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Extensions of Extremal Graph Theory to Grids
Bret Thacher
Williams College
Department of Mathematics
ABSTRACT

We consider extensions of Turdn’s original theorem of 1941 to planar grids. For a complete
k xm array of vertices, we establish in Proposition 4.3 an exact formula for the maximal number of
edges possible without any square regions. We establish with Theorem 4.12 an upper bound and with
Theorem 4.15 an asymptotic lower bound for the maximal number of edges on a general grid graph with
N vertices and no rectangles.

1. INTRODUCTION

The field of extremal graph theory began in 1940 when Paul Turan [12] answered the following
question: given natural numbers r < N, how many edges can a graph G with n vertices have if it

contains no complete subgraphs K. ? A complete subgraph on n vertices is just a graph for which

every pair of vertices shares an edge. Turan was able to show that the maximal number of edges is
attained through a complete (r —1)- partite graph. It follows that the number E of edges satisfies

(1, Eg(ﬁjnj,
r-1)2

with equality if and only if (r —1)|n . This result opens a world of new Turan-type problems. The
general problem can be formulated as follows: given a natural number Nnand a graph G’, what is the
maximal number ex(n,G’) of edges that can be put on a graph G of order n with no subgraph

isomorphicto G'?

We consider extensions to planar grids with vertices at integer points and horizontal or vertical
edges. Further, every point in the grid that an edge of the graph passes through does not have to be
designated a vertex. If the N vertices form a complete K x M array,

V ={(x,y) € Z* :1< x<k,1< y <m}, then the maximal number of edges ex(n) is of course
ex(n)=(k-)m+(m-21k.

If furthermore the graph has no square regions, our Proposition 4.3 shows the maximal number of edges
X, (n) is exactly



exs (n) = E(?,km—k —m—l)J.

For an arbitrary set of N vertices in 77 , the maximum number of edges ex(n) is asymptoticto2n. If

the graph further has no rectangles, that is no rectangular unions of regions, Theorem 4.15 establishes
the asymptotic lower bound

7
En+o(n)£exR(n).
Theorem 4.12 establishes the upper bound
3
exg (n) <En.

Interestingly, the construction used in Theorem 4.15 uses 7-sided polygonal regions. We find other
ways of putting many edges on a grid graph through recursive construction techniques that are outlined
in Remark 4.16, which are useful for comparison. We conjecture in 4.24 that in fact the lower bound
from Theorem 4.15 is the maximal number of edges for a grid graph with no rectangles:

exg (n)=(7/5)n+o(n).
2. HISTORY

Since Turan introduced the original problem, significant progress has been made on the more

general problem. In 1946 Erdés and Stone [6] extended the result, letting G’ be K., (t), the complete

I -partite graph with exactly t vertices in each class. They showed that

r—2 n’

(2) eX(n, Kr (t)) < (m + 0(1)J7 .

For t =1, this gives a weaker form of Turdn with an error term. Of course, for t > n/r, the hypothesis

n
is vacuous and the maximum number of edges E = (2} .

Erdds-Stone holds for any graph with chromatic number r. Indeed, any graph G’ of chromatic

number I is contained in some K (t), for t sufficiently large, and thus any graph that does not contain
K, (t) also does not contain a G’ subgraph. An alternate form of the result, the original statement that

Erdds and Stone proved, is that for every natural number t and & > 0, if the maximal size of a graph of

order n is &n? greater than the maximal size of a graph G without a complete graph K, then



G contains a K, (t), for nsufficiently large [4]. For more general multipartite subgraphs the problem

becomes much harder, and remains open.

After complete graphs and multipartite graphs, perhaps the most natural type of subgraph to
exclude is cycles. For odd cycles, there is a comprehensive result. The complete bipartite graph

Knlz,n/z ! does not contain any odd cycles. A complete bipartite graphlt has been shown by Balister,
Bollobas, Riordon and Schelp [3] that this is in fact the maximal case when n is even, and thus

that E <n’/4for G' =C,,,,°. When n is odd, there is a similar upper bound. Specifically, we

consider a complete bipartite graph K and we see that E = (n° —1)/4. As with the Turan bound

m,m+1”
(1), the closer the cardinality of the parts of the bipartite graph are to equal, the more edges can be put

on the graph [3]. For even cycles considerably less is known. When G’ = C,,,r 23, Bondy and

Simonovits [10] have shown the asymptotic upper bound
(3) ex(n,C,,) =0(n**").

For G’ =C; or C,,, Mellinger and Mubayi [10] after [9] used higher dimensional projective planes to
explicitly construct graphs establishing the lower bounds Q(n“”’) and Q(n6/5) and showing that the
Bondy-Simonovits bound can sometimes be reached asymptotically. Bondy and Simonovits [10] found
an upper bound for even cycles,

ex(n,C,,) <100rn**" .

Verstraéte [13] subsequently showed that the constant can be lowered from 100r to 8(r -1). Note that

for G'=C,, the smallest even cycle, we can apply Erdés-Stone, as C, = K,,. Foragraphon n

vertices and no C,, Erdds-Stone (2) says
(2a) ex(n,C,) = E+o(1) n—z—o(nz)
Y21 2 ’

weaker than the Bondy- Simonovits upper bound, O(n¥?) .

LA complete bipartite graph is composed of two separate parts such that vertices in the same part are not
connected by an edge, while those in different parts are connected by an edge. Thus, a complete bipartite graph

Ka’b has N = a+ b vertices divided into two parts of order & and order b .

2A cycle Cn is a graph on N vertices where each vertex is connected to exactly two other vertices by an edge.

Thus, it takes on the visual form of a closed loop.



Another means of modifying the original Turdn problem is to fix not only G’, but to start with a
certain graph G and ask how many edges can be put on such a graph with no subgraph isomorphic
toG’'. Given m>n=>1and r >s>1, the Zarankiewicz Problem considers bipartite graphs with m

vertices in one part and N vertices in the other that avoid a particular bipartite subgraph Kr,s' Kévari,

S6s, and Turdn [7] proved that the number of edges E of G satisfies

4) E<(r-)"(n-s+)m" ™ +(s—Dhm+1.

This bound (4) is not comparable to Turdn’s bound (1). An optimal bound is not known. The restriction
on the graph G is stricter than Turadn’s is, while the restriction on the subgraph G’ is looser.

We can compare Zarankiewicz to Erdds-Stone in a simple example. Let G =K,,, G'=K,,.

Erdos - Stone (2) gives us

ex(6, K, ,) = (%+ 0(1)j6—22 ~18 o(1)

that is no information, while Kovari-Sés-Turan (4) gives us
E<(2-1)"2(3-2+41)3""2 +(2-1)2+1=2/3+3~6.47

Thus, we see that the Zarankiewicz bound is superior in this case. Figure 2.2 illustrates how

ex(G,;.K,,) =6.

Figure 2.2. The arrangement on the left illustrates a Ka,e with no subgraph isomorphic to Kz,z and 6
edges. However, any graph on K3,3 with 7 edges must either be isomorphic to the middle arrangement
or to the right arrangement, either of which introduces a K, ,. Thus we see that ex(K,,,K,,) =6,

*and that (4) is sharp in this case.

* The notation EX(Ka’b, Kc’d) indicates the maximum number of edges on a bipartite graph Ka’b excluding any

subgraphs isomorphic to the complete subgraph KQd .



Erdos, Gyori, and Simonovits [5] considered graphs on N vertices that are triangle-free®. If the
graph is further bipartite, then the following relation holds:

52}

Of course the upper bound simply follows from Turdan (1).

Turning the problem on its head is another means of extending Turan’s result. Instead of asking
how many edges can put on a graph without certain subgraphs, we ask how many of a certain subgraph
are necessarily incurred in a graph of order n with E edges. Moon and Moser [9] provide us with the
following lower bound for the number A of triangles in a graph.

Az(%}(m—nz).

It is also interesting to consider how Turan can be extended to multigraphs. A multigraph is a
graph which can have more than one edge between any two vertices. Aldea, Cruz, Gaccione, Jablonski
and Shelton [2], an undergraduate research group, noticed that any result in the case of multiplicity 1
can be extended to a multigraph of maximum multiplicity U simply by giving each edge multiplicity U .

From Turan (1), we know that any graph for which E > an /4J +1must contain at least one triangle.

This simply follows from inserting r = 3 into (1). Extending this to multigraphs, we see that any graph

for which E >u an /4J +1 must have at least one triangle. The undergraduate group also extended

the result of Erdos, Gyori, and Simonovits (5), If a triangle-free graph of multiplicity U is also bipartite

{5l

3. TRIVIAL EXTENSIONS

then the following holds:

There are some rather trivial ways in which Turdn’s premises can be changed to obtain new
results. For example, consider the case where the restriction placed on the graph G is the degree of
each vertex.

Proposition 3.1 Given a graph G with order N (that is, a graph with N vertices) such that every vertex
has degree d(V) <m<n-1,

* A triangle-free graph is one with no subgraph K3 .



n
Proof. The result follows directly from Euler’s Theorem stating 2E = Z m, , where mis the degree of
k=1

vertex K .

Definition 3.2 A graph G is regular if every vertex has the same degree. A graph for which the degree
of every vertex is K is said to be K -regular.

It is well known [14] that graphs of odd order cannot be odd-regular. Euler’s formula gives us 2E =kn,
clearly impossible in this case. It is also well known that otherwise, a graph on N vertices can be K -
regularfor kK <n.

Another type of subgraph which might be excluded is an induced subgraph. An induced
subgraph G’ is defined as a subset of vertices of G for which 9,0, is an edge in G’ if and only if ¢,0,

isanedgein G.

Proposition 3.3 Given a graph G’, let ex(n,G") be the maximal number of edges of a graph G with

order N with no induced subgraph isomorphic to G'.

If G"is a complete graph K_, then

, r-2
ex(n,G") S(Hj

r]2
2/

with equality when (r —1) |n . Otherwise,

ex(n,G") {2]

Proof. Induced complete subgraphs are in fact the same as complete subgraphs in every case. Thus,

Turén’s Theorem holds when G’ = K,. If G’ is an induced subgraph on I vertices that is not complete,

we can simply add in the rest of the edges between those I vertices, eliminating G'. In this way, every

n
edge can be added to the graph and thus ex(n,G") =(2J .

4. GRID GRAPHS

Definition 4.1 A grid graph G is an embedded planar graph on n vertices on the infinite grid Z* , with
horizontal or vertical edges. We further assume that every vertex has degree at least 2. Every point on



the grid that an edge of the graph passes through does not have to be labeled a vertex. Of course any
vertex has degree at most 4. We define ex(Nn) to be the maximal number of edges on a grid graph with

N vertices. If we do not allow square or rectangular regions, we define the maximal number of edges
for a grid graph on N vertices to be ex;(N) and ex,(N), respectively. Accordingly, a maximal graph is

one which contains the maximal number of edges. We define a rectangular region to be a region
composed of two connected sets of parallel lines that meet at right angles. In other words, a
rectangular region can be composed of more than 4 vertices.

Proposition 4.2 For a grid graph G on N vertices, E < 2n.

n
Proof. This result again follows directly from Euler’s formula 2E = 2 m, .
k=1

Proposition 4.3 For grid graphs arranged in a complete K xm array, so that the set of vertices
V ={(x,y) € Z* :1< x < k,1< y < m} with no square regions (we allow vertices of degree 1 for this

proposition only),
1 3
exs(n)=| =@Bkm-k-m-1) | <=n.
2 2
Proof: Let G have n=km vertices. Start with all (m—1)k +(k —1)m edges. We need to remove at
least one edge from each square. Since edges are shared by at most two squares, we know that we
must remove a number of edges equal to at least half the number of squares, (1/2)(m-1)(k —-1).

Therefore,

E <(m-1)k +(k—1)m—%(m—1)(k—1)

:%(Skm—k—m—l).

If m or n is odd, we can reach this bound as in Figure 4.4. If m and N are even, we cannot, but can
come within one edge as in Figure 4.5.



Figure 4.4 A maximal grid graph with no square regions when K =4,m =5. For example, substituting
into the equation, we see that .5(3¢4+5—4—-5-1) = 25. We see that thus we reach the optimal bound

of edges on a graph with no squares when m is odd. The same construction applies when nis odd.

Figure 4.5 A maximal grid graph with no square regions when kK =4,m =4. When m,k are both even,

we cannot in fact reach the optimal bound.

Remark 4.6 Since forbidding rectangular regions is equivalent to forbidding C, s, a weaker result follows

from the Bondy-Simonovits result for general graphs (3):
ex(n,C,)=0(n"?).
The generalization of Proposition 4.3 to general grid graphs is more interesting.

Proposition 4.7 For a grid graph G on n > 6 vertices with no rectangular regions, the maximal number
of edges is at least N

Proof. For N <6, it can be easily checked that no arrangement of vertices and edges exists to allow for
N edges. For N =6, we have n edges simply by forming a cycle, as shown in Figure 4.8. We can place
one vertex on any edge to create a new edge and thereby a 7-cycle as in Figure 4.9. Similarly, we can
attach any number of vertices to yield any arbitrary N edges and vertices.



Figure 4.8 2 possible 6-cycles. Note that the one on the right is in fact a rectangular region.

Figure 4.9 Adding one vertex and one edge to a 6-cycle to show that we can always have at least
N edges.

Lemma 4.10 A maximal grid graph is connected.
Proof. Assume a grid graph G is the union of two disjoint subgraphs G,and G,. We place a vertex
Vv, € G, , the vertex farthest to the right on the bottom-most row occupied by G,, directly above a

vertex V, € G |, the vertex farthest to the left on the top-most row occupied by G,, and connect them

with an edge. The new graph G’ has the same number of vertices as G but one more edge.

Proposition 4.11 Consider a connected grid graph. Let kl, ey km be the number of edges of each

polygonal region. Let M be the number of polygonal regions and N be the number of border edges, the
edges which are bounded on one side by the plane as opposed to a polygonal region. Then the total
number of edges E and vertices V satisfy

v :Z(%—l]+%+l.

1=1

Proof. The number of edges E follows directly from the fact that each edge occurs on two regions or
one region and the exterior.

Let F be the number of faces or polygonal regions. We get the number of vertices V from Euler:
V-E+F=1.

Substituting in for E and F , we get
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&k N
V=) -"1+—-m+1
éz 2

=Z(ﬁ—1J+E+l.
2 2

1=1

We check this result for the simple example of the cross from Figure 4.16. We have four regions of 7
edges each, with 20 boundary edges. Thus, we get E =(4+7)/2+20/2=24 and V =

(7/12-1)4+20/2+1="21.

From this point forward, we replace the conjecture that there are no rectangular regions in a grid graph
with the conjecture that there are no rectangles in a grid graph, i.e. no rectangular unions of regions.

Theorem 4.12 Given n vertices on a grid, any grid graph G with no rectangles satisfies
3
E<—n.
2

Proof. By Lemma 4.10, we may assume G is connected. Consider the result from Proposition 4.11. In

a rectangle-free graph, every k; > 6. When Kk, > 6, we have that

3%-1)25.
2\ 2 2

Thus, 3V /2> E . This follows from examination of the formulas in Proposition 4.11.

Remark 4.13 It is interesting to see that it is impossible to have a rectangle-free grid graph where every

kI =6. If we do not pack 6-sided regions, it is easy to see that regions with different numbers of

vertices will necessarily arise. There are only two ways to pack 6-sided polygonal regions in the plane. If
the regions are rectangular, you can pack them easily. However, we are interested in graphs with no
rectangles. We consider the case when each region is shaped as in Figure 4.8. Because of the shape of
the 37/ 2 radian angle, it and the adjacent 77/ 2 radian angle can be shared with only one other region.
Thus, we get a packing as in Figure 4.14. As this packing yields rectangles, we infer the final result

E<(3/2)n.

milEslEal S

SlNsiN=ANs
SNENi=Nis

Figure 4.14. A packing of 6-sided regions with rectangles.
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Having found an upper bound in Theorem 4.12, we are also interested in establishing a lower bound for
the number of edges on a grid graph with N vertices and no rectangles.

Theorem 4.15: For a grid graph G on N vertices with no rectangles, the maximum number of edges has
the asymptotic lower bound

exR(n)zgnJro(n).

Proof. We construct such a graph by packing 7-sided regions into symmetrical crosses as in Figure 4.17.
These crosses are then packed in the plane, as in Figure 4.12, so that every edge is shared. From

Proposition 4.11, we know that when every ki =7,

We see thatif N/m — 0, ex,(n) > (7/5)n +0(n). This can been seen by simply calculating
E/V =(7m/2)/(5m/2) when N is negligible, as demonstrated by the equations above. Further,

referring to Figure 4.16, we see that each vertex with a square is shared with one other cross, and each
vertex with a triangle is shared with three other crosses. Thus, counting vertices and attributing by
number of crosses, we get N =1+16(1/2)+4(1/4) =10. Each edge in the middle is attributable to

only one cross, while all others are attributable to two crosses. Thus, we get E =4+20(1/2) =14.

Asymptotically we see that

712 7
exR(n)z(mjn+o(n):gn+o(n).

We show that N /m — 0 as the number of crosses goes to infinity. Let C be the number of crosses as
in Figure 4.17. Let C be the greatest perfect square suchthat C<c. Let s=Cc—C,sothat c=C+S5.

Arrange the crosses in diagonal rows and columns so that each row and each column has \/6 crosses,
as in Figure 4.17. Place the next two crosses at the top-right and bottom-left corners of the newest row
and column. The rest of the crosses fill in the new row or the new column. A single cross has 20 border
edges. Adding the top-right and bottom-left crosses adds an extra border edge, but filling in the rest of
the crosses across the row or column does not affect the number of border edges. In fact, the number
of border edges remains unchanged no matter how many crosses are added in the newly created row
and column, until the formation becomes square again (i.e. the same number of crosses compose each
row and each column). Thus, we get
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20\/6 +10s whens=0,1,2
20\/6 + 20 otherwise

m=4c.

Thus,

m 4c

N . 20+/C +20

Since ¢>C we knowthat N/ m—0as C— .

We must further show that the bound holds for all n. Clearly, it holds for all N that can be created by
some arrangement of crosses. But, we can add vertices by inserting them into an edge, simultaneously

adding edges. Call these added vertices V,. We need V,/m — 0. But, there are 21 vertices in a cross.

Thus, Vv, < 21. This implies the desired result, as any constant vV, /m—>0.

Figure 4.16 The most efficient means of arranging 7-cycles into one cross. Each vertex with a circle is
shared with no other crosses.
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L

S
Tﬁl

Figure 4.17 lllustrating how 3 rows and 3 columns of crosses fit together. The edge of every 7-sided

region is shared with another, and no rectangular regions are created.

Remark 4.18 There are other ways of arranging a graph so that it has many edges for a given Nn. One
reasonably successful method is to use recursive arrangements. We arrange 6-cycles such that they
share a vertex with two other 6-cycles and such that the 6-cycles meet as in Figure 4.19. Then we make
copies of this new arrangement to repeat the process. We are interested in the ratio of edges to
vertices. Using this construction, each added 6-cycle adds 6 edges, and for every four cycles, there are
four less vertices than there would be if the cycles were disconnected. We get

exz(n)=An+o(n),

where
6(4)"
A=1lim ( )
k—o q)(k>(6)
where
d(x)=4x—-4

and equality when
n=®"(6),keN.
We can solve for CD(k)(G) and thus get a fractional bound using recursion techniques.

Let X, =4X,—4. Let Y, =X +C. Then X, =Y, —C. Then Y, —C=4(y, —C) —4. Simplifying, we
gety, —C=4y, —4c—4. Comparing back to the original equation X, =4X, —4, we see that we want
y, =4y,, and thus —C = —4c—4. This gives us C = —4/3. Substituting in for y, = 4"y , we

gety, =4“(x, —4/3). Since x, =6, y, =14/3(4)“ and x, =14/3(4)" +4/3. The constant 4/3

becomes irrelevant as K gets big. Thus,
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6
>_
exR(n)_14/3n+o(n)

Simplification yields

ex, (n) 2%n+o(n) ~1.286 n.

Figure 4.19 6-cycles can be arranged in such a way that rectangles are avoided.

Figure 4.20 lteration yields a grid graph with no rectangles and lots of edges.

We can further compare this bound with those found by similar recursive methods of
connecting 6-cycles. If we connect 6-cycles at an edge and 2 vertices as in Figure 4.21, we cannot build
arrange four 6-cycles as in the manner shown above in Figure 4.20.
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Figure 4.21 An arrangement of 6-cycles with a rectangular region.

Of course, we can connect 6-cycles without forming cycles. If we connect 6-cycles in an infinite string by
an edge and two vertices, we find that each added 6-cycle adds 5 edges and only 4 vertices. Thus, we
reach the lower bound

exg(n) = lﬁ[%]mro(n)=%n+o(n):1.25n+o(n),

when

6 +5k
n_

= ,keN,
6+ 4k

a weaker bound. However, what if we arrange 6-cycles as in Figure 4.22, and iterate as before? Visually,
we can see that this new shape actually resembles a larger 6-cycle itself. However, this larger figure an
be arranged so that every group of cycles attaches to another by an edge and two vertices. So, we get a
similar recursion, except that for every four added larger figures we drop 4 edges and 8 vertices. Note
that each group of four larger figures is just four copies of the previous graph. Thus, the analysis is
exactly the same, except that the initial figure has 30 edges and 24 vertices, and the recursion formulas
are slightly different. We see that in fact

exz(n) = An+o(n),
where

(k)
j= lim T @0
ke MO (24)

where

T(x) =4(x—1)and M(x) =4(x-2),
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with equality when

_ T™(30)
M® (24)

e N.
Again, we can find the fractional bound using recursion techniques.
For T(X), we know from above that when K gets big, X, = 4“(x,—4/3). Since X, =30, we get
x, =86/3(4)".
For M(X), we use the same technique to see that X, =4*“(x—8/3). Since X, = 24, we get
x, =64/3(4)".

We again plug back into the limit equation.

_86/3(4)"
ex,(n) > lim———— n
<02 o)

_86/3

-mn+o(n)=gn+o(n)z1.344+o(n).

This is a better bound.

Figure 4.22 Another arrangement of 6-cycles without a rectangle.

There is one, final, natural way of piecing together 6-cycles recursively. We can arrange them as in
Figure 4.23, so that as many edges as possible are shared without creating a rectangle, and again apply
the same iterative method. However, this process starts with 21 edges and 17 vertices, and we lose 3
edges and 7 vertices with every newly introduced 4-cycle of figures. This process yields the bound

exz(n) = An+o(n),
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where

(k)
A= |mTk—(21)
ko= MU (17)
where
T(x) =4x—3 and M(x) =4x-7,

with equality when

~T®(21)

H—T,for keN.
MY (17)

Applying recursion again, for T(X), we see that for K big, X, = 4* (x,—1).Since X, =21, we get
x, = 20(4)*.

For M(X), we see that when K gets big, X, = 4“(x, —7/3). Since X, =17, we see that
X, =4413(4)~.

Plugging back into the limit equation,

. 20(4)"
ex, (n) > lmmn+o(n)

:mn+o(n):§n+o(n) ~1.367n+o0(n).

This is the best bound that we have found recursively, but of course it is not as good as the packing of 7-
cycles.

Figure 4.23 The most efficient recursive arrangement of 6-cycles found.

Putting Theorem 4.12 and Theorem 4.15 together, we see that we have reached the conclusion that for

N vertices on a grid with no rectangular regions, the maximal number eXg (n) of edges satisfies
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1.4n+o(n)<exy(n) <1.5n.

Conjecture 4.24 For a grid graph on N vertices with no rectangular regions the maximal number of

edges eX, (n) is asymptotic to 1.4n,
7
ex, (n) :€n+o(n).
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