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Abstract

The absence of an efficient algorithm to solve the Discrete Logarithm
Problem is often exploited in cryptography. While exponentiation with
a modulus, b

x

≡ a (mod m), is extremely fast with a modern computer,
the inverse is decidedly not. At the present time, the best algorithms
assume that the inverse mapping is completely random. Yet there is at
least some structure, such as the fact that b

1
≡ b (mod m). To uncover

additional structure that may be useful in constructing or refining algo-
rithms, statistical methods are employed to compare mappings, x 7→ b

x

(mod m), to random mappings. More concretely, structure will be defined
by representing the mappings as functional graphs and using parameters
from graph theory such as cycle length. Since the literature for random
permutations is more extensive than other types of functional graphs, only
permutations produced from the experimental mappings are considered.

Introduction

The Discrete Logarithm Problem (DLP) is the analog of the canonical loga-
rithm problem, finding x = logb(y), in a finite cyclic group. For instance, when
considering the integers under normal multiplication with a modulus the DLP
becomes, “For which power(s) x is bx

≡ y (mod m)?” While the problem may
be posed in other groups, this paper will focus on the preceding example, a
prevalent instance. More specifically, this paper will limit itself to prime moduli
since this type of DLP with composite moduli reduces to solving the prime case
after factoring. One may be tempted to consider the problem trivial since there
are only finitely many possible answers. However the lack of any algorithm sig-
nificantly more efficient than a brute force one makes the DLP a topic of much
interest. Another reason the DLP is so studied is that the inverse operation
is extremely efficient. Techniques such as successive squaring make modular
exponentiation with large numbers feasible by hand calculation and trivial with
computers.

The difficulty of the DLP coupled with its inverse’s relative ease makes it
particularly well-suited to cryptography. Cryptography is the art of transferring
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secure information. If a cryptographic system’s method to encrypt and decrypt
information takes too long, then the system will not be useful as information’s
usefulness may expire. Yet if there is a quick way to break the system and
get the key, then the information is not secure. Cryptographic systems such
as Elgamal [8, pages 476-478] rely on the ease of modular exponentiation for
encryption and decryption and the difficulty of the DLP to secure the key.

The DLP’s applications in cryptography create an interest in algorithms to
solve it. There are algorithms, such as Pollard’s Rho method given in [7], which
moderately improve on brute forth methods. Yet all current algorithms work
under the assumption that modular exponentiation behaves randomly and do
not exploit any subtle structure in the mapping x 7→ bx (mod p). There is of
course some structure, such as the fact that bp−1

7→ 1 (mod p) from Fermat’s
Little Theorem. To uncover additional, potentially exploitable structure, this
paper will seek to quantify structure using ideas from graph theory, use combi-
natorial techniques to find the expected properties of random graphs, implement
a computer program to collect experimental data, and finally employ statistical
methods to check for significant differences in the observed versus the expected
graph structure.

Quantifying Structure

A first step to finding structure in the DLP is to view it as a function. As stated
previously, the DLP asks for the inverse of x 7→ bx (mod p). Therefore if we
represent the forward mapping as a functional graph, finding structure in the
graph may lead to exploitable structure for the DLP. The creation of functional
graphs is clear-cut. One simply represents the x values as nodes and draws
arrows for each of the mappings. For instance, suppose that one is considering
x 7→ 3x (mod 7). First the various powers are calculated:

31 = 3 ≡ 3 (mod 7) 34 = 81 ≡ 4 (mod 7)
32 = 9 ≡ 2 (mod 7) 35 = 243 ≡ 5 (mod 7)
33 = 27 ≡ 6 (mod 7) 36 = 729 ≡ 1 (mod 7)

See that the essential information is the exponent and the resulting equivalence:

1 7→ 3 4 7→ 4
2 7→ 2 5 7→ 5
3 7→ 6 6 7→ 1

To obtain a functional graph one draws an arrow from 1 to 3, 3 to 6, 6 to 1,
2 to itself, etc., as follows:
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If one uses 3 as the base and 11 as the modulus the following graph is produced:

The above shows, among other things, that 31 = 3, 33
≡ 5 (mod 11), and 32 = 9.

Inversely, it shows the solution to a DLP such as, “3 to which power(s) equals
4 (mod 11)?” (The answers are 9 and 4.) The type of functional graph shown
above will be called a binary functional graph since every node has either 0 or
2 nodes which map to it. Similarly there are ternary graphs where each node is
mapped to by 0 or 3 others, quaternary, and more generally m-ary graphs. The
first example of a functional graph will be referred to as a permutation graph
since it represented a permutation, but equivalently it is a unary graph. The
following theorem by Dan Cloutier in [4] describes the interaction between the
base and the resulting graph:

Theorem 1. If r is any primitive root modulo p and g ≡ ra (mod p), then the
values of g that produce an m-ary graph are precisely those for which gcd(a, p−

1) = m.

This paper will limit itself to permutations, which by the preceding theo-
rem implies all bases are primitive roots. By limiting the investigation to only
permutations, the extensive literature concerning random permutations may be
exploited. Whereas the structure of random ternary graphs, for example, has
not been studied extensively, random permutations have been of interest to
mathematicians for decades. Therefore, since there is greater understanding of
the expected structure, viz., random permutations, one may more completely
determine whether graphs produced from the DLP possess any dissimilar struc-
ture.

One byproduct of considering permutations is that every node is part of a
cycle. If a node were not part of a cycle, then it would not be mapped to,
which would violate the definition of a permutation. Since everything is in
cycles, structure will solely be defined in terms of cycles. Specifically, there are
three parameters that I will consider: number of cycles, maximum cycle length,
and weighted average cycle length. The following generic graph will be used to
illustrate their meanings.
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The number of cycles equals 2 because there is a cycle on the left containing
2 nodes and another on the right containing 4. The maximum cycle length is
4 because the greatest number of nodes in a cycle is 4, present on the right.
Weighted average cycle length requires a more thorough explanation because it
is calculated from a node’s perspective. From the graph’s perspective, one cycle
has length 4, the other length 2, so the average is 4+2

2 = 3. Yet from the node’s
perspective, 2 see a length of 2, and 4 see a length of 4. Therefore the weighted
average would be 4·4+2·2

6 = 20
6 ≈ 3.3. In contrast, six nodes could be arranged in

two cycles of length three. In this case, the unweighted average would again be
three, as would the weighted average since 3·3+3·3

6 = 18
6 = 3. This shows that the

weighted cycle average reveals structure beyond the number of cycles. Knowing
this structure would be useful in applications such as pseudorandom number
generators because it determines the expected number of iterations which may
be performed on a node before repetition occurs.

A brief elucidation on the mentioning of these parameters is useful at this
time. Each prime modulus produces a permutation graph when the base is a
primitive root. The parameter data is collected for each permutation, and then
the averages and variances are computed across the graphs. These averages and
variances then are associated with the prime. Note that the final parameter was
an average, so in association with the prime there is the average of an average.
This paper will attempt to make clear when the mean for the weighted average
cycle length is being considered as opposed to the variance for the weighted
average cycle length.

With structure now defined in terms of functional graphs and the three cycle-
based parameters, comparisons are possible between random permutations and
those constructed from the solution to the DLP. The comparison assumes there
are known expected values for the random case and experimental values for the
DLP case.

Expected Values

The process of finding theoretical values involves using marked generating func-
tions and methods similar to those employed by Lindle in [6]. The generating
function for putting objects into cycles is

c(z) = ln
1

1 − z
. (1)

The process of turning these cycles into permutations is given by

f(z) = ec(z) =
1

1 − z
. (2)
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Therefore, to count the number of expected number of cycles in a permutation,
we mark the function c(z) with a u in f(z), differentiate with respect to u, and
then evaluate with u = 1 as follows:

d

du

(

eu·ln 1

1−z

) ∣

∣

∣

u=1
= ln

(

1

1 − z

)

eu·ln 1

1−z

∣

∣

∣

u=1
= ln

(

1

1 − z

)

1

1 − z
. (3)

Note, that since this an exponential generating function, there should be a mul-
tiplication by n!. However, since we are taking the mean over n! permutations,
the terms cancel. As Lindle describes in [6], this generating function can be
turned into a differential equation, then into a recursive formula, and finally
into an explicit formula. A generating function package for Maple simplifies the
process greatly. For number of cycles the transformation is

f(z) · (z − 1) − 1 + (z2
− 2z + 1) ·

(

d

dz
f(z)

)

, f(0) = 0 (4)

⇒ (−n − 1) · a(n) + (n + 1) · a(n + 1) − 1, a(0) = 0, a(1) = 1 (5)

⇒ a(n) = Ψ(n + 1) + γ (6)

where Ψ(x) = d
dx

ln (Γ(x)), Γ(x) =
∫

∞

0
e−ttx−1dt, and γ is Euler’s constant.

Therefore the explicit formula for the expected number of cycles in a random
permutation on n objects is Ψ(n + 1) + γ. Similar methods to the above show
the formula for the expected weighted average cycle length for a permutation
of size n to be n+1

2 . The only methodological difference is a final division by n

since the parameter is seen from the node and there are n nodes. For expected
maximum cycle length, a marked generating function is not used. Instead I
defer to the formula found by Shepp and Lloyd in [9] which gives it to be

n

∫

∞

0

[

1 − exp

(

−

∫

∞

v

e−u du

u

)]

dv. (7)

In addition to the expected means seen above, expected variances will be ap-
plicable with Lindle’s updated code, whose output includes observed variances.
First, the formula for variance must be examined. Variance is a set’s deviance
from the mean, summed for each piece of data:

1

N

N
∑

i=1

(xi − x̄)2 =
1

N

(

N
∑

i=1

x2
i

)

− x̄2 (8)

where N equals the number of data points, xi each individual point, x̄ the
mean and the right side represents an algebraic simplification. The means are

described above, so what remains to be found is a formula for 1
N

(

∑N

i=1 x2
i

)

. The

generating functions from before are used, but with a new marking method. The
function is marked with u and differentiated twice to account for the squaring.
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For number of cycles, the generating function for the summation of the data
points squared looks like

v(z) =
d

du

(

u

(

∂

∂u
eu·ln 1

1−z

∣

∣

∣

u=1

))

∣

∣

∣

u=1
=

ln
(

1
1−z

)

1 − z
+

ln
(

1
1−z

)2

1 − z
. (9)

Since this an exponential generating function, there should be a multiplication
by n!, but the 1

N
term nullifies this. Using the methods described above, this

was turned into an explicit formula:

1

N

(

N
∑

i=1

x2
i

)

= Ψ(n + 1) + γ + (Ψ(n + 1) + γ)
2

+ Ψ′(n + 1) −
π2

6
. (10)

Combining this with the mean squared derived from (6), and with a little sim-
plification, the final formula for expected variance in number of cycles in a
permutation of size n is:

Ψ(n + 1) + γ + Ψ′(n + 1) −
π2

6
. (11)

Using similar methods, the expected variance for weighted average cycle length
is

n2
− 1

12
. (12)

Since I did not use a marked generating function to obtain the expected mean
for maximum cycle length, the preceding method for variance is not applicable.
Therefore, the expected variance for maximum cycle length remains unknown
for this paper’s analysis.

The final theoretical value of interest is related to the cycle distribution.
Knowing the cycle distribution for a given cycle length k would mean knowing
how many permutations from a fixed modulus should produce 0 cycles of length
k, 1 cycle of length k, 2, etc. The distribution of cycle lengths turns out be a
Poisson distribution. Arratia and Tavaré in [1] give the following theorem:

Theorem 2. For i = 1, 2, ..., let Ci(n) denote the number of cycles of length i in
a random n-permutation. The process of cycle counts converges in distribution
to a Poisson process on N with intensity i−1. That is, as n → ∞,

(C1(n), C2(n), ...) → (Z1, Z2, ...) ,

where the Zi, i = 1, 2, ..., are Poisson-distributed random variables with

E(Zi) =
1

i
.

Therefore the theoretical number of permutations containing k cycles of
length j is known.
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Observed Data

The first step in obtaining data was the implementation of a computer program
designed for this very task. Dan Cloutier wrote code in C++ that calculated
various graph theory parameters, including the ones of interest to this paper,
for a set of m-ary graphs produced by a given prime modulus. Nathan Lindle
revised the code in C, enabling it to calculate experimental variances as well
as means. To calculate variances however, the number of graphs produced by
a given prime is needed. For this task Lindle relied on external calculations.
The first modification I made to the code was to integrate this calculation to
make variance statistics more readily accessible. The second major modification
I made was to have the code output a limited cycle distribution. This meant
having the code output the number of cycles of lengths 1, 2, 3, 5, 7, 10, and 20 for
each permutation created with the modulus. Therefore, the code for me worked
as follows: I entered a prime number and my desired graph type (permutation),
it created all of the necessary graphs, it calculated the means and variances for
the three parameters of interest over the set of all permutations, and finally it
broke down the number of cycles of fixed lengths as described previously.

The next step in obtaining data was to choose which primes to run the code
on. I focused on primes valued around 100,000 to balance run time with having
enough permutations produced for accurate results. The other consideration I
took was to have three levels of primes based on their p−1 factorizations. Each
level contained 10 primes. The first level was primes where p− 1 had 2 factors,
the second 6 factors, and the third > 9 factors. Having these levels enabled
me to run ANOVA tests to check whether the p − 1 factorizations significantly
affected the parameters of interest. Looking at the p − 1 factorization was
motivated in part by Theorem 1. Theorem 1 shows that the divisors of p − 1
play a role in the type of graph produced and the number of factors p has has
a large effect on its set of divisors. Therefore, it is conceivable that the number
of factors could have an effect on the parameters studied here.

If it turned out that the factorization did affect the parameters, then a
segmented approach could have been followed. This would prevent significant
results in one of the levels being masked by insignificant ones in others. However,
the ANOVA tests found that the variances between the levels were likely random
as opposed to systematic. The following gives the probabilities that the variance
between the levels for each parameter was simply due to random variation:

Parameter p-value

Mean Number of Components .880
Number of Components Variance .498
Mean Max Cycle Length .542
Max Cycle Variance .110
Mean Avg Cycle Length .616
Avg Cycle Variance .191

It should be noted that the p-values were above the significance threshold of
α = .05 only when the data was corrected for the size of the prime. For instance,
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recall that the formula for the expected number of cycles for a graph of size n

is Ψ(n + 1) + γ. The function Ψ(n + 1) can be defined as Hn − γ where Hn

is the nth harmonic number. The harmonic numbers grow at a rate of ln(n).
Therefore, a division by ln(p) to account for prime size was necessary in the
number of cycles parameter. See Appendix E for the correction factors and
graphical representations of the variance between the levels. Since the tests
showed the factorizations insignificant as far as the parameters are concerned,
I could confidently group my primes into one sample of size 30.

Statistical Results

With observed and expected values found, statistical tests may be conducted to
find significant differences. First the number of cycles are considered. Complete
data can be found in Appendix A. To compare the means, t-tests are employed.
A t-test will return the probability that an observed sample mean is different due
to random variation from a theoretical population mean, given the number of
samples used to obtain the observed mean. If this probability is low, then likely
there is a significant, systematic difference between the sample and theoretical
value. For the purpose of this paper, low probability will be a p-value < .05.
For the 30 t-tests conducted on average number of cycles, 3 returned significant
p-values. However, it is expected that around 5% of the normally distributed
t-statistics should be falsely significant. Therefore an Anderson-Darling Test is
used to determine whether the t-statistics are following a normal distribution.
This test found that there is no evidence to conclude the distribution is not
normal. This implies there is no significant deviance from the expected values
in the statistic when the 30 primes are considered as a whole.
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Using Minitab, expected variances for average number of cycles were com-
pared to the expected average number of cycles. For this statistic, there were
11 significant p-values. This is considerably more than the 1 or 2 false positives
one would expect with α = .05. Using Dataplot, an Anderson-Darling test com-
pared the p-values to a uniform distribution and concluded with a test statistic
of 58.58 that the p-values are not uniformly distributed. While this is evidence
that the variance in the DLP case differs significantly from the random case, the
relative errors in the tests which produced significant p-values were sometimes
positive and sometimes negative.

Based on these results, unless a predictor could be found for the sign of the
relative error, exploiting the structure seems difficult. One potential predictor,
the factorization of p− 1, has shown preliminary promise. However, the results
are not conclusive and a more extensive search for a predictor is likely necessary.

Second we consider maximum cycle length. The complete table is Appendix
B. The t-tests for maximum cycle length returned no significant p-values. This
is means that it is extremely likely that the DLP cases mirrors the random case
as far as average maximum cycle length is concerned. The variances between
the cases were not compared because the theoretical value for variance was not
found.

Next, the weighted average cycle length is considered. See Appendix C for
the entire data set. Again, t-tests were used to compare the observed and ex-
pected means. For this statistic, there were no significant p-values. The variance
however returned the most significant results of the investigation. Whereas the
other parameters varied roughly 1% or 2% between the random and the DLP
case, the variance in the weighted average cycle length differed by an order of
magnitude. The average relative error was 50.03%. There is no need for p-values
since a difference of this size given the large sampling means that it is essentially
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impossible for the discrepancy to be random variation. Note also that the differ-
ence was consistent among the primes, so it appears that the mapping x 7→ bx

(mod p) does impose some systematic structure which affects this parameter.
Finally, we consider the limited cycle distribution of certain cycle lengths.

Recall that the code recorded frequencies for cycles of lengths 1, 2, 3, 5, 7, 10,
and 20. These were recorded for each of the 30 primes which means there are
210 comparisons to do. To accomplish the comparisons I used χ2-tests. Some
results were amazingly accurate. For instance, the two cycle distribution for the
23,328 permutations created using 102,061 as the modulus is:

No of 2-cyc Obs Exp

0 14139 14149
1 7082 7075
2 1772 1769
3 293 295

> 3 42 41

Yet there were 23 significant results. The table in Appendix D summarizes
the p-values obtained. One would only expect roughly 11 falsely significant
results. The significant results were split evenly between the different p − 1
factorization levels, so again it appears the factorization did not have an effect
on the parameter.

Nevertheless, the results were not split evenly among the various cycle
lengths considered. In fact, over half of the significant results happened in
the 1-cycle case. Anderson-Darling Tests were conducted to determine if the
distributions of the p-values were uniform. The following table summarizes the
results:

Cycle Length Test Statistic Reject Uniformity?

1 31.74 Yes
2 3.28 Yes
3 1.35 No
5 1.10 No
7 0.93 No
10 0.57 No
20 1.08 No

From this we can see that the DLP graphs differ significantly in the 1- and
2-cycle cases compared to random graphs. It should be noted that not all
cycle lengths were studied identically. For instance, the number of expected 10
cycles drops off much more rapidly than expected 2 cycles. For the higher cycle
lengths, there were only a few categories, viz., permutations were grouped based
on having 0, 1, or > 1 cycles of length k for large k. For the smaller cycles, a
much wider range of frequencies were considered. There exists the possibility
that the varying degrees of freedom for the χ2 tests of different cycle lengths
contributed to the distribution of the p-values, including the lack of uniformity
only in small cycle sizes.
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Conclusions

Based on the statistical tests conducted for this paper, one may conclude that in
many ways the mapping x 7→ bx (mod p) does behave like a random mapping.
However there also appears to be at least one way in which it does not, notably
in the amount that the weighted average cycle length varies. There only needs
to be one piece of exploitable structure to incrementally or radically change the
best algorithms for solving the DLP. While exactly how such an exploit would
work is not clear from the results here, the results do encourage further work in
this line of inquiry. Also encouragement for further study comes from the work
of Lindle in [6] on binary graphs. His findings support this paper’s, insofar as
he found that variance in the weighted average cycle length was significantly
different in the DLP graphs as opposed to random binary graphs. He did not
find the same order of magnitude difference, but there still seems to be evidence
that the DLP is imposing structure. Of note, Lindle did not find that the
variance in the number of cycles differed significantly between the expected and
the observed value for binary graphs.

The limited cycle distribution analysis of this paper is a first step in ana-
lyzing exactly where the difference in cycle structure lies. Though this paper
only found significant deviance from the predictions in the 1-cycle and 2-cycle
case, there are likely others which are contributing to the order of magnitude
variance discrepancy described earlier. A more thorough analysis could pin-
point exactly what cycle lengths are systematically deviating from the random
case and causing the difference. The data obtained for the 1- and 2-cycle cases
is useful experimental evidence to compare to theoretical estimates for the fre-
quency of these cycle lengths in the DLP mapping found in [5]. Yet the limited
distribution analysis here is really just the beginning for a more complete anal-
ysis since there exists evidence that the cycle structure of the mapping x 7→ bx

(mod p) is not entirely random.

Future Work

As mentioned above, a good way of immediately continuing this work would be
to conduct a more complete distribution analysis to get a better picture of where
the cycle structure is deviating from random graphs. Also, obtaining the theo-
retical variance for the maximum cycle statistic might be useful since the most
significant results have concerned variances. Lastly, a theoretical explanation
should be sought for the parameters that varied significantly.

From a broader perspective, continuing this work should include applying
the variance analysis to ternary graphs and beyond. The experimental data will
be easy to obtain since the computer program used here generalizes easily to
any kind of functional graph. The challenge will be in obtaining the theoretical
values, which come from understanding a greater variety of random graphs. To
this end, Max Brugger and Christina Frederick have done work with ternary
graphs in [3] and [2], albeit without the variance analysis. The more theoretical
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data that exists, the more complete the comparison to the DLP will be. At
all stages, applications of the uncovered structure should be actively sought
in the form of new or refined algorithms since the DLP and its implications
to cryptography make these algorithms important to mathematicians and non-
mathematicians alike.
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Appendices

Appendix A

Number of Cycles

Prime Obs Std Exp t- p- Obs Exp p-
Avg Dev Avg stat val Var Var val

100103 12.103 3.220 12.092 0.76 0.449 10.370 10.446 0.021
100823 12.095 3.234 12.098 -0.26 0.799 10.457 10.453 0.918
100847 12.093 3.225 12.099 -0.39 0.694 10.398 10.454 0.093
101027 12.098 3.238 12.100 -0.14 0.885 10.485 10.455 0.364
101183 12.098 3.241 12.102 -0.25 0.803 10.506 10.457 0.137
101747 12.107 3.235 12.107 -0.03 0.977 10.463 10.463 0.980
101939 12.123 3.239 12.109 0.96 0.338 10.492 10.464 0.408
101987 12.090 3.225 12.110 -1.38 0.169 10.397 10.465 0.039
102407 12.108 3.223 12.114 -0.41 0.683 10.389 10.469 0.015
103007 12.130 3.261 12.120 0.70 0.484 10.633 10.475 0.000
99991 12.113 3.235 12.090 1.11 0.269 10.467 10.445 0.646
100057 12.054 3.218 12.091 -1.98 0.048 10.357 10.446 0.037
100279 12.099 3.230 12.093 0.34 0.736 10.431 10.448 0.681
100333 12.093 3.241 12.093 -0.03 0.975 10.501 10.449 0.193
100361 12.115 3.230 12.094 1.24 0.214 10.430 10.449 0.632
100393 12.124 3.233 12.094 1.68 0.093 10.451 10.449 0.970
100537 12.096 3.211 12.096 0.05 0.964 10.307 10.451 0.000
100741 12.028 3.203 12.098 -3.47 0.001 10.260 10.453 0.000
100937 12.086 3.228 12.099 -0.88 0.377 10.423 10.455 0.372
101009 12.096 3.230 12.100 -0.32 0.746 10.434 10.455 0.529
100609 12.110 3.253 12.096 0.77 0.442 10.579 10.451 0.002
100801 12.079 3.245 12.098 -0.88 0.380 10.531 10.453 0.108
101089 12.131 3.243 12.101 1.61 0.106 10.514 10.456 0.169
102061 12.113 3.257 12.111 0.10 0.918 10.609 10.466 0.003
102913 12.136 3.223 12.119 0.97 0.333 10.390 10.474 0.037
103681 12.150 3.228 12.126 1.22 0.223 10.416 10.481 0.146
105601 12.114 3.244 12.145 -1.50 0.133 10.522 10.500 0.635
106273 12.133 3.248 12.151 -1.04 0.298 10.550 10.506 0.270
106753 12.189 3.262 12.154 2.03 0.042 10.638 10.511 0.001
106921 12.128 3.216 12.157 -1.45 0.146 10.340 10.512 0.000
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Appendix B

Maximum Cycle Length

Prime # Graphs Obs Mean Std Dev Exp Mean t-stat p-val
100103 50050 62477.4 19287.3 62497.3 -0.23 0.818
100823 50410 63091.0 19368.5 62946.8 1.67 0.095
100847 50422 62917.9 19332.7 62961.8 -0.51 0.610
101027 50512 63020.3 19398.9 63074.2 -0.62 0.533
101183 50590 63078.7 19413.5 63171.6 -1.08 0.282
101747 50872 63416.5 19542.7 63523.7 -1.24 0.216
101939 50968 63559.2 19639.8 63643.6 -0.97 0.332
101987 50992 63696.3 19611.7 63673.5 0.26 0.793
102407 51202 63923.4 19646.4 63935.8 -0.14 0.887
103007 51502 64283.3 19841.4 64310.4 -0.31 0.757
99991 24000 62272.5 19136.5 62427.4 -1.25 0.210
100057 30240 62627.7 19229.2 62468.6 1.44 0.150
100279 33372 62624.4 19268.7 62607.2 0.16 0.871
100333 33408 62646.1 19260.0 62640.9 0.05 0.961
100361 36864 62535.0 19239.5 62658.4 -1.23 0.218
100393 32384 62647.0 19238.0 62678.4 -0.29 0.769
100537 32480 62887.5 19246.3 62768.3 1.12 0.264
100741 25344 62936.0 19349.2 62895.6 0.33 0.740
100937 43200 63027.3 19331.8 63018.0 0.10 0.921
101009 49184 63097.0 19387.9 63062.9 0.39 0.697
100609 33280 62830.5 19332.0 62813.2 0.16 0.870
100801 23040 62921.1 19451.3 62933.1 -0.09 0.925
101089 31104 62973.8 19357.9 63112.9 -1.27 0.205
102061 23328 63704.3 19662.1 63719.7 -0.12 0.904
102913 33792 64313.4 19735.1 64251.7 0.58 0.565
103681 27648 64642.7 19816.4 64731.2 -0.74 0.458
105601 25600 66004.7 20317.9 65929.9 0.59 0.556
106273 34560 66448.4 20379.9 66349.4 0.90 0.366
106753 35328 66645.7 20575.1 66649.1 -0.03 0.976
106921 25920 66874.1 20568.0 66754.0 0.94 0.347
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Appendix C

Weighted Average Cycle Length

Prime Obs Std Exp t- p- Obs Exp
Mean Dev Mean stat val Var Var

100103 50060.7 20481 50052 0.09 0.925 419481542 835050884
100823 50549.0 20599 50412 1.49 0.135 424330807 847106444
100847 50365.5 20546 50424 -0.64 0.522 422155131 847509784
101027 50463.0 20598 50514 -0.56 0.578 424271207 850537894
101183 50493.6 20583 50592 -1.08 0.282 423653393 853166624
101747 50770.0 20774 50874 -1.13 0.259 431540532 862704334
101939 50904.9 20849 50970 -0.72 0.473 434681074 865963310
101987 51032.0 20849 50994 0.41 0.681 434666945 866779014
102407 51180.2 20835 51204 -0.26 0.796 434096030 873932804
103007 51485.6 21081 51504 -0.20 0.843 444405143 884203504
99991 49802.1 20277 49996 -1.48 0.139 411137357 833183340
100057 50191.4 20460 50029 1.38 0.168 418631078 834283604
100279 50174.8 20469 50140 0.31 0.756 418975580 837989820
100333 50171.9 20468 50167 0.04 0.965 418939705 838892574
100361 50035.2 20435 50181 -1.37 0.171 417582588 839360860
100393 50146.0 20476 50197 -0.45 0.654 419271605 839896204
100537 50357.3 20461 50269 0.78 0.437 418672009 842307364
100741 50413.3 20567 50371 0.33 0.743 422988497 845729090
100937 50467.8 20529 50469 -0.01 0.990 421434935 849023164
101009 50526.2 20612 50505 0.23 0.820 424874705 850234840
100609 50359.8 20541 50305 0.49 0.627 421949041 843514240
100801 50474.7 20665 50401 0.54 0.588 427024052 846736800
101089 50397.0 20590 50545 -1.27 0.205 423952655 851582160
102061 51022.3 20909 51031 -0.06 0.949 437197250 868037310
102913 51520.3 20976 51457 0.55 0.579 439996889 882590464
103681 51714.0 21038 51841 -1.00 0.315 442594385 895812480
105601 52863.5 21623 52801 0.46 0.644 467564748 929297600
106273 53211.3 21689 53137 0.64 0.524 470407347 941162544
106753 53373.6 21833 53377 -0.03 0.977 476683634 949683584
106921 53597.2 21884 53461 1.00 0.316 478913112 952675020
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Appendix D

χ2 p-values

1-cyc 2-cyc 3-cyc 5-cyc 7-cyc 10-cyc 20-cyc

100103 0.512 0.733 0.794 0.887 0.716 0.385 0.071
100823 0.287 0.425 0.343 0.511 0.832 0.257 0.994
100847 0.168 0.623 0.751 0.314 0.646 0.271 0.802
101027 0.771 0.252 0.039 0.117 0.384 0.757 0.005
101183 0.104 0.632 0.123 0.679 0.345 0.195 0.493
101747 0.104 0.153 0.199 0.295 0.101 0.656 0.010
101939 0.033 0.404 0.181 0.128 0.474 0.026 0.608
101987 0.033 0.404 0.181 0.128 0.474 0.026 0.608
102407 0.354 0.608 0.906 0.781 0.550 0.760 0.512
103007 0.617 0.329 0.981 0.436 0.162 0.924 0.909
99991 0.793 0.995 0.368 0.413 0.218 0.724 0.657
100057 0.026 0.131 0.761 0.558 0.801 0.650 0.547
100279 0.128 0.539 0.006 0.360 0.171 0.184 0.561
100333 0.003 0.034 0.757 0.795 0.655 0.757 0.539
100361 0.441 0.578 0.935 0.748 0.338 0.088 0.129
100393 0.477 0.050 0.438 0.774 0.694 0.825 0.017
100537 0.729 0.359 0.078 0.555 0.205 0.840 0.122
100741 0.000 0.929 0.555 0.821 0.225 0.548 0.913
100937 0.221 0.138 0.056 0.487 0.340 0.445 0.654
101009 0.000 0.534 0.138 0.648 0.639 0.506 0.211
100609 0.032 0.633 0.258 0.190 0.333 0.094 0.846
100801 0.080 0.567 0.580 0.184 0.914 0.466 0.583
101089 0.001 0.650 0.115 0.218 0.624 0.598 0.845
102061 0.171 1.000 0.004 0.377 0.664 0.842 0.373
102913 0.177 0.389 0.766 0.526 0.429 0.808 0.574
103681 0.027 0.727 0.430 0.202 0.273 0.442 0.536
105601 0.001 0.358 0.612 0.372 0.714 0.103 0.609
106273 0.309 0.279 0.793 0.596 0.743 0.770 0.458
106753 0.001 0.876 0.407 0.018 0.372 0.743 0.447
106921 0.016 0.986 0.379 0.221 0.900 0.532 0.513

16



Appendix E

ANOVA Plots
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