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L(d, j, s) MINIMAL AND SURJECTIVE GRAPH LABELING

MICHELLE LINGSCHEIT, KIERSTEN RUFF, JEREMY WARD

Abstract. Interference between radio signals can be modeled using distance

labeling where the vertices on the graph represent the radio towers and the

edges represent the interference between the towers. The distance between
vertices affects the labeling of the vertices to account for the strength of inter-

ference. In this paper we consider three levels of interference between signals

on a given graph, G. Define D(x, y) to represent the distance between vertex
x and vertex y. An L(d, j, s) labeling of graph G is a function f from the

vertex set of a graph to the set of positive integers, where |f(x) − f(y)| ≥ d

if D(x, y) = 1, |f(x) − f(y)| ≥ j if D(x, y) = 2, and |f(x) − f(y)| ≥ s if
D(x, y) = 3 for positive integers m and d where d > j > s. In this paper

we will examine surjective and minimal labeling of different families of graphs
including paths, cycles, caterpillars, complete graphs, and complete bipartite

graphs.
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1. Introduction and Definitions

An L(d, j, s) labeling is a simplified model for the channel assignment problem.
A summary of the history of the channel assignment problem can be found in
L(3, 2, 1)-Labeling of Simple Graphs [3].

Define D(x, y) to represent the distance between vertex x and vertex y. Let d,
j, and s be positive integers where d > j > s. An L(d, j, s) labeling of graph G is
a function f from the vertex set of a graph to the set of positive integers such that
for any two vertices x, y, if D(x, y) = 1, then | f(x)−f(y) |≥ d; if D(x, y) = 2, then
| f(x)−f(y) |≥ j; and if D(x, y) = 3, then | f(x)−f(y) |≥ s. For example, consider
Figure 1. If vertex w is labeled 1, then because the distance between vertex w and
vertex x is 1, the labels of vertex w and vertex x must differ by at least d. In other
words, | f(w) − f(x) |≥ d. The label of vertex y must satisfy | f(w) − f(y) |≥ j
and | f(x) − f(y) |≥ s since D(w, x) = 2 and D(x, y) = 1. The remaining labels
must be labeled considering all vertices of distance 3 or less. One possible labeling
of the graph in Figure 1 is depicted in Figure 2.

 

w x y z

Figure 1. Path with four vertices.

1         d+1      2d+1     3d+1          

w            x            y             z

Figure 2. An L(d, j, s) labeling of a path with four vertices.

This paper will examine two types of L(d, j, s) labeling; minimal labeling and
surjective labeling. Minimal labeling finds the smallest largest number, k(G), re-
quired to label a given graph. For instance, consider Figure 3 which is an L(3, 2, 1)
labeling of a path with four vertices, a special case of an L(d, j, s) labeling of Figure
1. However, Figure 3 is a minimal L(3, 2, 1) labeling since there is no labeling that
has a smaller largest label. In this case, the smallest largest number is 6. This paper
will introduce special cases of L(d, j, s) minimal labeling for uniform caterpillars,
paths, cycles, complete graphs, and complete bipartite graphs in sections, 4, 6, 8,
9, and 10.

4           1           6           3          

w            x            y             z

Figure 3. a minimal L(3, 2, 1) labeling of a path with four vertices.

A surjective labeling of a graph requires that every label, {1, 2, 3, . . . ,m}, is used
exactly once, where the graph has m vertices. For example, consider Figure 4 which
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is an L(3, 2, 1) surjective labeling, a special case of L(d, j, s) labeling, of a path of
length 7. Note that the labels 1 through 7 have all been used exactly once. We
will discuss special cases of L(d, j, s) surjective labeling of paths, cycles, uniform
caterpillars, complete graphs, and complete bipartite graphs in sections 2, 3, 5, 7,
and 11.

 3     6     1     4     7      2     5

Figure 4. A surjective L(3, 2, 1) labeling of a path with seven vertices.

We will use the following families of graphs throughout the paper: complete
graphs, complete bipartite graphs, paths, cycles, and uniform caterpillars.

Definition. A complete graph is a graph in which every vertex is adjacent to every
other vertex and is denoted by Kn where n is the number of vertices in the graph.

Definition. A complete bipartite graph is a graph in which the set of vertices can
be decomposed into two disjoint sets A and B such that no two vertices within the
same set are adjacent and every vertex in set A is adjacent to every vertex in set
B.

Definition. A graph G, where G = (v, E), is called a path, denoted by Pn, if
v = {v1, v2, ..., vn} such that only (vi, vi+1) ∈ E where 1 ≤ i ≤ n− 1.

Definition. A graph G, where G = (V,E), is called a cycle, denoted by Cn,
if V = {v1, v2, ..., vn} such that only (vi, vi+1) ∈ E where 1 ≤ i ≤ n − 1 and
(v1, vn) ∈ E.

Definition. A caterpillar is a tree in which every vertex is on a central path, called
the spine, or adjacent to a vertex on the spine. A graph is a caterpillar if the removal
of the degree one vertices produces a path.

Definition. A uniform caterpillar is a caterpillar in which every vertex is either
of degree one or degree ∆. We denote a uniform caterpillar with n vertices on the
spine by Catn.

2. L(3, 2, 1) Surjective Labeling of Paths, Cycles, and Uniform
Caterpillars

L(3, 2, 1) minimal labeling of paths, cycles and uniform caterpillars can be found
in L(3, 2, 1)-Labeling and Surjective Labeling of Simple Graphs. [2]. In this section
we will only consider L(3, 2, 1) surjective labeling.

Paths. In this subsection we will discuss the shortest non-trivial path that can be
labeled using surjective labeling. We will also show that all paths of length greater
then or equal to 7 can be surjectively labeled. A proof for Theorem 2.1 are from
the paper L(3, 2, 1)-Labeling on Simple Graphs [1] and Theorem 2.2, and its proof,
can be found in L(3, 2, 1)-Labeling and Surjective Labeling of Simple Graphs. [2]

Theorem 2.1. For any path, Pn,
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k(Pn) =



1, if n = 1;
4, if n = 2;
6, if n = 3, 4;
7, if n = 5, 6, 7;
8, if n ≥ 8;

using L(3, 2, 1) labeling. [1]

Theorem 2.2. The shortest non-trivial path that can be surjectively labeled using
L(3, 2, 1) labeling is P7.

Proof. The labeling {3,6,1,4,7,2,5} shows that P7 can be surjectively labeled. We
know by Theorem 2.1 that k(P6) = 7, k(P5) = 7, k(P4) = 6, k(P3) = 6, and
k(P2) = 4. So for n < 7, a path cannot be labeled with a surjective label. Therefore,
the shortest non-trivial path that can be surjectively labeled is P7. [2] �

Theorem 2.3. Paths of length greater than or equal to 7 can be surjectively labeled
using L(3, 2, 1) labeling.

Proof. By Theorem 2.2 we know that P7 can be surjectively labeled. Assume the
path Pn−1 can be surjectively labeled where n ≥ 8 . Call the vertex labeled n−3 in
Pn−1, vi. Then if vertices vi−1 and vi+1 exist, they must be labeled less than n−6.
Also, if vertices vi−2 and vi+2 exist, they must be labeled less than n− 9 or labeled
n − 1. If vertex vi is of degree 1 in Pn−1, then append an additional vertex to vi

and label this new vertex n. This creates a surjective labeling of Pn. If vertex vi

is of degree 2 in Pn−1 and vi+2 is not labeled n− 1, then add an additional vertex
between vi and vi+1. Label this new vertex n. This creates a surjective labeling
of Pn. If vertex vi is of degree 2 in Pn−1 and vi+2 is labeled n − 1, then add an
additional vertex between vi and vi−1. Label this new vertex n. This creates a
surjective labeling of Pn. Thus, paths of length greater than or equal to 7 can be
surjectively labeled. �

Cycles. In this subsection we will discuss the shortest non-trivial cycle that can be
labeled using surjective labeling. We will also show that all cycles of length greater
then or equal to 8 can be surjectively labeled. A proof of Theorem 2.4 can be found
in paper L(3, 2, 1)-Labeling on Simple Graphs [1] and Theorem 2.5, and it’s proof,
are from the paper L(3, 2, 1)-Labeling and Surjective Labeling of Simple Graphs. [2]

Theorem 2.4. For any cycle, Cn, with n ≥ 3,

k(Cn) =


7, if n = 3;
8, if n is even;
9, if n is odd and n 6= 3, 7;
10, if n = 7;

using L(3, 2, 1) labeling.[1]

Theorem 2.5. The shortest cycle that can be surjectively labeled using L(3, 2, 1)
labeling is C8.



L(d, j, s) MINIMAL AND SURJECTIVE GRAPH LABELING 5

Proof. The labeling {3, 6, 1, 4, 7, 2, 5, 8} shows that C8 can be labeled with a sur-
jective label. We know by Theorem 2.4 that k(Cn) > n for 3 ≤ n ≤ 7. This shows
that the shortest cycle that can be labeled using surjective labeling is C8. [2] �

Theorem 2.6. Cycles of length greater than or equal to 8 can be surjectively labeled
using L(3, 2, 1) labeling.

Proof. By Theorem 2.5 we know that C8 can be surjectively labeled. Assume
the cycle Cn−1 can be surjectively labeled, where n ≥ 9. Call the vertex labeled
n− 3 in Cn−1, vi. Then vertices vi+1 and vi−1 must be labeled less than or equal
to n − 3 − 3 = n − 6. Also, vertices vi+2 and vi−2 must be labeled less than
n−6−3 = n−9 or n−1. If vertex vi+2 is not labeled n−1, then add an additional
vertex between vi and vi+1. Label this vertex n. This creates a surjective labeling
of Cn. If vertex vi+2 is labeled n−1, then add an additional vertex between vi and
vi−1. Label this vertex n. This creates a surjective labeling of Cn. Thus, cycles of
length greater than or equal to 8 can be surjectively labeled. [2] �

Uniform Caterpillars. In this subsection we will explore how to surjectively label
uniform caterpillars. We will consider the special case when ∆ = 2 in Theorem 2.7
and ∆ > 2 in Theorem 2.8 and Theorem 2.9.

Theorem 2.7. A uniform caterpillar with ∆ = 2 can be surjectively labeled using
L(3, 2, 1) labeling if and only if n ≥ 5.

Proof. A caterpillar with ∆ = 2 is a path. A path can be surjectively labeled using
L(3, 2, 1) labeling if and only if it has a length of greater than or equal to 7 vertices
by Theorem 2.3. Therefore, a uniform caterpillar with ∆ = 2 can be surjectively
labeled using L(3, 2, 1) labeling if and only if n ≥ 5. �

Theorem 2.8. A uniform caterpillar with n ≤ 3 cannot be surjectively labeled
using L(3, 2, 1) labeling.

Proof. Case I: n = 3.
Let i be the label of the middle vertex on the spine. Every other vertex is at

most two vertices away from the vertex labeled i. Therefore, this caterpillar cannot
be surjectively labeled because (i + 1) and (i − 1) cannot be placed anywhere on
the graph.

Case II: n ≤ 2.
Let i be the label of any vertex on the spine. Every other vertex is at most

two vertices away from the vertex labeled i. Therefore, this caterpillar cannot be
surjectively labeled because (i + 1) and (i − 1) cannot be placed anywhere on the
graph. �

Theorem 2.9. Any uniform caterpillar of Catn, with n ≥ 4 and ∆ ≥ 3 can be
surjectively labeled using L(3, 2, 1) labeling.

Proof. Case 1: n = 4 and ∆ ≥ 3.
The spine can be labeled {4, 7, 10, 3}. The unlabeled vertices adjacent to the

vertex labeled 4 can be labeled 9 and 1, the unlabeled vertex adjacent to the vertex
labeled 7 can be labeled 2, the unlabeled vertex adjacent to the vertex labeled 10
can be labeled 5, and the unlabeled vertices adjacent to the vertex labeled 3 can
be labeled 6 and 8. If ∆ = 3, then this is a surjective labeling of the caterpillar. If



6 MICHELLE LINGSCHEIT, KIERSTEN RUFF, JEREMY WARD

∆ > 3 label the ∆−3 unlabeled vertices adjacent to vertex vn using the expression
(k + 1)n + 2 + i where 0 ≤ k ≤ ∆− 3 and 1 ≤ i ≤ n.

Case II: n ≥ 5 and ∆ ≥ 3.
The spine of a caterpillar is a path. Let V ={v1, v2, v3...vn} be the set of vertices

on the spine of the caterpillar with vi adjacent to vi+1 for 1 ≤ i ≤ n− 1. Let v0 be
a vertex not on the spine that is adjacent to v1 and vn+1 a vertex not on the spine
that is adjacent to vn. The path {v0, v1, . . . , vn, vn+1} can be surjectively labeled
with the labels 1 through n+2 by Theorem 2.3. Surjectively label this path in such
a way that the vertex with label n + 2, call it vm, has the largest possible index
m. Label the ∆ − 2 unlabeled vertices adjacent to vertex vn using the formula
(k + 1)n + 2 + i where 0 ≤ k ≤ ∆ − 3 and 1 ≤ i ≤ n. If vertex v1 is not labeled
n + 1, then this gives a surjective labeling of the caterpillar. If vertex v1 is labeled
n + 1, then switch the labels of the vertices labeled n + 3 and n + 4. This gives the
surjective labeling of the uniform caterpillar. �

3. L(d, 2, 1) Surjective Labeling of Paths

In this section we will find the smallest path, Pn, that can be surjectively labeled
using L(d, 2, 1) labeling for certain values of d. We will also show that if a path Pk

can be surjectively labeled for a particular value d, then Pn where n > k can also be
surjectively labeled. We developed a computer program to quickly and exhaustively
check permutations of varying lengths to determine which permutations represented
L(d, 2, 1), L(md, d, 1), L(d + m, d, 1), or L(d, j, s) surjective labels of paths.

This program begins by creating an array of n positions and places a 1 in the
first position. Once a number, in this case 1, has been used, it is then marked
unavailable and is no longer able to be used in the remaining positions of the array.
Next the smallest number, which both remains to be used and is valid with a given
labeling type, is placed in the second position. This algorithm is repeated until all
the positions are filled. Once this process is completed through the nth position,
the array is printed, but if no valid labeling exists for the ith spot, the previous
spot is adjusted to the next smallest available number. The computer repeats this
process until either all the possible valid labels are printed or if none exist it will
tell us so.

This data was gathered using the computer program described above. Conjec-
ture 3.1 is a summary of the pattern discovered from Table 1.

Conjecture 3.1. For L(d, 2, 1) labeling where d ≥ 3, the shortest path, Pn, that
can be surjectively labeled is P2d+2 if n is even and P2d+1 if n is odd.

Theorem 3.2. If there exists a surjective L(d, 2, 1) labeling of path Pk for some
positive integer k, then path Pn, with n > k can also be surjectively labeled.

Proof. Assume the path Pn−1 can be surjectively labeled. Call the vertex labeled
n − d in Pn−1, vi. Then if vertices vi−1 and vi+1 exist, they must be labeled less
than n − 2d. Also, if vertices vi−2 and vi+2 exist, they must be labeled less than
n− 3d or greater than n− d + 2. If vertex vi is of degree 1 in Pn−1, then append
an additional vertex to vi and label this new vertex n. If vertex vi is of degree 2
in Pn−1 and vi+2 is not labeled n − 1, then add an additional vertex between vi

and vi+1. Label this new vertex n. This creates a surjective labeling of Pn. If
vertex vi is of degree 2 in Pn−1 and vi+2 is labeled n − 1, then add an additional
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d n
3 7
4 10
5 11
6 14
7 15
8 18
9 19
10 22
11 23

Table 1. This table shows the length of the shortest path, Pn,
that can be surjectively labeled using L(d, 2, 1) labeling.

vertex between vi and vi−1. Label this new vertex n. This also creates a surjective
labeling of Pn. �

4. L(md, d, 1) Minimal Labeling of Paths and Cycles

In this section we will find k(Gn) for paths and cycles of length n using L(md, d, 1)
labeling where m and d are positive integers and md > d > 1. A summary of the
results for paths can be found in Theorem 4.2. When considering cycles, we must
consider 2 cases. We will begin by considering L(md, d, 1) labeling where m ≥ 3
and d ≥ 2. A summary of those results can be found in Theorem 4.10. We will con-
clude the section by examining the special case of L(2d, d, 1) labeling where d ≥ 2.
The results of k(Cn) using L(2d, d, 1) labeling can be found in Theorem 4.14.

Lemma 4.1. For a path on n vertices, Pn, with n ≥ 5, d ≥ 2, and m ≥ 2,
k(Pn) ≥ md + 2d + 1 using L(md, d, 1) labeling.

Proof. Let f be a minimal L(md, d, 1) labeling for a path on n vertices, Pn. Consider
vertex vi with label 1. There is an induced subpath of at least 3 vertices with vi

as an end vertex. Let {vi, vi+1, vi+2} be this subpath. Now we can consider the
possibilities for f(vi+1).

Case I: md + 1 ≤ f(vi+1) ≤ md + d.
Then f(vi+2) ≥ 2md + 1, which is greater than or equal to md + 2d + 1 when

m ≥ 2.

Case II: md + d + 1 ≤ f(vi+1) ≤ md + 2d.
Then d+1 ≤ f(vi+2) ≤ 2d. Now there are at least two vertices not yet labeled so

we know either vi−1 or vi+3 exists. If vi+3 exists then f(vi+3) must be greater than
or equal to md + 2d + 1. If vi−1 exists and vi+3 does not, then consequently vi−2

exists. Then md + 1 ≤ f(vi−1) ≤ md + d. This result forces f(vi−2) ≥ 2md + 1
which is greater than or equal to md + 2d + 1 for m ≥ 2.

Therefore, we can conclude that k(Pn) ≥ md + 2d + 1 when n ≥ 5, d ≥ 2, and
m ≥ 2 using L(md, d, 1) labeling. �
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Theorem 4.2. For any path, Pn, when d ≥ 2 and m ≥ 2

k(Pn) =


1, if n = 1;
md + 1, if n = 2;
md + d + 1, if n = 3, 4;
md + 2d + 1, if n ≥ 5;

using L(md, d, 1) labeling.

Proof. Let V = {v1, v2, . . . , vn} be the set of vertices on Pn, with vi adjacent to
vi+1 for 1 ≤ i ≤ n− 1. For each Pn we proceed with the following cases.

Case I: n = 1.
This is evidently true.

Case II: n = 2.
The labeling pattern {md + 1, 1} shows that k(Pn) = md + 1 for n = 2.

Case III: n = 3, 4.
Consider vertex vi such that f(vi) = 1. If vi is of degree 2, then we know that

vertices vi+1 and vi−1 exist such that f(vi+1) ≥ md + 1 and f(vi−1) ≥ md + d + 1.
If vi is of degree 1, then we know that either vertices vi+1 and vi+2 or vi−1

and vi−2 exist. Assume without the loss of generality, that vi+1 and vi+2 exist.
Then md + 1 ≤ f(vi+1) ≤ md + d. This forces f(vi+2) ≥ 2md + 1, which is
greater than or equal to md + 2d + 1 when m ≥ 2. Thus, the labeling pattern
{md + 1, 1, md + d + 1, d + 1} shows that k(Pn) = md+d+1 for n = 3, 4. Observe
that this pattern is not repeatable.

Case IV: n ≥ 5.
Let f be defined as f({v1, v2, v3, v4}) = {1, md + d + 1, d + 1, md + 2d + 1} and

f(vi) = f(vj) if i ≡ j (mod 4). Therefore we can conclude by the definition of f
that k(Pn) ≤ md + 2d + 1 for n ≥ 5. By combining this result with the results of
Lemma 4.1, we obtain k(Pn) = md + 2d + 1 for n ≥ 5. �

Lemma 4.3. For a cycle on 4 vertices, C4, with d ≥ 2 and m ≥ 2, k(C4) ≥
md + 2d + 1 using L(md, d, 1) labeling.

Proof. Let f be a minimal L(md, d, 1) labeling for a cycle with 4 vertices, C4.
Consider vertex vi with label 1. There is an induced subpath of 4 vertices with vi

as an end vertex. Let {vi, vi+1, vi+2, vi+3} be this subpath. Now we can consider
the possibilities for f(vi+1).

Case I: md + 1 ≤ f(vi+1) ≤ md + d.
Then f(vi+2) ≥ 2md + 1, which is greater than or equal to md + 2d + 1 when

m ≥ 2.

Case II: md + d + 1 ≤ f(vi+1) ≤ md + 2d.
Then d + 1 ≤ f(vi+2) ≤ 2d. This forces f(vi+3) to be greater than or equal to

md + 2d + 1.

Therefore, we can conclude that k(C4) ≥ md + 2d + 1 when d ≥ 2 and m ≥ 2
using L(md, d, 1) labeling. �
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Lemma 4.4. For a cycle with n vertices where n is an odd integer greater than or
equal to 3, k(Cn) ≥ 2md + 1 when d ≥ 2 and m ≥ 2 using L(md, d, 1) labeling.

Proof. Let f be a minimal L(md, d, 1) labeling for a cycle with n vertices where n
is an odd number. Given the nature of odd cycles, two vertices with labels greater
than or equal to md must be adjacent to one another in the graph. Therefore,
k(Cn) ≥ 2md. Assume k(Cn) = 2md. Then a vertex labeled md must be adjacent
to a vertex labeled 2md. However this would force another vertex to be labeled
3md. Thus, k(Cn) ≥ 2md + 1 for 2 - n. �

Lemma 4.5. For a cycle on 6 vertices, C6, with d ≥ 2 and m ≥ 3, k(C6) ≥
md + 3d + 1 using L(md, d, 1) labeling.

Proof. Let f be a minimal L(md, d, 1) labeling for a cycle with 6 vertices, C6.
Consider vertex vi with label 1. There is an induced subpath of 6 vertices with vi

as an end vertex. Let {vi, vi+1, vi+2, vi+3, vi+4, vi+5} be this subpath. Note that no
value can be repeated in this subpath given that in the cycle each vertex is at most
a distance of 3 from every other vertex. Now we can consider the possibilities for
f(vi+1).

Case I: md + 1 ≤ f(vi+1) ≤ md + d.
Then f(vi+2) ≥ 2md + 1 which is greater than or equal to md + 3d + 1 when

m ≥ 3.

Case II: md + d + 1 ≤ f(vi+1) ≤ md + 2d.
Then d + 1 ≤ f(vi+2) ≤ 2d, md + 2d + 1 ≤ f(vi+3) ≤ md + 3d, and 2d + 1 ≤

f(vi+4) ≤ 3d. This result forces f(vi+5) ≥ md + 3d + 1.

Case III: md + 2d + 1 ≤ f(vi+1) ≤ md + 3d.
Then d + 1 ≤ f(vi+2) ≤ 3d. If d + 1 ≤ f(vi+2) ≤ 2d, then md + d + 1 ≤

f(vi+3) ≤ md + 2d. This result forces f(vi+4) ≥ 2md + d + 1 which is greater than
md + 3d + 1 when m ≥ 3. If 2d + 1 ≤ f(vi+2) ≤ 3d, then f(vi+3) ≥ md + 3d + 1.

Therefore, we can conclude that k(C6) ≥ md + 3d + 1 when d ≥ 2 and m ≥ 3
using L(md, d, 1) labeling. �

Lemma 4.6. For a cycle with 2 | n, 4 - n and n ≥ 10, k(Cn) ≥ md + 3d + 1 using
L(md, d, 1) labeling when d ≥ 2 and m ≥ 3.

Proof. Let f be a minimal L(md, d, 1) labeling for a cycle 2 | n, 4 - n, and n ≥ 10.
From Theorem 4.2 we know that for a path with n ≥ 5, k(Pn) = md + 2d + 1 using
L(md, d, 1) labeling. Therefore, for any cycle with n ≥ 5, k(Cn) ≥ md + 2d + 1.
Assume that md + 2d + 1 ≤ k(Cn) ≤ md + 3d. Assume md + 2d + 1 ≤ f(vi) ≤
md + 3d. Now we can consider the possibilities for f(vi+1).

Case I: 1 ≤ f(vi+1) ≤ d.
Then md + 1 ≤ f(vi+2) ≤ md + 2d. If md + 1 ≤ f(vi+2) ≤ md + d, then

f(vi+3) ≥ 2md + 1 which is greater than or equal to md + 3d + 1 when m ≥ 3. If
md + d + 1 ≤ f(vi+2) ≤ md + 2d, then d + 1 ≤ f(vi+3) ≤ 2d, and md + 2d + 1 ≤
f(vi+4) ≤ md + 3d. This forces 1 ≤ f(vi+5) ≤ d or 2d + 1 ≤ f(vi+5) ≤ 3d. If
2d + 1 ≤ f(vi+5) ≤ 3d, then f(vi+6) ≥ md + 3d + 1. If 1 ≤ f(vi+5) ≤ d, then
md + 1 ≤ f(vi+6) ≤ md + 2d. If md + 1 ≤ f(vi+6) ≤ md + d, then f(vi+7) ≥
2md + 1 which is greater than or equal to md+3d+1 when m ≥ 3. If md+d+1 ≤
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f(vi+6) ≤ md + 2d, then d + 1 ≤ f(vi+7) ≤ 2d. Notice that this labeling pattern is
a repeated pattern of four labels. Since n is not divisible by 4, we must have two
vertices in our cycle that cannot be labeled using this pattern. It follows that one
of these vertices must be labeled with a label greater than or equal to md + 3d + 1.

Case II: d + 1 ≤ f(vi+1) ≤ 2d.
Then md+d+1 ≤ f(vi+2) ≤ md + 2d, 1 ≤ f(vi+3) ≤ d, and md+1 ≤ f(vi+4) ≤

md + d or md + 2d + 1 ≤ f(vi+4) ≤ md + 3d. If md + 1 ≤ f(vi+4) ≤ md + d,
then f(vi+5) ≥ 2md + 1 which is greater than or equal to md + 3d + 1 when
m ≥ 3. If md + 2d + 1 ≤ f(vi+4) ≤ md + 3d, then d + 1 ≤ f(vi+5) ≤ 3d. If
2d + 1 ≤ f(vi+5) ≤ 3d, then f(vi+6) ≥ md + 3d + 1. If d + 1 ≤ f(vi+5) ≤ 2d, then
md + d + 1 ≤ f(vi+6) ≤ md + 2d and 1 ≤ f(vi+7) ≤ d. Notice that this labeling
pattern is a repeated pattern of four labels. Since n is not divisible by 4, we must
have two vertices in our cycle that cannot be labeled using this pattern. It follows
that one of these vertices must be labeled greater than md + 3d + 1.

Case III: 2d + 1 ≤ f(vi+1) ≤ 3d.
Then f(vi+2) ≥ md + 3d + 1.

Since assuming md+ 2d+ 1 ≤ k(Cn) ≤ md + 3d leads to a contradiction, we can
conclude that k(Cn) ≥ md + 3d + 1 for 2 | n, 4 - n and n ≥ 10. �

Fact 4.7. Let n be an even integer. If n ≥ 4, then n = 4a+6b for some non-negative
integers a,b.

Fact 4.8. Let n be an even integer. If n ≥ 8, then n = 4a+5b for some non-negative
integers a,b.

Fact 4.9. Let n be an odd integer. If n ≥ 9 and n 6= 11, then n = 4a + 5b for some
non-negative integers a,b.

Theorem 4.10. For any cycle, Cn, where n is a positive integer greater than or
equal to 3, d ≥ 2, and m ≥ 3

k(Cn) =


md + 2d + 1, if 4 | n;
md + 3d + 1, if 2 | n and 4 - n;
2md + 1, if 2 - n;

using L(md, d, 1) labeling.

Proof. Let n ≥ 3 and V = {v1, v2, . . . , vn} be the set of vertices on Cn, with vi

adjacent to vi+1 for 1 ≤ i ≤ n− 1 and vertex v1 adjacent to vn. For Cn we proceed
with the following cases.

Case I: 4 | n.
By Lemma 4.3 we know that k(C4) ≥ md + 2d + 1. The labeling pattern

{1, md + d + 1, d + 1, md + 2d + 1} shows that k(C4) = md + 2d + 1. By Theo-
rem 4.2 we know that for a path with n ≥ 5, k(Pn) = md+ 2d+ 1 using L(md, d, 1)
labeling. Therefore for any cycle n ≥ 5, k(Cn) ≥ md + 2d + 1. Notice that we
can repeat the labeling pattern of C4 infinitely for all Cn where 4 | n. Therefore
k(Cn) = md + 2d + 1 when 4 | n.

Case II: 2 | n and 4 - n.



L(d, j, s) MINIMAL AND SURJECTIVE GRAPH LABELING 11

By Lemma 4.5 we know that k(C6) ≥ md + 3d + 1. The labeling pattern
{1, md+d+1, d+1, md+2d+1, 2d+1, md+3d+1} shows that k(C6) = md+3d+1.
From Lemma 4.6 we know that k(Cn) ≥ md + 3d + 1 for 2 | n, 4 - n, and n ≥ 10.
By Fact 4.7 we know that if n is a positive integer and n ≥ 4, then n = 4a + 6b for
some non-negative integers a,b. The labeling pattern

{1, md + d + 1, d + 1, md + 2d + 1,︸ ︷︷ ︸
a times

1, md + d + 1, d + 1, md + 2d + 1, 2d + 1, md + 3d + 1︸ ︷︷ ︸
b times

}

can be used to label any cycle with n | 2 and n ≥ 4. Therefore, k(Cn) = md+3d+1
when 2 | n and 4 - n.

Case III: 2 - n.
By Lemma 4.4 we know that k(Cn) ≥ 2md + 1 when 2 - n, d ≥ 2, and m ≥ 2.

The labeling pattern {1, md+1, 2md+1} shows that k(C3) = 2md+1. The labeling
pattern {1, md + 1, 2md + 1, d + 1, md + d + 1} shows that k(C5) = 2md + 1. The
labeling pattern {1, md+1, 2md+1, 2d+1, md+2d+1, d+1, md+d+1} shows that
k(C7) = 2md + 1. The labeling pattern {1, md + d + 1, d + 1, md + 2d + 1, 1, md +
d + 1, d + 1, md + 2d + 1, 2d + 1, 2md + 1, md + 1} shows that k(C11) = 2md + 1.
We also know from Fact 4.9 that if n is an odd integer and n ≥ 9 and n 6= 11, then
n = 4a + 5b for some non-negative integers a,b. The labeling pattern

{1, md + d + 1, d + 1, md + 2d + 1,︸ ︷︷ ︸
a times

1, md + d + 1, d + 1, 2md + 1, md + 1︸ ︷︷ ︸
b times

}

can be used to label any cycle with 2 - n, n ≥ 9, and n 6= 11. Therefore, k(Cn) =
2md + 1. �

Lemma 4.11. For a cycle on 6 vertices, C6, with d ≥ 2, k(C6) ≥ 4d + 2 using
L(2d, d, 1) labeling.

Proof. Let f be a minimal L(2d, d, 1) labeling for a cycle with 6 vertices, C6. Con-
sider vertex vi with label 1. There is an induced subpath of 6 vertices with vi as
an end vertex. Let {vi, vi+1, vi+2, vi+3, vi+4, vi+5} be this subpath. Note that no
value can be repeated in this subpath given that in the cycle each vertex is at most
a distance of 3 from every other vertex. Now we can consider the possibilities for
f(vi+1).

Case I: f(vi+1) = 2d + 1.
Then f(vi+2) = 4d + 1, 2 ≤ f(vi+3) ≤ d + 1, and 2d + 2 ≤ f(vi+4) ≤ 3d + 1.

This forces f(vi+5) to be greater than or equal to 4d + 2.

Case II: 2d + 2 ≤ f(vi+1) ≤ 3d.
Then f(vi+2) ≥ 4d + 2.

Case III: f(vi+1) = 3d + 1.
Then f(vi+2) = d + 1, f(vi+3) = 4d + 1, and f(vi+4) = 2d + 1. This forces

f(vi+5) to be greater than or equal to 5d + 1 which is greater than 4d + 2.

Case IV: 3d + 2 ≤ f(vi+1) ≤ 4d.
Then d + 1 ≤ f(vi+2) ≤ 2d. This result forces f(vi+3) ≥ 4d + 2.

Case V: f(vi+1) = 4d + 1.
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Then d + 1 ≤ f(vi+2) ≤ 2d + 1. If f(vi+2) = d + 1, then f(vi+3) = 3d + 1. This
result forces f(vi+4) ≥ 5d + 1. If d + 2 ≤ f(vi+2) ≤ 2d + 1, then f(vi+3) ≥ 5d + 1.

Therefore, we can conclude that k(C6) ≥ 4d + 2 when d ≥ 2 using L(2d, d, 1)
labeling. �

Lemma 4.12. For a cycle on 7 vertices, C7, when d ≥ 2, k(C7) ≥ 4d + 3 using
L(2d, d, 1) labeling.

Proof. Let f be a minimal L(2d, d, 1) labeling for a cycle with 7 vertices, C7. Con-
sider vertex vi with label 1. There is an induced subpath of 7 vertices with vi as an
end vertex. Let {vi, vi+1, vi+2, vi+3, vi+4, vi+5, vi+6} be this subpath. Note that no
value can be repeated in this subpath given that in the cycle each vertex is at most
a distance of 3 away from every other vertex. Now we can consider the possibilities
for f(vi+1).

Case I: f(vi+1) = 2d + 1
Then 4d+1 ≤ f(vi+2) ≤ 4d + 2, 2 ≤ f(vi+3) ≤ d + 1, 2d+2 ≤ f(vi+4) ≤ 3d + 2.

If f(vi+4) = 2d + 2, then f(vi+5) = 4d + 2. This result forces f(vi+6) ≥ 6d + 2
since vi and vi+6 are adjacent in the cycle. If 2d + 3 ≤ f(vi+4) ≤ 3d + 2, then
f(vi+5) ≥ 4d + 3.

Case II: f(vi+1) = 2d + 2.
Then f(vi+2) = 4d + 2, 2 ≤ f(vi+3) ≤ d + 2, and 2d + 3 ≤ f(vi+4) ≤ 3d + 2.

If 2d + 3 ≤ f(vi+4) ≤ 3d + 1, then f(vi+5) = 4d + 3. If f(vi+4) = 3d + 2, then
f(vi+5) = d + 2. This result forces f(vi+6) ≥ 4d + 3.

Case III: 2d + 3 ≤ f(vi+1) ≤ 3d where d > 2.
If d > 2, then f(vi+2) ≥ 4d + 3.

Case IV: 3d + 1 ≤ f(vi+1) ≤ 4d.
Then d + 1 ≤ f(vi+2) ≤ 2d, 4d + 1 ≤ f(vi+3) ≤ 4d + 2, and 2d + 1 ≤ f(vi+4) ≤

2d + 2. This forces f(vi+5) ≥ 5d + 1 since vi and vi+5 are of distance 2 in the cycle.

Case V: f(vi+1) = 4d + 1.
Then d + 1 ≤ f(vi+2) ≤ 2d + 1. If f(vi+2) = d + 1, then f(vi+3) = 3d + 1. This

forces f(vi+4) ≥ 5d + 1 which is greater than or equal to 4d + 3 when d ≥ 2. If
d + 2 ≤ f(vi+2) ≤ 2d + 1, then f(vi+3) is greater than or equal to 5d + 1.

Case VI: f(vi+1) = 4d + 2.
Then d + 1 ≤ f(vi+2) ≤ 2d + 2. If f(vi+2) = d + 1, then 3d + 1 ≤ f(vi+3) ≤

3d + 2. This forces f(vi+4) ≥ 5d + 1 which is greater than or equal to 4d + 3 when
d ≥ 2. If f(vi+2) = d + 2, then f(vi+3) = 3d + 2, f(vi+4) = 2, and f(vi+5) =
2d + 2. This forces f(vi+6) ≥ 5d + 2 which is greater than 4d + 3 when d > 1.
If d + 3 ≤ f(vi+2) ≤ 2d + 1, then f(vi+3) ≥ 5d + 2. If f(vi+2) = 2d + 2, then
f(vi+3) = 2, 3d + 2 ≤ f(vi+4) ≤ 4d + 1, and d + 2 ≤ f(vi+5) ≤ 2d + 1. This forces
f(vi+6) ≥ 5d + 2.

Therefore, we can conclude that k(C7) ≥ 4d + 3 when d ≥ 2 using L(2d, d, 1)
labeling. �

Lemma 4.13. For a cycle with 11 vertices, C11, when d ≥ 2, k(C11) ≥ 4d + 2
using L(2d, d, 1) labeling.
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Proof. Let f be a minimal L(2d, d, 1) labeling for a cycle with 11 vertices, C11.
Consider vertex vi with label 1. There is an induced subpath of 11 vertices with
vi as an end vertex. Let {vi, vi+1, vi+2, vi+3, vi+4, vi+5, vi+6, vi+7, vi+8, vi+9, vi+10}
be this subpath. Now we can consider the possibilities for f(vi+1). Note that in a
cycle with 11 vertices a label can appear at most twice on the cycle.

Case I: f(vi+1) = 2d + 1.
Then f(vi+2) = 4d + 1 and 2 ≤ f(vi+3) ≤ d + 1. If 2 ≤ f(vi+3) ≤ d, then

2d + 2 ≤ f(vi+4) ≤ 3d + 1. This forces f(vi+5) to be greater than or equal to
4d + 2. If f(vi+3) = d + 1, then f(vi+4) = 3d + 1 and f(vi+5) = 1. It follows
that f(vi+6) = 2d + 1 or f(vi+6) = 4d + 1. If f(vi+6) = 4d + 1, then d + 1 ≤
f(vi+7) ≤ 2d + 1. If d + 2 ≤ f(vi+7) ≤ 2d + 1, then f(vi+8) ≥ 5d + 1 which is
greater than 4d + 2 when d > 1. If f(vi+7) = d + 1, then f(vi+8) = 3d + 1.
This forces f(vi+9) ≥ 5d + 1. If f(vi+6) = 2d + 1, then f(vi+7) = 4d + 1 and
2 ≤ f(vi+8) ≤ d + 1. Then 2d + 2 ≤ f(vi+9) ≤ 3d + 1 which forces f(vi+10) to be
greater than or equal to 4d + 2.

Case II: 2d + 2 ≤ f(vi+1) ≤ 3d.
Then f(vi+2) is greater than or equal to 4d + 2.

Case III: 3d + 1 ≤ f(vi+1) ≤ 4d.
Then d + 1 ≤ f(vi+2) ≤ 2d. If d + 2 ≤ f(vi+2) ≤ 2d, then f(vi+3) ≥ 4d + 2. If

f(vi+2) = d + 1, then f(vi+3) = 4d + 1. Then f(vi+4) = 1 or f(vi+4) = 2d + 1.
If f(vi+4) = 1, then 2d + 1 ≤ f(vi+5) ≤ 3d + 1. If 2d + 1 ≤ f(vi+5) ≤ 3d, then
f(vi+6) ≥ 4d + 2. If f(vi+5) = 3d + 1, then f(vi+6) = d + 1, f(vi+7) = 4d + 1,
and f(vi+8) = 2d + 1. This forces f(vi+9) ≥ 5d + 1 which is greater than 4d + 2
when d > 1. If f(vi+4) = 2d + 1, then f(vi+5) = 1, 3d + 1 ≤ f(vi+6) ≤ 4d,
and d + 1 ≤ f(vi+7) ≤ 2d. If d + 2 ≤ f(vi+7) ≤ 2d, then f(vi+8) ≥ 4d + 2. If
f(vi+7) = d + 1, then f(vi+8) = 4d + 1 and f(vi+9) = 2d + 1. This forces f(vi+10)
to be greater than or equal to 5d + 1.

Case IV: f(vi+1) = 4d + 1.
Then d + 1 ≤ f(vi+2) ≤ 2d + 1. If d + 2 ≤ f(vi+2) ≤ 2d + 1, then f(vi+3) ≥

5d + 1. If f(vi+2) = d+1, then f(vi+3) = 3d+1, f(vi+4) = 1, and f(vi+5) = 2d+1
or f(vi+5) = 4d+1. If f(vi+5) = 2d+1, then f(vi+6) = 4d+1, 2 ≤ f(vi+7) ≤ d + 1,
and 2d + 2 ≤ f(vi+8) ≤ 3d + 1. This forces f(vi+9) ≥ 4d + 2. If f(vi+5) = 4d + 1,
then d + 1 ≤ f(vi+6) ≤ 2d + 1. If d + 2 ≤ f(vi+6) ≤ 2d + 1, then f(vi+7) ≥ 5d + 1.
If f(vi+6) = d + 1, then f(vi+7) = 3d + 1 which forces f(vi+8) ≥ 5d + 1.

Therefore, we can conclude that k(C11) ≥ 4d + 2 when d ≥ 2 using L(2d, d, 1)
labeling. �

Theorem 4.14. For any cycle, Cn, where n is a positive integer greater than or
equal to 3 and d ≥ 2

k(Cn) =


4d + 1, if n 6= 6, 7, 11;
4d + 2, if n = 6; n = 11;
4d + 3, if n = 7;

using L(2d, d, 1) labeling.
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Proof. Let n ≥ 3 and V = {v1, v2, . . . , vn} be the set of vertices on Cn, with vi

adjacent to vi+1 for 1 ≤ i ≤ n− 1 and vertex v1 adjacent to vn. For Cn we proceed
with the following cases.

Case I: 2 | n and n 6= 6.
By Lemma 4.3 we know that k(C4) ≥ 4d + 1 when m = 2. The labeling pattern

{1, 3d + 1, d + 1, 4d + 1} shows that k(C4) = 4d + 1. From Theorem 4.2 we know
that for a path with n ≥ 5, k(Pn) = 4d + 1 using L(2d, d, 1) labeling. Therefore,
for any cycle with n ≥ 5, k(Cn) ≥ 4d + 1. By Fact 4.8 we know that if n is an
even integer and n ≥ 8, then n = 4a + 5b for some non-negative integers a,b. The
labeling pattern

{1, 3d + 1, d + 1, 4d + 1,︸ ︷︷ ︸
a times

1, 3d + 1, d + 1, 4d + 1, 2d + 1︸ ︷︷ ︸
b times

}

shows that for any cycle with 2 | n and n ≥ 8, k(Cn) = 4d + 1.

Case II: 2 - n and n 6= 7, 11.
The labeling pattern {1, 2d+1, 4d+1} shows that k(C3) = 4d+1. By Lemma 4.4

we know that k(Cn) ≥ 4d + 1 when 2 - n, m = 2, and d ≥ 2. The labeling pattern
{1, 2d + 1, 4d + 1, d + 1, 3d + 1} shows that k(C5) = 4d + 1. We know from Fact 4.9
that if n is an odd integer and n ≥ 9 and n 6= 11, then n = 4a + 5b for some
non-negative integers a,b. The labeling pattern

{1, 3d + 1, d + 1, 4d + 1,︸ ︷︷ ︸
a times

1, 3d + 1, d + 1, 4d + 1, 2d + 1︸ ︷︷ ︸
b times

}

shows that for any cycle with 2 - n, n ≥ 9, and n 6= 11 k(Cn) = 4d + 1.

Case III: n = 6.
By Lemma 4.11 we know that k(C6) ≥ 4d + 2. The labeling pattern {1, 2d +

1, 4d + 1, 2, 2d + 2, 4d + 2} shows that k(C6) = 4d + 2.

Case IV: n = 11.
By Lemma 4.13 we know that k(C11) ≥ 4d + 2. The labeling pattern {1, 2d +

1, 4d+ 1, d+ 1, 3d+ 1, 1, 2d+ 1, 4d+ 1, 2, 2d+ 2, 4d+ 2} shows that k(C11) = 4d+ 2.

Case V: n = 7.
By Lemma 4.12 we know that k(C7) ≥ 4d + 3. The labeling pattern {1, 2d +

2, 4d + 2, 2, 3d + 2, d + 2, 4d + 3} shows that k(C7) = 4d + 3. �

5. L(md, d, 1) Surjective Labeling of Paths

Conjecture 5.1 was made by observing the data produced by the computer pro-
gram described in Section 3. We can see the length of the shortest path, n, that can
be surjectively labeled for the various parameters of L(md, d, 1) labeling in Table 2.
The bold numbers are the cases when m = d, while the strikethrough represents
lengths of paths which cannot be surjectively labeled using L(md, d, 1) labeling.

Conjecture 5.1. For L(md, d, 1) labeling, where positive integer m and d ≥ 2, the
shortest path, Pn, that can be surjectively labeled is P2md+d.
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m
2 3 4 5 6

2 10 14 18 22 26
3 15 21 27

d 4 20 28
5 25 33 34
6 30

Table 2. This table shows lengths of the shortest path, n, that
can be surjectively labeled for the various parameters of L(md, d, 1)
labeling.

6. L(d + m, d, 1) Labeling of Paths

In this section we will find k(Pn) for all paths of length n using L(d + m, d, 1)
labeling where m and d are positive integers and d + m > d > 1. Two cases need
to be considered: d > m > 0 and m ≥ d ≥ 2. A summary of the results in this
section can be found in Theorem 6.2 and Theorem 6.4.

Lemma 6.1. For a path on n vertices, Pn, with n ≥ 8, d ≥ 2, and d > m > 0,
k(Pn) ≥ 2d + 2m + 2 using L(d + m, d, 1) labeling.

Proof. Let f be a minimal L(d + m, d, 1) labeling for a path on n vertices, Pn.
Consider vertex vi with label 1. There is an induced subpath of at least 5 vertices
with vi as an end. Let {vi, vi+1, vi+2, vi+3, vi+4} be this subpath. Now we can
consider the possibilities for f(vi+1).

Case I: f(vi+1) = d + m + 1.
Then f(vi+2) = 2d + 2m + 1, 2 ≤ f(vi+3) ≤ m + 1, and d + m + 2 ≤ f(vi+4) ≤

d + 2m + 1. Now there are 3 vertices not yet labeled so we know either vi+5 or the
subpath {vi−3, vi−2, vi−1} exists. If vi+5 exists, then f(vi+5) must be greater than
or equal to 2d + 2m + 2. If the subpath {vi−3, vi−2, vi−1} exists, then 2d + m + 1 ≤
f(vi−1) ≤ 2d + 2m and d + 1 ≤ f(vi−2) ≤ d + m. This result forces f(vi−3) ≥
3d + m + 1, which is greater than or equal to 2d + 2m + 2 when d ≥ m + 1.

Case II: d + m + 2 ≤ f(vi+1) ≤ 2d + m.
Then f(vi+2) ≥ 2d + 2m + 2.

Case III: 2d + m + 1 ≤ f(vi+1) ≤ 2d + 2m.
Then d + 1 ≤ f(vi+2) ≤ d + m. This result forces f(vi+3) to be greater than or

equal to 3d+m+ 1, which is greater than or equal to 2d+ 2m+ 2 when d ≥ m + 1.

Case IV: f(vi+1) = 2d + 2m + 1.
Then d + 1 ≤ f(vi+2) ≤ d + m + 1. This leads to f(vi+3) ≥ 3d + 2m + 1.

Therefore, we can conclude that k(Pn) ≥ 2d + 2m + 2 when n ≥ 8 and d > m >
0 using L(d + m, d, 1) labeling. �
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Theorem 6.2. For any path, Pn, when d > m > 0

k(Pn) =



1, if n = 1;
d + m + 1, if n = 2;
2d + m + 1, if n = 3, 4;
2d + 2m + 1, if n = 5, 6, 7;
2d + 2m + 2, if n ≥ 8;

using L(d + m, d, 1) labeling.

Proof. Let V = {v1, v2, . . . , vn} be the set of vertices on Pn, with vi adjacent to
vi+1 for 1 ≤ i ≤ n− 1. For each Pn we proceed with the following cases.

Case I: n = 1.
This is evidently true.

Case II: n = 2
The labeling pattern {1, d + m + 1} shows that k(Pn) = d + m + 1 for n = 2.

Case III: n = 3, 4
Consider vertex vi such that f(vi) = 1. If vi is of degree 2 then we know

that vertices vi+1 and vi−1 exist such that f(vi+1) ≥ d + m + 1 and f(vi−1) ≥
2d + m + 1. If vi is of degree 1, then we know that either vertices vi+1 and vi+2

or vi−1 and vi−2 exist. Assume without loss of generality, that vi+1 and vi+2 exist.
Then d + m + 1 ≤ f(vi+1) ≤ 2d + m, which forces f(vi+2) to be greater than
2d+m+1. Thus, the labeling pattern {d + 1, 2d + m + 1, 1, d + m + 1} shows that
k(Pn) = 2d + m + 1 for n = 3, 4.

Case IV: n = 5, 6, 7
Consider vertex vi where f(vi) = 1. Then d + m + 1 ≤ f(vi+1) ≤ 2d + 2m. If

d + m + 1 ≤ f(vi+2) ≤ 2d + m, then f(vi+3) ≥ 2d + 2m + 1. If 2d + m + 1 ≤
f(vi+1) ≤ 2d + 2m, then d + 1 ≤ f(vi+2) ≤ d + m. Now there are at least two
vertices not yet labeled. If vi+3 exists, then f(vi+3) ≥ 3d + m + 1 which is greater
than 2d + 2m + 1 when d > m. If vi−1 exists and vi+3 does not, then consequently
vi−2 exists. Then d+m+1 ≤ f(vi−1) ≤ d + 2m. This forces f(vi−2) ≥ 2d + 2m + 1.
Thus, k(Pn) ≥ 2d + 2m + 1. The labeling pattern {d + 1, 2d + m + 1, 1, d + m +
1, 2d+2m+1, 2, d+m+2} shows that k(Pn) = 2d+2m+1 for n = 5, 6, 7. Observe
that this pattern is not repeatable.

Case V: n ≥ 8
Let f be defined as f({v1, v2, v3, v4, v5, v6}) = {1, d + m + 1, 2d + 2m + 1, 2,

d + m + 2, 2d + 2m + 2} and f(vi) = f(vj) if i ≡ j (mod 6). Therefore we can
conclude by the definition of f that k(Pn) ≤ 2d + 2m + 2 for n ≥ 8. By combining
this result with the results of Lemma 6.1, we obtain k(Pn) = 2d + 2m + 2 for
n ≥ 8. �

Lemma 6.3. For a path on n vertices, Pn, with n ≥ 5 and m ≥ d ≥ 2, k(Pn) ≥
3d + m + 1 using L(d + m, d, 1) labeling.

Proof. Let f be a minimal L(d + m, d, 1) labeling for a path on n vertices, Pn.
Consider vertex vi with label 1. There is an induced subpath of at least 3 vertices
with vi as an end vertex. Let {vi, vi+1, vi+2} be this subpath. Now we can consider
the possibilities for f(vi+1).
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Case I: d + m + 1 ≤ f(vi+1) ≤ 2d + m.
Then f(vi+2) ≥ 2d + 2m + 1 which is greater than or equal to 3d + m + 1 when

m ≥ d.

Case II: 2d + m + 1 ≤ f(vi+1) ≤ 3d + m.
Then d+1 ≤ f(vi+2) ≤ 2d. Now there are at least two vertices not yet labeled so

we know either vi−1 or vi+3 exists. If vi+3 exists then f(vi+3) must be greater than
or equal to 3d+m+1. If vi−1 exists and vi+3 does not, then consequently vi−2 exists.
Then d + m + 1 ≤ f(vi−1) ≤ 2d + m. This result forces f(vi−2) ≥ 2d + 2m + 1
which is greater than or equal to 3d + m + 1 when m ≥ d.

Therefore we can conclude that k(Pn) ≥ 3d + m + 1 when n ≥ 5 and m ≥ d ≥ 2
using L(d + m, d, 1) labeling. �

Theorem 6.4. For any path, Pn, when m ≥ d ≥ 2

k(Pn) =


1, if n = 1;
d + m + 1, if n = 2;
2d + m + 1, if n = 3, 4;
3d + m + 1, if n ≥ 5;

using L(d + m, d, 1) labeling.

Proof. Let V = {v1, v2, . . . , vn} be the set of vertices on Pn, with vi adjacent to
vi+1 for 1 ≤ i ≤ n− 1. For each Pn we proceed with the following cases.

Case I: n = 1.
This is evidently true.

Case II: n = 2.
The labeling pattern {1, d + m + 1} shows that k(Pn) = d + m + 1 when n = 2.

Case III: n = 3, 4.
Consider vertex vi such that f(vi) = 1. If vi is of degree 2 then we know

that vertices vi+1 and vi−1 exist such that f(vi+1) ≥ d + m + 1 and f(vi−1) ≥
2d + m + 1. If vi is of degree 1, then we know that either vertices vi+1 and vi+2

or vi−1 and vi−2 exist. Assume without the loss of generality, that vi+1 and vi+2

exist. Then d + m + 1 ≤ f(vi+1) ≤ 2d + m, which forces f(vi+2) to be greater than
2d + m + 1. Thus, the labeling pattern {d + m + 1, 1, 2d + m + 1, d + 1} shows that
k(Pn) = 2d + m + 1 for n = 3, 4.

Case IV: n ≥ 5.
Let f be defined as f({v1, v2, v3, v4}) = {1, 2d + m + 1, d + 1, 3d + m + 1} and

f(vi) = f(vj) if i ≡ j (mod 4). Therefore we can conclude by the definition of f
that k(Pn) ≤ 3d + m + 1 for n ≥ 5. By combining this result with the results of
Lemma 6.3, we obtain k(Pn) = 3d + m + 1 for n ≥ 5. �

7. L(d + m, d, 1) Surjective Labeling of Paths

Table 3 contains a list of the length of the shortest path that can be surjectively
labeled using L(d+m, d, 1) labeling. The data presented in this section was gathered
using the computer program described in Section 3. Conjecture 7.1 is a summary
of the date from Table 3.
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m
2 3 4 5 6 7

2 10 11 14 15 18 19
3 12 15 16 18 21 22
4 16 17 20 21 24 25

d 5 18 20 22 25 26 28
6 22 24 26 27 30 31
7 24 26 28 30 32
8 28 29 32 33

Table 3. This table shows the length of the shortest path, n, that
can be surjectively labeled for the various parameters of L(d +
m, d, 1) labeling.

Conjecture 7.1. For L(d + m, d, 1) labeling, where integers m ≥ 2, d ≥ 2, and
m = d , the shortest path, Pn, that can be surjectively labeled is P5m.

8. L((m + 1)d, md, d) Labeling of Paths and Cycles

In this section we will find k(G) for paths and cycles of length n using L((m +
1)d, md, d) labeling. A summary of the results for paths can be found in Theo-
rem 8.2 and in Theorem 8.9 for cycles.

Lemma 8.1. For a path on n vertices, Pn, with n ≥ 8, m ≥ 2, and d ≥ 1,
k(Pn) ≥ 2md + 3d + 1 using L((m + 1)d, md, d) labeling.

Proof. Let f be the minimal L((m + 1)d, md, d) labeling for a path on n vertices,
Pn. Consider vertex vi with label 1. There is an induced subpath of at least 5
vertices with vi as an end. Let {vi, vi+1, vi+2, vi+3, vi+4} be this subpath. Now we
consider the possibilities for f(vi+1).

Case I: md + d + 1 ≤ f(vi+1) ≤ md + 2d.
Then 2md+2d+1 ≤ f(vi+2) ≤ 2md + 3d, d+1 ≤ f(vi+3) ≤ 2d, and md+2d+1 ≤

f(vi+4) ≤ md + 3d. Now there are 3 vertices not yet labeled so we know either vi+5

exists or the subpath {vi−3, vi−2, vi−1} exists. If vi+5 exists, then f(vi+5) must be
greater than or equal to 2md+ 3d+ 1. If the subpath {vi−3, vi−2, vi−1} exists, then
2md + d + 1 ≤ f(vi−1) ≤ 2md + 2d and md + 1 ≤ f(vi−2) ≤ md + d. This result
forces f(vi−3) to be greater than or equal to 3md + d + 1, which is greater than or
equal to 2md + 3d + 1 when m ≥ 2.

Case II: md + 2d + 1 ≤ f(vi+1) ≤ md + 3d.
Then f(vi+2) ≥ 2md + 3d + 1.

Case III: 2md + d + 1 ≤ f(vi+1) ≤ 2md + 3d.
Then md + 1 ≤ f(vi+2) ≤ md + 2d. This forces f(vi+3) ≥ 3md + d + 1, which

is greater than or equal to 2md + 3d + 1 when m ≥ 2.

Therefore, we can conclude that k(Pn) ≥ 2md + 3d + 1 when n ≥ 8, m ≥ 2, and
d ≥ 1 using L((m + 1)d, md, d) labeling. �

Theorem 8.2. For any path Pn, when m ≥ 2 and d ≥ 1
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k(Pn) =



1, if n = 1;
md + d + 1, if n = 2;
2md + d + 1, if n = 3, 4;
2md + 2d + 1, if n = 5, 6, 7;
2md + 3d + 1, if n ≥ 8;

using L((m + 1)d, md, d) labeling.

Proof. Let V = {v1, v2, . . . , vn} be the set of vertices on Pn, with vi adjacent to
vi+1 for 1 ≤ i ≤ n− 1. For each Pn we proceed with the following cases.

Case I: n = 1
This is evidently true.

Case II: n = 2
The labeling pattern {1, md + d + 1} shows that k(Pn) = md + d + 1 for n = 2.

Case III: n = 3, 4
Consider vertex vi where f(vi) = 1. If vi is of degree 2, then we know that vertices

vi+1 and vi−1 exist such that f(vi+1) ≥ md + d + 1 and f(vi−1) ≥ 2md + d + 1.
If vi is of degree 1, then we know that either vertices vi+1 and vi+2 or vi−1 and
vi−2 exist. Assume without the loss of generality, that vi+1 and vi+2 exist. Then
md + d + 1 ≤ f(vi+1) ≤ 2md + d, which forces f(vi+2) to be greater than 2md +
d + 1. Thus, the labeling pattern {md + 1, 2md + d + 1, 1, md + d + 1} shows that
k(Pn) = 2md + d + 1 for n = 3, 4.

Case IV: n = 5, 6, 7
Consider vertex vi where f(vi) = 1. Then md + d + 1 ≤ f(vi+1) ≤ 2md + 2d. If

md + d + 1 ≤ f(vi+1) ≤ 2md + d, then f(vi+2) ≥ 2md + 2d + 1. If 2md + d + 1 ≤
f(vi+1) ≤ 2md + 2d, then md + 1 ≤ f(vi+2) ≤ md + d. Now there are at least
two vertices not yet labeled. If vi+3 exists, then f(vi+3) ≥ 3md + d + 1 which is
greater than 2md + 2d + 1 when m > 1. If vi−1 exists and vi+3 does not, then
consequently vi−2 exists. Then md + d + 1 ≤ f(vi−1) ≤ md + 2d. This forces
f(vi−2) ≥ 2md + 2d + 1. Thus, k(Pn) ≥ 2md + 2d + 1. The labeling pattern
{md + 1, 2md + d + 1, 1, md + d + 1, 2md + 2d + 1, d + 1, md + 2d + 1} shows that
k(Pn) = 2md + 2d + 1 for n = 5, 6, 7. Observe that this pattern is not repeatable.

Case V: n ≥ 8
Let f be defined as f({v1, v2, v3, v4, v5, v6}) = {1, md+d+1, 2md+2d+1, d+1,

md+ 2d+ 1, 2md+ 3d+ 1} and f(vi) = f(vj) if i ≡ j (mod 6). We can conclude by
the definition of f that k(Pn) ≤ 2md + 3d + 1 for n ≥ 8. By combining this result
with the results of Lemma 8.1, we obtain k(Pn) = 2md + 3d + 1 for n ≥ 8. �

Lemma 8.3. For a cycle on 4 vertices, C4, with d ≥ 1 and m ≥ 2, k(C4) ≥
3md + d + 1 using L((m + 1)d, md, d) labeling.

Proof. Let f be a minimal L((m + 1)d, md, d) labeling for a cycle on 4 vertices, C4.
Consider vertex vi with label 1. There is an induced subpath of 4 vertices with vi

as an end vertex. Let {vi, vi+1, vi+2, vi+3} be this subpath. Note that since every
vertex is at most a distance of 2 away, every pair of vertices must have labels that
differ by at least md. Now we can consider the possibilities for f(vi+1).
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Case I: md + d + 1 ≤ f(vi+1) ≤ 2md.
Then 2md + 2d + 1 ≤ f(vi+2) ≤ 3md + d. This forces f(vi+3) ≥ 3md + 3d + 1

since vi is adjacent to vi+3 in C4.

Case II: 2md + 1 ≤ f(vi+1) ≤ 2md + d.
Then f(vi+2) ≥ 3md + d + 1.

Case III: 2md + d + 1 ≤ f(vi+1) ≤ 2md + d.
Then md + 1 ≤ f(vi+2) ≤ 2md. This forces f(vi+3) ≥ 3md + d + 1.

Therefore, we can conclude that k(C4) ≥ 3md + d + 1 when d ≥ 1 and m ≥ 2
using L((m + 1)d, md, d) labeling. �

Lemma 8.4. For a cycle on 5 vertices, C5, with d ≥ 1 and m ≥ 2, k(C5) ≥ 4md + 1
using L((m + 1)d, md, d) labeling.

Proof. Since every vertex is at most a distance of two from every other vertex
all labels must differ by at least md. So labeling C5 requires at least 4md + 1.
Therefore, k(C5) ≥ 4md + 1. �

Lemma 8.5. For a cycle on 6 vertices, C6, with d ≥ 1 and m ≥ 2, k(C6) ≥
2md + 3d + 1 using L((m + 1)d, md, d) labeling.

Proof. Let f be a minimal L((m + 1)d, md, d) labeling for a cycle with 6 vertices,
C6. Consider vertex vi with label 1. There is an induced subpath of 6 vertices with
vi as an end vertex. Let {vi, vi+1, vi+2, vi+3, vi+4, vi+5} be this subpath. Now we
can consider the possibilities for f(vi+1).

Case I: md + d + 1 ≤ f(vi+1) ≤ md + 2d.
Then 2md+2d+1 ≤ f(vi+2) ≤ 2md + 3d, d+1 ≤ f(vi+3) ≤ 2d, and md+2d+1 ≤

f(vi+4) ≤ md + 3d. This forces f(vi+5) ≥ 2md + 3d + 1.

Case II: md + 2d + 1 ≤ f(vi+1) ≤ 2md + d.
This forces f(vi+2) ≥ 2md + 3d + 1.

Case III: 2md + d + 1 ≤ f(vi+1) ≤ 2md + 3d.
Then md + 1 ≤ f(vi+2) ≤ md + 2d. This forces f(vi+3) ≥ 3md + d + 1 which is

greater than or equal to 2md + 3d + 1 when m ≥ 2.

Therefore, we can conclude that k(C6) ≥ 2md + 3d + 1 when d ≥ 1 and m ≥ 2
using L((m + 1)d, md, d) labeling. �

Lemma 8.6. For a cycle on 7 vertices, C7, with d ≥ 1 and m ≥ 2, k(C7) ≥
3md + 3d + 1 using L((m + 1)d, md, d) labeling.

Proof. Let f be a minimal L((m + 1)d, md, d) labeling for a cycle with 7 vertices,
C7. Consider vi with label 1. There is an induced subpath of 7 vertices with vi

as an end vertex. Let {vi, vi+1, vi+2, vi+3, vi+4, vi+5, vi+6} be this subpath. Note
that no value can be repeated in this subpath given that in the cycle each vertex
is at most a distance of 3 away from every other vertex. Now we can consider the
possibilities for f(vi+1).

Case I: md + d + 1 ≤ f(vi+1) ≤ 2md + d.
Then 2md + 2d + 1 ≤ f(vi+2) ≤ 3md + 3d, d + 1 ≤ f(vi+3) ≤ md + d, and

md + 2d + 1 ≤ f(vi+4) ≤ 2md + 3d. If md + 2d + 1 ≤ f(vi+4) ≤ 2md + 2d, then
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2md + 3d + 1 ≤ f(vi+5) ≤ 3md + 3d. This forces f(vi+6) ≥ 3md + 4d + 1. If
2md + 2d + 1 ≤ f(vi+4) ≤ 2md + 3d, then f(vi+5) ≥ 3md + 3d + 1.

Case II: 2md + d + 1 ≤ f(vi+1) ≤ 2md + 2d.
Then md + 1 ≤ f(vi+2) ≤ md + d or 3md + 2d + 1 ≤ f(vi+2) ≤ 3md + 3d.

If md + 1 ≤ f(vi+2) ≤ md + d, then 3md + d + 1 ≤ f(vi+3) ≤ 3md + 3d, and
2md + 1 ≤ f(vi+4) ≤ 2md + d. This forces f(vi+5) ≥ 4md + d + 1 which is greater
than or equal to 3md + 3d + 1 when m ≥ 2. Since vi is adjacent to vi+6 in the
cycle, if 3md+ 2d+ 1 ≤ f(vi+2) ≤ 3md + 3d, then md+d+ 1 ≤ f(vi+6) ≤ md + 2d
or 3md + d + 1 ≤ f(vi+6) ≤ 3md + 2d. If md + d + 1 ≤ f(vi+6) ≤ md + 2d,
then 2md + 2d + 1 ≤ f(vi+5) ≤ 3md + 2d and d + 1 ≤ f(vi+4) ≤ 2d. This forces
f(vi+3) ≥ 4md + 3d + 1. If 3md + d + 1 ≤ f(vi+6) ≤ 3md + 2d, then md + 1 ≤
f(vi+5) ≤ 2md + d. If md + 1 ≤ f(vi+5) ≤ md + 2d, then f(vi+4) ≥ 4md + 2d + 1
which is greater than 3md+3d+1 when m > 1. If md+2d+1 ≤ f(vi+5) ≤ 2md + d,
then d + 1 ≤ f(vi+4) ≤ md. This forces f(vi+3) ≥ 4md + 3d + 1.

Case III: 2md + 2d + 1 ≤ f(vi+1) ≤ 2md + 3d.
Then md + 1 ≤ f(vi+2) ≤ md + 2d. If md + 1 ≤ f(vi+2) ≤ md + d, then

3md + 2d + 1 ≤ f(vi+3) ≤ 3md + 3d and 2md + 1 ≤ f(vi+4) ≤ 2md + 2d. This
forces f(vi+5) ≥ 4md + 2d + 1 which is greater than 3md + 3d + 1 when m > 1. If
md + d + 1 ≤ f(vi+2) ≤ md + 2d, then 3md + 2d + 1 ≤ f(vi+3) ≤ 3md + 3d and
d+1 ≤ f(vi+4) ≤ 2d or 2md+d+1 ≤ f(vi+4) ≤ 2md + 2d. If d+1 ≤ f(vi+4) ≤ 2d,
then md + 2d + 1 ≤ f(vi+5) ≤ 2md + 2d. This forces f(vi+6) ≥ 3md + 3d + 1. If
2md + d + 1 ≤ f(vi+4) ≤ 2md + 2d, then md + 1 ≤ f(vi+5) ≤ md + d. This forces
f(vi+6) ≥ 3md + 3d + 1.

Case IV: 2md + 3d + 1 ≤ f(vi+1) ≤ 3md + 3d
Then md + 1 ≤ f(vi+2) ≤ 2md + 2d. If md + 1 ≤ f(vi+2) ≤ md + 2d, then

f(vi+3) ≥ 3md + 3d + 1. If md + 2d + 1 ≤ f(vi+2) ≤ 2md + 2d, then d + 1 ≤
f(vi+3) ≤ md + d, 2md+2d+1 ≤ f(vi+4) ≤ 3md + 2d, and md+d+1 ≤ f(vi+5) ≤
2md + d. This forces f(vi+6) ≥ 3md + 3d + 1.

Therefore, we can conclude that k(C7) ≥ 3md + 3d + 1 when d ≥ 1 and m ≥ 2
using L((m + 1)d, md, d) labeling. �

Lemma 8.7. For a cycle on 9 vertices, C9, with d ≥ 1, k(C9) ≥ 8d + 1 using
L(3d, 2d, d) labeling.

Proof. Let f be a minimal L(3d, 2d, d) labeling for a cycle on 9 vertices, C9. Con-
sider vertex vi with label 1. There is an induced subpath of 9 vertices with vi as
an end vertex. Let {vi, vi+1, vi+2, vi+3, vi+4, vi+5, vi+6, vi+7, vi+8} be this subpath.
Now we can consider the possibilities for f(vi+1).

Case I: 3d + 1 ≤ f(vi+1) ≤ 4d.
Then 6d+1 ≤ f(vi+2) ≤ 8d. If 6d+1 ≤ f(vi+2) ≤ 7d, then d+1 ≤ f(vi+3) ≤ 2d,

4d + 1 ≤ f(vi+4) ≤ 5d, 7d + 1 ≤ f(vi+5) ≤ 8d, 2d + 1 ≤ f(vi+6) ≤ 3d, and
5d+1 ≤ f(vi+7) ≤ 6d. This forces f(vi+8) ≥ 8d + 1. If 7d+1 ≤ f(vi+2) ≤ 8d, then
d + 1 ≤ f(vi+3) ≤ 2d and 4d + 1 ≤ f(vi+4) ≤ 6d. This forces f(vi+5) ≥ 8d + 1.

Case II: 4d + 1 ≤ f(vi+1) ≤ 5d.
Then 7d + 1 ≤ f(vi+2) ≤ 8d, d + 1 ≤ f(vi+3) ≤ 3d, and 5d + 1 ≤ f(vi+4) ≤ 6d.

This forces f(vi+5) ≥ 8d + 1.
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Case III: 5d + 1 ≤ f(vi+1) ≤ 6d.
Then 2d + 1 ≤ f(vi+2) ≤ 3d, 7d + 1 ≤ f(vi+3) ≤ 8d, and 1 ≤ f(vi+4) ≤ d

or 4d + 1 ≤ f(vi+4) ≤ 5d. If 1 ≤ f(vi+4) ≤ d, then 3d + 1 ≤ f(vi+5) ≤ 6d. If
3d + 1 ≤ f(vi+5) ≤ 4d, then 6d + 1 ≤ f(vi+6) ≤ 7d. This forces f(vi+7) ≥ 9d + 1.
If 4d + 1 ≤ f(vi+5) ≤ 5d, then f(vi+6) ≥ 8d + 1. If 5d + 1 ≤ f(vi+5) ≤ 6d, then
2d + 1 ≤ f(vi+6) ≤ 3d and 7d + 1 ≤ f(vi+7) ≤ 8d. This forces f(vi+8) ≥ 10d + 1
since vi is adjacent to vi+8. If 4d + 1 ≤ f(vi+4) ≤ 5d, then 1 ≤ f(vi+5) ≤ 2d,
6d + 1 ≤ f(vi+6) ≤ 7d, and 2d + 1 ≤ f(vi+7) ≤ 4d. Then f(vi+8) ≥ 8d + 1.

Case IV: 6d + 1 ≤ f(vi+1) ≤ 7d.
Then 2d + 1 ≤ f(vi+2) ≤ 4d. This forces f(vi+3) ≥ 8d + 1.

Case V: 7d + 1 ≤ f(vi+1) ≤ 8d.
Then 2d+1 ≤ f(vi+2) ≤ 5d. If 2d+1 ≤ f(vi+2) ≤ 3d, then 5d+1 ≤ f(vi+3) ≤ 6d,

1 ≤ f(vi+4) ≤ d, and 3d + 1 ≤ f(vi+5) ≤ 4d or 7d + 1 ≤ f(vi+5) ≤ 8d. If 3d + 1 ≤
f(vi+5) ≤ 4d, then 6d+1 ≤ f(vi+6) ≤ 8d. This forces f(vi+7) ≥ 9d + 1 since vertex
vi is adjacent to vertex vi+8. If 7d + 1 ≤ f(vi+5) ≤ 8d, then 2d + 1 ≤ f(vi+6) ≤ 5d.
If 2d+ 1 ≤ f(vi+6) ≤ 3d, then 5d+ 1 ≤ f(vi+7) ≤ 6d. This forces f(vi+8) ≤ 8d + 1.
If 3d + 1 ≤ f(vi+6) ≤ 5d, then f(vi+7) ≥ 9d + 1. If 3d + 1 ≤ f(vi+2) ≤ 4d,
then f(vi+3) ≥ 9d + 1. If 4d + 1 ≤ f(vi+2) ≤ 5d, then d + 1 ≤ f(vi+3) ≤ 2d,
6d + 1 ≤ f(vi+4) ≤ 7d, and 3d + 1 ≤ f(vi+5) ≤ 4d. This forces f(vi+6) ≥ 8d + 1.

Therefore, we can conclude that k(C9) ≥ 8d + 1 when d ≥ 1 using L(3d, 2d, d)
labeling. �

Lemma 8.8. For a cycle on 9 vertices, C9, with d ≥ 1 and m ≥ 3, k(C9) ≥
2md + 4d + 1 using L((m + 1)d, md, d) labeling.

Proof. Let f be a minimal L((m + 1)d, md, d) labeling for a cycle with 9 vertices,
C9. Consider vertex vi with label 1. There is an induced subpath of 9 with vi as
an end vertex. Let {vi, vi+1, vi+2, vi+3, vi+4, vi+5, vi+6, vi+7, vi+8} be this subpath.
Now we can consider the possibilities for f(vi+1).

Case I: md + d + 1 ≤ f(vi+1) ≤ md + 2d.
Then 2md+2d+1 ≤ f(vi+2) ≤ 2md + 4d. If 2md+2d+1 ≤ f(vi+2) ≤ 2md + 3d,

then d + 1 ≤ f(vi+3) ≤ 2d, md + 2d + 1 ≤ f(vi+4) ≤ md + 3d, 2md + 3d + 1 ≤
f(vi+5) ≤ 2md + 4d, 2d+1 ≤ f(vi+6) ≤ 3d, and md+3d+1 ≤ f(vi+7) ≤ md + 4d.
This forces f(vi+8) ≥ 2md + 4d + 1. If 2md + 3d + 1 ≤ f(vi+2) ≤ 2md + 4d,
then d + 1 ≤ f(vi+3) ≤ 2d and md + 2d + 1 ≤ f(vi+4) ≤ md + 4d. This forces
f(vi+5) ≥ 2md + 4d + 1.

Case II: md + 2d + 1 ≤ f(vi+1) ≤ md + 3d.
Then 2md+3d+1 ≤ f(vi+2) ≤ 2md + 4d, d+1 ≤ f(vi+3) ≤ 3d, and md+3d+1 ≤

f(vi+4) ≤ md + 4d. This forces f(vi+5) ≥ 2md + 4d + 1.

Case III: md + 3d + 1 ≤ f(vi+1) ≤ 2md + d.
Then f(vi+2) ≥ 2md + 4d + 1.

Case IV: 2md + d + 1 ≤ f(vi+1) ≤ 2md + 3d.
Then md + 1 ≤ f(vi+2) ≤ md + 2d. This forces f(vi+3) ≥ 3md + d + 1 which is

greater than or equal to 2md + 4d + 1 when m ≥ 3.

Case V: 2md + 3d + 1 ≤ f(vi+1) ≤ 2md + 4d.
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Then md + 1 ≤ f(vi+2) ≤ md + 3d. If md + 1 ≤ f(vi+2) ≤ md + 2d, then
f(vi+3) ≥ 3md + 3d + 1 which is greater than 2md + 4d + 1 when m > 1. If
md + 2d + 1 ≤ f(vi+2) ≤ md + 3d, then d + 1 ≤ f(vi+3) ≤ 2d, 2md + 2d + 1 ≤
f(vi+4) ≤ 2md + 3d, and md + d + 1 ≤ f(vi+5) ≤ md + 2d. This forces f(vi+6) ≥
3md + 2d + 1 which is greater than 2md + 4d + 1 when m > 2.

Therefore, we can conclude that k(C9) ≥ 2md + 4d + 1 when d ≥ 1 and m ≥ 3
using L((m + 1)d, md, d) labeling. �

Theorem 8.9. For cycle, Cn

k(Cn) =



2md + 2d + 1, if n = 3;
3md + d + 1, if n = 4;
4md + 1, if n = 5;
2md + 3d + 1, if n = 6;
3md + 3d + 1, if n = 7;
2md + 4d + 1, if n = 9;

using L((m + 1)d, md, d) labeling where d ≥ 1 and m ≥ 2.

Proof. Let n ≥ 3 and V = {v1, v2, . . . , vn} be the set of vertices Cn, with vi adjacent
to vi+1 for 1 ≤ i ≤ n− 1 and vertex v1 adjacent to vn. For Cn we proceed with the
following cases.

Case I: n = 3
The labeling pattern {1, md+d+1, 2md+2d+1} shows that k(C3) = 2md+2d+1.

Case II: n = 4
By Lemma 8.3 we know that k(C4) ≥ 3md + d + 1. The labeling pattern

{1, 2md + d + 1, md + 1, 3md + d + 1} shows that k(C4) = 3md + d + 1.

Case III: n = 5
By Lemma 8.4 we know that k(C5) ≥ 4md + 1. The labeling pattern {1, 3md +

1, md + 1, 4md + 1, 2md + 1} shows that k(C5) = 4md + 1.

Case IV: n = 6
By Lemma 8.5 we know that k(C6) ≥ 2md + 3d + 1. The labeling pattern

{1, md + d + 1, 2md + 2d + 1, d + 1, md + 2d + 1, 2md + 3d + 1} shows that k(C6) =
2md + 3d + 1.

Case V: n = 7
By Lemma 8.6 we know that k(C7) ≥ 3md + 3d + 1. The labeling pattern

{1, 2md + 2d + 1, md + d + 1, 3md + 2d + 1, d + 1, md + 2d + 1, 3md + 3d + 1} shows
that k(C7) = 3md + 3d + 1.

Case VI: n = 9
By Lemma 8.7 we know that k(C9) ≥ 8d + 1 using L(3d, 2d, d) labeling, which

is a special case of L((m + 1)d, md, d) labeling when m = 2. By Lemma 8.8 we
know that k(C9) ≥ 2md + 4d + 1 when m ≥ 3. The labeling pattern {1, md + d +
1, 2md + 2d + 1, d + 1, md + 2d + 1, 2md + 3d + 1, 2d + 1, md + 3d + 1, 2md + 4d + 1}
shows that k(C9) = 2md + 4d + 1. �
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9. L(d + 2, d + 1, d) Labeling of Paths

In this section we will find k(Pn) for all paths of length n using L(d + 2, d + 1, d)
labeling where d ≥ 2. A summary of the results in this section can be found in
Theorem 9.2.

Lemma 9.1. For a path on n vertices, Pn, with n ≥ 5 and d ≥ 2, k(Pn) ≥ 3d + 5
using L(d + 2, d + 1, d) labeling.

Proof. Let f be a minimal L(d + 2, d + 1, d) labeling for a path on n vertices, Pn.
Consider vertex vi with label 1. There is an induced subpath of at least 3 vertices
with vi as an end vertex. Let {vi, vi+1, vi+2} be this subpath. Now we can consider
the possibilities for f(vi+1).

Case I: d + 3 ≤ f(vi+1) ≤ 2d + 1.
Then 2d + 5 ≤ f(vi+2) ≤ 3d + 4. There are at least two vertices not yet labeled

so we know that either vi−1 or vi+3 exists. If vi+3 exists, then f(vi+3) ≥ 3d + 7. If
vi−1 exists, then f(vi−1) ≥ 3d + 5.

Case II: f(vi+1) = 2d + 2.
Then f(vi+2) = 3d+4. There are at least two vertices not yet labeled so we know

that either vi−1 or vi+3 exists. If vi+3 exists and vi−1 does not, then consequently
vi+4 exists. In this case f(vi+3) = d + 1 and f(vi+4) ≥ 4d + 5. If vi−1 exists, then
f(vi−1) ≥ 4d + 4, which is greater than 3d + 5 when d > 1.

Case III: f(vi+1) = 2d + 3.
Then f(vi+2) ≥ 3d + 5.

Case IV: 2d + 4 ≤ f(vi+1) ≤ 3d + 2.
Then d + 2 ≤ f(vi+2) ≤ 2d. There are at least two vertices not yet labeled so we

know that either vi−1 or vi+3 exists. If vi+3 exists, then f(vi+3) ≥ 3d + 5. If vi−1

exists, then f(vi−1) ≥ 3d + 5.

Case V: 3d + 3 ≤ f(vi+1) ≤ 3d + 4.
Then d + 2 ≤ f(vi+2) ≤ 2d + 2. There are at least two vertices not yet labeled

so we know that either vi−1 or vi+3 exists. If vi+3 exists, then f(vi+3) ≥ 4d + 4
which is greater than 3d + 5 when d > 1. If vi−1 exists and vi+3 does not, then
consequently vi−2 exists. If d+2 ≤ f(vi+2) ≤ d + 3, then 2d+2 ≤ f(vi−1) ≤ 2d + 3.
This forces f(vi−2) ≥ 4d + 3 which is greater than or equal to 3d + 5 when d ≥ 2.
If d + 4 ≤ f(vi+2) ≤ 2d + 2, then f(vi−1) ≥ 4d + 4.

Therefore, we can conclude that k(Pn) ≥ 3d + 5 when n ≥ 5 and d ≥ 2 using
L(d + 2, d + 1, d) labeling. �

Theorem 9.2. For any path, Pn, when d ≥ 2

k(Pn) =



1, if n = 1;
d + 3, if n = 2;
2d + 4, if n = 3;
3d + 3, if n = 4;
3d + 5, if n ≥ 5;

using L(d + 2, d + 1, d) labeling.
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Proof. Let V = {v1, v2, . . . , vn} be the set of vertices on Pn, with vi adjacent to
vi+1 for 1 ≤ i ≤ n− 1. For each Pn we proceed with the following cases.

Case I: n = 1.
This is evidently true.

Case II: n = 2.
The labeling pattern {1, d + 3} shows that k(P2) = d + 3.

Case III: n = 3.
Consider vertex vi where f(vi) = 1. If vi is of degree 2, then we know that

vertices vi+1 and vi−1 exist such that f(vi+1) ≥ d + 3 and f(vi−1) ≥ 2d + 4. If
vi is of degree 1, then we know that either vertices vi+1 and vi+2 or vi−1 and
vi−2 exist. Assume without the loss of generality, that vi+1 and vi+2 exist. Then
d+3 ≤ f(vi+1) ≤ 2d + 3, which forces f(vi+2) ≥ 2d + 5. Thus, the labeling pattern
{2d + 4, 1, d + 3} shows that k(P3) = 2d + 4.

Case IV: n = 4
Assume that k(P4) = 3d + 2. Consider vertex vi where f(vi) = 3d + 2. If vi

is of degree 1, then we know that the either vertices vi+1, vi+2, and vi+3 or vi−1,
vi−2, and vi−3 exist. Assume without the loss of generality, that vi+1, vi+2, and
vi+3 exist. Then, given the labeling restrictions in regards to only f(vi) = 3d + 2,
1 ≤ f(vi+1) ≤ 2d, 1 ≤ f(vi+2) ≤ 2d + 1, and 1 ≤ f(vi+3) ≤ 2d + 2. However, we
know that k(P3) = 2d + 4. Therefore, a path of three vertices requires a label of
at least 2d + 4, which in turn leads to a contradiction. Thus k(P4) 6= 3d + 2 if the
vertex labeled 3d + 2 is of degree 1.

Now consider the case where the vertex labeled 3d + 2 is of degree 2. Assume
without the loss of generality, that v2 is labeled 3d + 2. We know that the label of
1 must be present on our graph. If vertex v1 is labeled 1, then d + 2 ≤ f(v3) ≤ 2d.
This forces f(v4) ≥ 4d + 3. If f(v3) = 1, then d + 3 ≤ f(v4) ≤ 2d + 1. This forces
f(v1) ≥ 4d + 4. If f(v4) = 1, then d + 1 ≤ f(v1) ≤ 2d. This forces f(v3) ≥ 4d + 4.
Thus k(P4) 6= 3d + 2 if the vertex labeled 3d + 2 is of degree 2.

Therefore, k(C4) ≥ 3d + 3. The labeling pattern {2d + 2, 1, 3d + 3, d + 2} shows
that k(P4) = 3d + 3.

Case V: n ≥ 5
Let f be defined as f({v1, v2, v3, v4}) = {1, 2d + 4, d + 2, 3d + 5} and f(vi) =

f(vj) if i ≡ j (mod 4). Therefore, we can conclude by the definition of f that
k(Pn) ≤ 3d + 5 for n ≥ 5. By combining this result with the results of Lemma 9.1,
we obtain k(Pn) = 3d + 5 for n ≥ 5. �

10. L(d, j, s) Labeling of Complete and Complete Bipartite Graphs

In this section we will find the L(d, j, s) labeling number for complete graphs
and complete bipartite graphs.

Theorem 10.1. For any complete graph on n vertices, k(Kn) = dn− d + 1.

Proof. In a complete graph every vertex is adjacent to every other vertex. Thus all
labels must differ by d or more. We know that 1 must be a labeling because it is a
minimum L(d, j, s) labeling. Thus, k(Kn) = 1 + d(n− 1) = dn− d + 1. �
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Theorem 10.2. For any complete bipartite graph, k(Km,n) = 1 + j(m− 1) + d +
j(n− 1).

Proof. Let Km,n be a complete bipartite graph with partition sets A and B. Each
vertex in set A is a distance of two from every other vertex in set A. The same is
true for any two vertices in set B. So in a minimal L(d, j, s) labeling of graph Km,n

each vertex label in partition set A must differ by j or more and each vertex label in
partition set B must differ by j or more. Also, there must be a difference of at least
d between the largest labeling in one partition and the smallest labeling in the other
partition. Therefore, we have the formula k(Km,n) = 1+j(m−1)+d+j(n−1). �

11. L(d, j, s) Surjective Labeling of Paths

Using the computer program described in Section 3, we compiled Table 4. The
table shows the lengths of the shortest path that can be surjectively labeled by d
value, j value, and s value. By careful observation, one can notice that there are
patterns that appear to be forming for the changing values of d, j and s. Interesting
trends appear in bold faced text. The explanations of said patterns will be left to
further research or study of the material. Theorem 11.1 shows that if a path of
length n can be surjectively labeled with a give d, j and s then any longer path can
also be surjectively labeled.

Theorem 11.1. If there exists a surjective L(d, j, s) labeling of path Pk for some
positive integer k, then path Pn, with n > k, can also be surjectively labeled.

Proof. Assume the path Pn−1 can be surjectively labeled. Call the vertex labeled
n − d in Pn−1, vi. Then if vertices vi−1 and vi+1 exist, they must be labeled less
than n − 2d. Also, if vertices vi−2 and vi+2 exist, they must be labeled less than
n − 3d or greater than n − d + j. If vertex vi is of degree 1 in Pn−1, then append
an additional vertex to vi and label this new vertex n. If vertex vi is of degree 2
in Pn−1 and vi+2 is not labeled n − 1, then add an additional vertex between vi

and vi+1. Label this new vertex n. This creates a surjective labeling of Pn. If
vertex vi is of degree 2 in Pn−1 and vi+2 is labeled n − 1, then add an additional
vertex between vi and vi−1. Label this new vertex n. This also creates a surjective
labeling of Pn. �
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s = 1 s = 2 s = 3 s = 4 s = 5 s = 6
d j s n d j s n d j s n d j s n d j s n d j s n
3 2 1 7
4 2 1 10
5 2 1 11
6 2 1 14

j = 2 7 2 1 15
8 2 1 18
9 2 1 19
10 2 1 22
11 2 1 23
12 2 1
13 2 1 29

4 3 1 10 4 3 2 12
5 3 1 12 5 3 2 12
6 3 1 15 6 3 2 15

j = 3 7 3 1 16 7 3 2 16
8 3 1 18 8 3 2 18
9 3 1 21 9 3 2 21
10 3 1 22 10 3 2 22
11 3 1 24 11 3 2 24

5 4 1 13 5 4 2 16 5 4 3 17
6 4 1 16 6 4 2 16 6 4 3 17

j = 4 7 4 1 17 7 4 2 17 7 4 3 17
8 4 1 20 8 4 2 20 8 4 3 20
9 4 1 21 9 4 2 21 9 4 3 21
10 4 1 24 10 4 2 24 10 4 3 24

11 4 2 25 11 4 3 25

6 5 1 16 6 5 2 18 6 5 3 20 6 5 4 22
7 5 1 18 7 5 2 18 7 5 3 20 7 5 4 22

j = 5 8 5 1 20 8 5 2 20 8 5 3 20 8 5 4 22
9 5 1 22 9 5 2 22 9 5 3 22 9 5 4 22
10 5 1 25 10 5 2 25 10 5 3 25 10 5 4 25
11 5 1 26 11 5 2 26 11 5 3 26 11 5 4 26

7 6 1 19 7 6 2 22 7 6 3 23 7 6 4 24 7 6 5 25
j = 6 8 6 1 22 8 6 2 22 8 6 3 25 8 6 4 26 8 6 5 27

9 6 1 24 9 6 2 24 9 6 3 25 9 6 4 26 9 6 5 27
10 6 1 26 10 6 2 26 10 6 3 26 10 6 4 26 10 6 5 27
11 6 1 27 11 6 2 27 11 6 3 27 11 6 4 27 11 6 5 27
12 6 1 30 12 6 2 30 12 6 3 30 12 6 4 30 12 6 5 30
13 6 1 31 13 6 2 31 13 6 3 31 13 6 4 31 13 6 5 31
14 7 1 34 14 7 2 14 7 3 14 7 4 14 7 5 34

8 7 1 22 8 7 2 24 8 7 3 26 8 7 4 28 8 7 5 28 8 7 6 30
j = 7 9 7 1 24 9 7 2 24 9 7 3 26 9 7 4 28 9 7 5 30 9 7 6 32

10 7 1 26 10 7 2 26 10 7 3 26 10 7 4 28 10 7 5 30 10 7 6 32
11 7 1 28 11 7 2 28 11 7 3 28 11 7 4 28 11 7 5 30 11 7 6 32
12 7 1 30 12 7 2 30 12 7 3 30 12 7 4 30 12 7 5 30 12 7 6 32
13 7 1 32 13 7 2 32 13 7 3 32 13 7 4 32 13 7 5 32 13 7 6 32
14 7 1 14 7 2 14 7 3 14 7 4 14 7 5 14 7 6 35

Table 4. This table shows the length of the shortest path, Pn that
can be surjectively labeled for the various parameters of L(d, j, s)
labeling.
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