric problem on the plane.
The isoperimetric problem on the unweighted 2�dimensional lattice was solved

in 1977 by Wang et al. [WW]. The authors showed that diamonds are isoperimet-
ric. Moreover, gradually adding another layer yields isoperimetric shapes for all
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Figure 2. Soybel�s counterexample

prescribed volumes. With free boundary along the axes, triangles are isoperimet-
ric. Wang also generalizes all of these results to n dimensions.

Paper Structure

In Section 2 we consider four types of rectangles. For each rectangle we com-
pute weighted volume and perimeter (according to De�nition 1) by summation and
approximate it by integration. These results agree asymptotically.
In Section 3 we consider four additional shapes that we expect to provide better

results than any square: a quarter circle centered at the origin, a diamond in
the �rst quadrant with two of its vertices touching the x and y axes, the cross
counterexample provided by Soybel, and a right isosceles triangle. Of those, the
diamond provides the least perimeter for prescribed volume.

Open Questions

The main problem of �nding and proving perimeter minimizers remains open. It
would also be interesting to consider other densities such as r or rp (see [DDNT]),
e�x

2�y2 (see [Mo], Chapter 18), or perhaps just xp or ex
2

; and other dimensions.
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Figure 3. The diamond is our best candidate to minimize perime-
ter P for prescribed volume n:
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2. Rectangles

Rectangles are the simplest of all shapes that we are considering in this paper. It
is easy to compute volume and perimeter of squares and rectangles by using simple
computation formulas. However, notice that whenever we consider m�m squares
we are really thinking of squares of side length m� 1: For example, a 2� 2 region
is a unit square of side length one and four lattice points. Keeping this distinction
in mind will be important in avoiding double counting mistakes when using the
summation method.

Squares

Case 1. C = (m+1) � (m+1) square at the left-hand corner of the �rst quadrant.

Figure 4. (m+ 1)� (m+ 1) square C at the origin

To obtain the volume of a m�m square whose two sides coincide with x and y
axis, by de�nition, we need to add up the coordinates of all points of that region.
Similarly, to �nd the perimeter we need to add up the coordinates of its four sides.
We can do that either by computing directly using the summation formula (1.1):

(2.1)
mX
i=0

i = 0 + 1 + 2 + 3 + � � �+m =
m(m+ 1)

2

or by approximating it with an integral. We do both and then compare our results.

2.1. Summation Method. To compute volume of C we �rst �nd the sum of all x
coordinates. Notice that this sum is the same for y coordinates because the square
is symmetrical in respect to x and y axes. Therefore, total volume of the region
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will be just twice the sum of x coordinates:

VC = 2
X

x = 2(m+ 1)
mX
i=0

i = 2(m+ 1)
m(m+ 1)

2
;

(2.2) VC = m(m+ 1)
2:

For perimeter, notice that because we are considering a square that is placed
on the lower left corner of the 1st quadrant, points on the x and y axes contribute
less to the perimeter than points on the right side and on the top. Points on the x
and y axes contribute m(m + 1)=2 each, while points on the other two sides each
contribute m(m + 1) +m(m + 1)=2. In order to avoid double counting the corner
points, we also have to subtract 4m from the total. Thus,

PC = 2

�
m(m+ 1)

2
+m(m+ 1) +

m(m+ 1)

2

�
� 4m

(2.3) PC = 4m
2:

2.2. Integration Method. We can also approximate volume and perimeter of the
square by integrating with respect to x and y. Each point�s contribution to total
volume or perimeter can be expressed in terms of the sum of its coordinates. That
is, each such region has density function V (x; y) = x+y. Using this density we can
approximate the volume of C using a double integral:

VC �
Z m

0

Z m

0

(x+ y)dxdy;

(2.4) VC � m3:

For perimeter we integrate along the four sides of the square using the integral:

PC �
Z m

0

xdx+

Z m

0

ydy +

Z m

0

(m+ y)dy +

Z m

0

(m+ x)dx;

(2.5) PC � 4m2:

These results are in agreement with the earlier summation calculations.
Now, since both volume and perimeter are functions of m we can easily derive

P (V ). Let VC = n, then we �nd:

(2.6) m = n1=3 ) P (n) = 4n2=3:

Case 2. Q = (m+ 1)� (m+ 1) � a general case of a square.

Now, consider a square whose sides do not coincide with either of the axes.
Let (a; b) be the lowest left-most corner of the region as depicted in Figure 1:2.
Correspondingly, other corners will have coordinates (a; b + m), (a + m; b) and
(a+m; b+m).
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Figure 5. (m+ 1)� (m+ 1) square Q

2.3. Summation Method. Again, we can compute PQ, VQ and P (n) by using a
simple summation method, which gives us comparable results to (1:4) and (1:5).
Observe that placing a square at point (a; b) adds (m + 1)2(a + b) to the total
volume because each point contributes a + b extra volume and there are (m + 1)2

such points. Similarly, perimeter increases by 4m(a+ b). Thus, we get:

(2.7) VQ = (m+ a+ b)(m+ 1)
2;

(2.8) PQ = 4m(m+ a+ b):

2.4. Integration Method. Similarly to Case 3 we can also integrate along the x
and y axes to obtain the perimeter and volume of Q. We then get the following
result:

VQ �
Z m

0

Z m

0

(a+ b+ x+ y) dxdy;

(2.9) VQ � m2(m+ a+ b):

PQ �
Z m

0

(2a+ 2b+m+ 2x)dx+

Z m

0

(2a+ 2b+m+ 2y)dy;

(2.10) PQ � 4m(m+ a+ b):
These results are again in agreement with the earlier summation calculations.
Now, we can express PQ in terms of VQ = n. Let c = a+ b, where a; b 2 N� 0,

and also let s = c=m such that s 2 Q. Then we can rewrite:

(2.11) n = m3(s+ 1)) m = 3

r
n

s+ 1
;

(2.12) PQ = 4m
2(s+ 1)) P (n) = 4n2=3(s+ 1)1=3:
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Observe that P (n) is minimized when dP=dn = 0, that is s = c=m = 0 for
c = a+ b. Because we know that a and b are whole numbers, hence, it must be true
that a = b = 0. That shows that the perimeter of a square at the origin is smaller
for any given large volume than the perimeter of a square that does not have one
of its corners at point (0; 0):

Rectangles

Rectangles are a slightly more complicated version of squares because we will not
be able to use the symmetry argument when summing up the x and y coordinates.
However, the main principles remain the same and we will be able to compare
results found by summation and integral approximation.

Case 3. R = (k + 1)� (m+ 1) rectangle on the lower left-hand corner of the �rst
quadrant.

Figure 6. (k + 1)� (m+ 1) rectangle R at the origin

2.5. Summation Method. We can again compute PR, VR and P (n) by the simple
summation formula (1.1). For volume, we �rst add the x coordinates and then
similarly add the y coordinates. That is,X

x = (m+ 1)
kX
i=0

i = (m+ 1)
k(k + 1)

2
;

X
y = (k + 1)

mX
i=0

i = (k + 1)
m(m+ 1)

2
;

(2.13) VR =
1

2
(k + 1)(m+ 1)(k +m):
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Similarly to Case 3, for perimeter we just need to sum up the coordinates of
the four sides of the rectangle. For simplicity we �rst will only add x coordinates.
Thus, X

x = k(m+ 1) + 2
kX
i=0

i = k(m+ 1) + k(k + 1)� 2k:

Using the same method we can compute the sum of y coordinates of all four
sides of the rectangles. Therefore,X

y = m(k + 1) + 2
mX
i=0

i = m(k + 1) +m(m+ 1)� 2m:

Notice that in each summation we subtract 2k and 2m respectively in order to
avoid double counting the corner points. Now, the total perimeter is just the sum
of individual components which gives us:

(2.14) PR = (m+ k)
2:

2.6. Integration Method. For rectangles writing down an integral is similar to
the previously used density function; however, instead of integrating twice over
length m, this time we have to integrate over lengths m and k: That is,

VR �
Z m

0

Z k

0

(x+ y)dxdy;

(2.15) VR �
1

2
km(k +m):

PR �
Z k

0

xdx+

Z m

0

ydy +

Z k

0

(m+ y)dy +

Z m

0

(k + x)dx;

(2.16) PR � (k +m)2:

These results are in agreement with the earlier summation calculations.
Now, observe that for given (k + m), k = m is best if we want to maximize

product mk. Thus, that proves that the square at the left-hand corner of the 1st

quadrant is a better perimeter minimizer than the rectangle at the origin.

Case 4. General case of L = (k + 1)� (m+ 1) rectangle.

2.7. Summation Method. Placing a rectangle at point (a; b) just adds (m+1)(k+
1)(a+ b) to total volume since each point now contributes a+ b extra volume, and
there are total of (m + 1)(k + 1) points. Similarly, the perimeter will increase by
2(m+ k)(a+ b) as there are 2(m+ k) points on the boundary. Therefore,

(2.17) VL =
1

2
(k + 1)(m+ 1)(k +m+ a+ b);

(2.18) PL = 2(m+ k)(m+ k + a+ b):
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Figure 7. (k + 1)� (m+ 1) rectangle L

2.8. Integration Method. As usual we also obtain integration approximations
for the volume and perimeter of L:

VL �
Z m

0

Z k

0

(a+ b+ x+ y) dxdy;

(2.19) VL � mk(a+ b) +
1

2
mk(k +m):

PL �
Z k

0

(a+b+x)dx+

Z m

0

(a+b+y)dy+

Z k

0

(a+b+m+y)dy+

Z m

0

(a+b+k+x)dx;

(2.20) PL � 2(k +m)(m+ k + a+ b):
Again, these results are in agreement with the earlier summation calculations.
We see again that for given (k+m) the product mk is maximized when m = k;

and perimeter is minimized when a = b = 0. This shows that the rectangle R in the
left-hand corner of the 1st quadrant is better than the general case of the rectangle
L and, therefore, proves that that a square C at the origin has least perimeter for
given volume among the four examples considered so far.

3. Diamonds, Crosses, Quarter Circles and Triangles

For non-rectangles we, of course, will have many more candidates for the best
perimeter minimizer. As illustrated by Soybel�s cross counter-example there is a
variety of possibilities for obtaining lesser perimeter for given volume by construct-
ing irregular shapes. Indeed, it is not entirely clear or obvious why a regular shape,
such as a square, would minimize the perimeter. Therefore, in this chapter we
investigate four more cases of regions (a diamond, a cross, a quarter circle and a
triangle) which expand our understanding of perimeter minimizing shapes in space.
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Figure 8. Diamond D in the 1st quadrant

Diamonds

Case 5. Diamond D in the 1st Quadrant.

Consider a diamond in the 1st Quadrant so that two of its vertices touch x
and y axes at points (m; 0) and (0;m) respectively. As before, we can compute
and approximate volume and perimeter of this region by using summation and
integration methods.

3.1. Summation Method. First, we start o¤ by summing up y coordinates of all
points on the lower triangle of the diamond. Thus, volume of the vertex (m; 0) of
this triangle is 0. Now, as we move along the y axis volume of the center point
(i.e., the one which is in line with the vertex) increases by 1 and two additional
points are added to the left and to the right of the same volume. We can express
the volume of some row � on this triangle with the formula:

V� = (2�+ 1)� = 2�
2 + �:

Now, it is easy to �nd volume of the whole lower triangle by simply summing up
all such rows. That is,

VLower = 2

mX
�=0

�2 +

mX
�=0

� =
m(m+ 1)(2m+ 1)

3
+
m(m+ 1)

2
;

VLower =
5

6
m+

3

2
m2 +

2

3
m3:

For the upper triangle we use similar approach; however, notice that there are a
few important di¤erences: (1) we start at � = 1 because the �rst row is already in-
cluded in our lower triangle calculation, (2) the number of points is descending with



12 DEIVIDAS SEFERIS

each row but volume per point is increasing. We can write this down algebraically
for some � on the upper triangle with the formula:

V� = (m+ �)(2m� 2� + 1) = 2m2 � 2�2 + � +m:

Again, we easily �nd volume of the upper triangle by summing up all such rows,
which gives us:

VUpper =
mX
�=1

2m2 �
mX
�=1

2�2 +
mX
�=1

� +
mX
�=1

m;

VUpper = 2m
3 � m(m+ 1)(2m+ 1)

3
+
m(m+ 1)

2
�m2;

Vupper =
1

6
m+

1

2
m2 +

4

3
m3:

Thus, the total volume of all y coordinates is:

Vy = VUpper + VLower;

Vy = m+ 2m
2 + 2m3 = m(2m2 + 2m+ 1):

Our work is almost done here, because the results for x coordinates are symmet-
rical to computations long the y axis. Therefore,

Vx = m(2m
2 + 2m+ 1);

(3.1) VD = Vx + Vy = 2m(2m
2 + 2m+ 1):

Next step is to �nd perimeter of the diamond. We can do that easily by adding
up the x coordinates of all four of its sides (and subtracting 4m to avoid double
counting), which gives us:

Px = 2m(m+ 1) + 2m(m+ 1)� 4m = 4m2:

By symmetry,

Py = 4m
2;

(3.2) PD = Px + Py = 8m
2:

Finally, we can compare the diamond with other already discussed shapes. That
is:

VD v 4m3 ) m = 3

r
n

4
;

(3.3) P (n) = 8

�
1

4

�2=3
n2=3:

We �nd that P (n) � 3:1748n
2
3 , which is better than a square C in the corner

and, as we will see later, also than a quarter circle W at the origin.
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3.2. Integration Method. Similarly to our previous approach we can �nd perime-
ter and volume of the diamond using integration. The important part here is to
notice that for volume we use density x+ y; but for perimeter we use density x+yp

2

because there are only 1p
2
points per unit distance along the 45� line. Let�s �nd

the perimeter �rst:

Px = 2

Z 2m

0

xp
2
ds:

Substitute ds =
p
2dx and using symmetry �nd:

Px � 4m2;

Py � 4m2;

(3.4) Pd � 8m2:

Then we can also �nd volume of D :

VD �
Z m

0

Z m+y

m�y
(x+ y)dxdy +

Z 2m

m

Z 3m�y

�m+y
(x+ y)dxdy;

(3.5) VD � 4m3:

These estimates agree asymptotically with the summation formulas (2:5-6):

Crosses

Case 6. Cr� Cross.

Figure 9. Large cross counter example
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As I have already brie�y discussed, a very interesting counterexample to the
proposal that a square in the corner is a perimeter minimizer was provided by
Soybel: the cross of Figure 0:2 has smaller perimeter (15) than the square of the
same volume (18), which has perimeter 16: This idea can probably be used to show
that no square can be perimeter minimizing. To do that simply remove the four
corners of the square, reducing perimeter and volume by the same amounts and
replace the volume with points with at least one not contributing to the perimeter.
Incidentally the cross formed by taking a square in the corner and removing the

four corners has the same asymptotics as the square:

(3.6) VCr = m(m+ 1)
2 � 4m;

(3.7) PCr = 4m
2 � 4m;

(3.8) P (n) v 4n2=3:
Therefore, we see that improvement asymptotically is too small to make any

di¤erence between a cross and a square when large volumes are considered. At the
same time it is not hard to see that large cross will always be slightly better than
a square.

Quarter Circles

Case 7. Quarter circle W of radius m at the origin.

Figure 10. Quarter circle W of radius m

By a quarter circle in the lattice we mean the region closest to the y coordinates.
We found the perimeter and volume to be too di¢ cult to compute by summation,
so we approximated the volume by integration, and attempted to approximate the
perimeter by integration. As for a diamond, along the perimeter the lattice points
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Figure 11. Right isosceles triangle T at the origin

occur less frequently than every unit distance depending on the direction. All we
can conclude is that the perimeter is less than the integral of x+ y: Thus, we get:

VW �
Z �=�=2

�=0

Z r=m

r=0

(x+ y)rdrd� �
Z �=�=2

�=0

Z r=m

r=0

r(r cos � + r sin �)drd�

(3.9) VW � 2

3
m3:

Similarly, for the perimeter of W :

PW /
Z m

0

xdx+

Z m

0

ydy +

Z �=2

0

(x+ y)md�

(3.10) PW / 3m2:

Finally, by expressing the minimizing perimeter of W in terms of its volume
VW = n we obtain:

(3.11) m =
3

r
3n

2
) P = 3n2=3

�
3

2

�2=3
This approximates to P (n) / 3:9311n 2

3 , and thus it is better than square C at
the corner (Case 3) but probably worse than a diamond D (Case 7).

Triangles

Case 8. Right isosceles triangle T at the origin.
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Having found that a diamond is probably better than a quarter circle it is natural
to ask whether a right isosceles triangle would also perform better. The triangle T
provides an interesting case because it gets "cheap" points on the x and y axes (like
a quarter circle) as well as high volume points along the e¢ cient 45� diagonal (like
a diamond). Thus the triangle has properties of all previously considered shapes
that made them good perimeter minimizers.

3.3. Summation Method. Similarly to our diamond D computations we can �nd
volume and perimeter of triangle T by de�ning a new formula for the sum of its y
coordinates:

V� = �(m+ 1� �) = �m+ �� �2;
where � is any row on the triangle. As before we can �nd the sum of all y coordinates
by simply adding up all such rows:

Vy = m

mX
�=0

�+

mX
�=0

��
mX
�=0

�2 =
1

3
m+

1

2
m2 +

1

6
m3:

By symmetry,

Vx =
1

3
m+

1

2
m2 +

1

6
m3:

(3.12) VT =
1

3
m(2 + 3m+m2):

Now, we also �nd the perimeter by adding up the coordinates of points along
the diagonal and the x and y axes:

(3.13) PT = 4
mX
i=0

i� 2m = 2m2:

3.4. Integration Method. Approximating volume and perimeter of T by inte-
gration we �nd:

VT �
Z m

0

Z m�y

0

(x+ y)dxdy

(3.14) VT �
1

3
m3:

As for a diamond we use density x+yp
2
because there are only 1p

2
points per unit

distance along the 45� diagonal. We also substitute ds =
p
2dx;

PT �
Z m

0

x+ yp
2
ds+ 2

Z m

0

xdx �
Z m

0

(x+ (m� x))dx+m2;

(3.15) PT � 2m2:

These approximations agree asymptotically with the summations. Moreover,

(3.16) m =
3
p
3n) P = 2 (3)

2=3
n2=3

We �nd that P (n) � 4:1602n 2
3 , which is surprisingly even worse than square C

at the origin.
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