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Josephus Problem Under Various Moduli.

March 4, 2009

Toshiyuki Yamauchi, Takahumi Inoue and Soh Tatsumi

Kwansei Gakuin High School and Kwansei Gakuin University, Nishinomiya City JAPAN
e-mail: miyadera1272000@yahoo.co.jp

Abstract

We are going to study the Josephus Problem and its variants under various
moduli in this article. Let n be a natural number. We put n numbers in a
circle, and we are going to remove every second number. Let J(n) be the
last number that remains. This is the traditional Josephus Problem. The
list {J(n), n = 1,2,...,20 } is {1, 1, 3, 1, 3, 5, 7, 1, 3, 5, 7, 9, 11, 13, 15, 1, 3,
5, 7, 9}. When this sequence is reduced mod 4, then we have {1, 1, 3, 1, 3,
1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1 }.
Next we are going to study a variant of the Josephus Problem in which two
numbers are to be eliminated at the same time, and let J2(n) be the last
number that remains. If the sequence {J2(2n), n = 1, 2, ...63 } is reduced
mod 2, then we have {1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 }. The pattern that exists in the sequence is
obvious if you look at the sequence carefully.
In this way we get interesting patterns of sequences for the Josephus Problem
and its variants under various moduli. The authors were the first people who
began to study these problems under various moduli. The authors have
discovered many interesting facts, and they are going to present them in
this article. They have also studied the graphs that are made from these
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problems. They are going to present a program of Java applet. With this
applet you can study variants of the Josephus Problems.

1 Introduction.

In this article we are going to study the Josephus Problem and its variants,
and we are going to study the sequences and graphs produced by these vari-
ants.
The authors hope that this article will be interesting for many people, be-
cause this deals with the Josephus Problem under various moduli for the first
time in the history of the Josephus Problem.
There are some mathematicians who have studied the variants of the Jose-
phus Problem. See [8]. Our teacher Dr.Miyadera and his students have also
studied the Josephus Problem and its variants, and they have talked at the
conference [7]. They have published their result in [1]. The authors have
used some of their results, and they have studied the Josephus Problem for
more than 3 years. The authors have presented our discovery at the Research
Institute of Mathematical Science of Kyoto Universty. See [5] and [6]. They
have published the resulf of the research in [4]. Their article on the variant
of the Josephus Problem is going to be published in [9].
The authors hope that mathematics used in this article is easy enough for
freshmen in college to understand, but some of the proofs are a little bit
too complicated to read. If you do not like these long proofs, you can skip
the proof and read examples. You can find many interesting graphs and
sequences in these example. The authors presented a Mathematica program
and Java program to calculate variants of the Josephus Problem in this ar-
ticle. In Section 2 the authors studied old problems with a new perspective,
and in Section 3,4 they studied new problems.

2 the traditional Josephus problem.

First we are going to study the traditional Josephus Problem. This problem
was originated from an ancient story.

Example 2.1. According to a legend, Josephus was the leader of 40 Jewish
rebels trapped by the Romans. His subordinates preferred suicide to surrender,
so they decided to form a circle and eliminate every third person until no
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one was left. Josephus wanted to live, so he calculated where to stand and
managed to be the last person. He surrendered to the Romans, and he became
a famous historian. Where did Josephus stand?

The number of persons involved in this problem is 40 + 1 = 41. By the rule
of this problem they eliminate 3rd, 6th, 9th, 12th, 15th, 18th, ....
In this way they eliminate {3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 1,
5, 10, 14, 19, 23, 28, 32, 37, 41, 7, 13, 20, 26, 34, 40, 8, 17, 29, 38, 11,
25, 2, 22, 4, 35, 16 }, and the position of the person that remains is 31.
Therefore Josephus must have been at the position of 31.

We generalize the problem presented in this story, and make a definition
of the traditional Josephus Problem. We are going to use numbers instead
of persons in the definition.

Definition 2.1. Let n and r be natural numbers. We put n numbers in a
circle. We start with the 1st number removing every rth number.
We denote by J(n, r) the last number that remains.

When r = 2, the Josephus Problem has a very simple formula. We denote
J(n, 2) by J(n).

Theorem 2.1. J(2m + k) = 2k + 1 (m ≥ 0 and 0 ≤ k < 2m).

proof. This is a well known formula. See [2].

By Theorem 2.1 we can calculate J(n) for any natural number n.

Example 2.2. The graph of the list {J(n) , n = 1, 2, 3, ..., 100}. The
horizontal coordinate is for the number of numbers (or people in the original
Josephus Problem) involved in the game, and the vertical coordinate is for
the number that remains when the game is over.
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Graph 2.1. 20 40 60 80 100
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As you can see, Graph 2.1 is very simple.

Example 2.3. The list {J(n), n = 1, 2, ...64} = {1, 1, 3, 1, 3, 5, 7, 1, 3,
5, 7, 9, 11, 13, 15, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 1 }.
These numbers are odd numbers, but if this sequence is reduced mod 4, then
we got the following sequence. {1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3,
1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3,
1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1 }.
This sequence has a very simple pattern.

We can explain the pattern in Example 2.3 by Theorem 2.2.

Theorem 2.2. J(1) = 1 and for n > 1

J(n) =

{
1 (mod 4), if n is even.
3 (mod 4), if n is odd.

proof. This is direct from Theorem 2.1.

Next we are going to study J(n, 3). We denote this by J1(n). In this
Josephus Problem we remove every third numbers. We need some recursive
relations to study this problem.

Theorem 2.3. J1(n) has the following recursive relations.
J1(1) = 1, J1(2) = 2.

(1) J1(3m) = J1(2m) + ⌊J2(2m) − 1

2
⌋.

4



(2) J1(3m+1) =

{
3m + 1, (J1(2m + 1) = 1).

J1(2m + 1) + ⌊J1(2m+1)
2

⌋ − 2, (J1(2m + 1) > 1).

(3) J1(3m+2) = J1(2m+1)+⌊J1(2m + 1)

2
⌋+1.

In particular J1(3m + 2) = J1(3m + 1) + 3 when J1(2m + 1) > 1.

proof. It is clear from the Definition of the Josephus Problem that J1(1) = 1
and J1(2) = 2.
[1] First we are going to prove (1). We suppose that there are 3m numbers.
We remove 3, 6, 9, ...3m-3, 3m, then 2m numbers remain. See Graph 2.2.

Graph 2.2.
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The value of J1(3m) depends on the value of J1(2m).
If J1(2m) = 1,2,3,4,5,...2m, then J1(3m) = 1,2,4,5,7,...3m-1. We can make
a recursive relation by comparing the values of J1(3m) and J1(2m) in this
way. Therefore we can prove (1).
[2] We are going to prove (2). We suppose that there are 3m + 1 numbers.
We remove 3, 6, 9, ...3m-3, 3m, then 2m + 1 numbers remain. See Graph
2.3.
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Graph 2.3.
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The value of J1(3m + 1) depends on the value of J1(2m + 1).
The process of eliminating numbers starts with 3m+1, and hence if J1(2m+
1) = 1,2,3,4,5,...2m+1, then J1(3m + 1) = 3m+1, 1,2,4,5,7,...3m-1. There-
fore we can prove (2).
[3] We are going to prove (3). We suppose that there are 3m + 2 numbers.
We remove 3, 6, 9, ...3m-3, 3m,1, then 2m + 1 numbers remain. See Graph
2.4.

Graph 2.4.
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The value of J1(3m + 2) depends on the value of J1(2m + 1).
If J1(2m + 1) = 1,2,3,4,5,...2m+1, then J1(3m + 2) = 2,4,5,7,8...3m+2.
Therefore we can prove (3).

By using recursive relations in Theorem 2.3, we can calculate the value
of J1(n).

Example 2.4. The graph of the list {J1(n) , n = 1, 2, 3, ..., 200}. This
graph is very similar to Graph 2.1
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Example 2.5. [1] The list {J1(n), n = 1, 2, ...69} = {1, 2, 2, 1, 4, 1, 4, 7,
1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 17, 20, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 1,
4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 2, 5, 8, 11, 14, 17,
20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68 }.
[2] If this sequence is reduced mod 3, then we got the following sequence. {1,
2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }.
This sequence has a very interesting pattern.

3 A Josephus Problem with two processes of

elimination.

In the traditional Josephus Problem they eliminate one by one, in this variant
two persons are to be eliminated at the same time.

Let’s begin by an example.

Example 3.1. Suppose that there are 14 persons. The Romans are coming
soon, and they do not have enough time. Therefore they are going to kill every
second person, but two at the same time. The first process of elimination
starts with the 1st person, and the second process elimination starts with
the 8th person. Please see Graph 3.1. Numbers enclosed in a circle are to
be eliminated by the first process and numbers enclosed in a rectangle are
by the second. We suppose that the first process comes first at every stage.
Therefore they are going to eliminate 2,9,4,11,6,13,8,1,12,5,3,10,14, and 7
remains.
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Graph 3.1.
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We are going to use numbers instead of persons in the definition.

Definition 3.1. Let m and k be natural numbers. When there are (2m)-
numbers, the first process of elimination starts with the 1st number, and the
kth, (2k)th, (3k)th number, ... are to be eliminated. The second with the
(m + 1)th number, and the (m + k)th, (m + 2k)th, (m + 3k)th number, ...
are to be eliminated. We suppose that the first process comes first and the
second process second at every stage. We denote the number that remains by
J2(2m, k).

Example 3.1 is the case of k = 2. We are going to study J(n, 2). We
denote by J2(n, 2) by J2(n). By Definition 3.1 we study J(n) for an even
number n.

Theorem 3.1. The function J2(n) has the following simple recurrence rela-
tions.

(1) J2(4m + 2) =

{
2J2(2m) + 2m + 2, (1 ≤ J2(2m) ≤ m).
2J2(2m) − 2m + 1, (m < J2(2m) ≤ 2m).

(2) J2(4m) =

{
2J2(2m) + 2m − 1, (1 ≤ J2(2m) ≤ m).
2J2(2m) − 2m − 1, (m < J2(2m) ≤ 2m).

proof. (1) First we are going to prove (1) of this theorem. Suppose that we
have (4m + 2) numbers. The first process starts with the first number and
the second process starts with (2m + 2)th number. After (m + 1) steps for
each process we eliminate (2m + 2) numbers, and 2m numbers remain. See
the following Graph 3.3.
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Graph 3.2.
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Now we have the process of elimination again with 2m numbers. The first
process starts with (2m + 4)th number and the second process starts with the
3rd number

If J2(2m) = k =1, 2, 3, ... , m, then J2(4m + 2) = 2m + 4, 2m + 6, ...
, (4m + 2) respectively. By comparing the values of J2(2m) and J2(4m + 2)
we can make a recursive relation, and hence J2(4m + 2) = 2k + 2m + 2 =
2J2(2m) + 2m + 2. If J2(2m) = k = m + 1,m + 2, ..., 2m, then J2(4m + 2)
= 3, 5, ..., (2m + 1) respectively. Therefore J2(4m + 2) = 2k − 2m + 1 =
2J2(2m) − 2m + 1.
(2) Next we are going to prove (2) of this theorem. Suppose that we have 4m
numbers. The first process starts with the first number and the second process
starts with (2m + 1)th number. After m steps for each process we eliminate
2m numbers, and 2m numbers remain. See the following Graph 3.3.

Graph 3.3.
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Now we have the process of elimination again with 2m numbers. The first
process starts with (2m + 1)th number and the second process starts with the
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1st number. If J2(2m) = k = 1, 2, 3, ...,m, then J2(4m) = 2m + 1, 2m +
3, ..., (4m − 1)th number respectively. Therefore J2(4m) = 2k + 2m − 1 =
2J2(2m) + 2m − 1. If J2(2m) = k = m + 1,m + 2, ..., 2m, then J2(4m) =
1, 3, ..., (2m − 1)th number respectively. Therefore J2(4m) = 2k − 2m − 1 =
2J2(2m) − 2m − 1.

Theorem 3.2. For any non negative integer h we have the following closed
forms for J2(n).

(1) J2(2(22h + s)) = 2s + 1 (0 ≤ s < 22h).

(2) J2(2(22h+1 + s)) = 22h+1 + 3s + 1 (0 ≤ s < 22h+1).

proof. We are going to prove by mathematical induction.
We suppose that (1) and (2) of this theorem is valid for h ≤ t, and we are
going to prove (1) and (2) for h = t + 1.
[1] First we are going to prove (1) for h = t+1 and any odd number s = 2k+1
with the condition k ≥ 0 and 2k + 1 < 22(t+1).
Since 2k + 1 < 22(t+1), we have k < 22t+1. Therefore by the assumption of
mathematical induction for (2) of this theorem we have

J2(2(22t+1 + k)) = 22t+1 + 3k + 1. (3.1)

By (3.1) we have J2(2(22t+1 + k)) > 22t+1 + k, and hence by the second part
of (1) of Theorem 3.1

J2(2(22(t+1) + 2k + 1)) = 2J2(2(22t+1 + k)) − 2(22t+1 + k) + 1. (3.2)

By (3.2) and (3.1) we have

J2(2(22(t+1) + s))

= J2(2(22(t+1) + 2k + 1)) = 2J2(2(22t+1 + k)) − 2(22t+1 + k) + 1

= 2(22t+1 + 3k + 1) − 2(22t+1 + k) + 1

= 4k + 3 = 2(2k + 1) + 1 = 2s + 1.

Therefore we have proved (1) of this theorem for h = t+1 and any odd number
s.
[2] We are going to prove (1) for h = t+1 and any even number s = 2k with
the condition that k ≥ 0 and 2k < 22(t+1).
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Since k < 22t+1, by using the assumption of mathematical induction for (2)
of this theorem we have

J2(2(22t+1 + k)) = 22t+1 + 3k + 1. (3.3)

By (3.3) we have J2(2(22t+1 + k)) > 22t+1 + k, and hence by the second part
of (2) of Theorem 3.1 we have

J2(2(22(t+1) + 2k)) = 2J2(2(22t+1 + k)) − 2(22t+1 + k) − 1. (3.4)

By (3.4) and (3.3)

J2(2(22(t+1) + s))

= J2(2(22(t+1) + 2k)) = 2J2(2(22t+1 + k)) − 2(22t+1 + k) − 1

= 2(22t+1 + 3k + 1) − 2(22t+1 + k) − 1

= 4k + 1 = 2(2k) + 1 = 2s + 1.

Therefore we have proved (1) of this theorem for h = t+1 and any even
number s = 2k.
[3] We are going to prove (2) for h = t + 1 and any odd number s = 2k + 1
with the condition that k ≥ 0 and 2k + 1 < 22(t+1)+1.
Since k < 22(t+1), by [1] and [2] of the proof of this theorem we have

J2(2(22(t+1) + k)) = 2k + 1. (3.5)

By (3.5) and the fact that k < 22(t+1) we have J2(2(22(t+1) + k)) = 2k + 1 ≤
22(t+1) + k, and hence by the first part of (1) of Theorem 3.1

J2(2(22(t+1)+1 + 2k + 1)) = 2J2(2(22(t+1) + k)) + 2(22(t+1) + k) + 2. (3.6)

By (3.6) and (3.5)

J2(2(22(t+1)+1 + s))

= J2(2(22(t+1)+1 + 2k + 1)) = 2J2(2(22(t+1) + k)) + 2(22(t+1) + k) + 2

= 2(2k + 1) + 2(22(t+1) + k) + 2

= 22(t+1)+1 + 6k + 4 = 22(t+1)+1 + 3s + 1.
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Therefore we have proved (2) of this theorem for h = t+1 and any odd number
s.
[4] We are going to prove (2) for h = t+1 and any even number s = 2k with
the condition that k ≥ 0 and 2k < 22(t+1)+1.
Since k < 22(t+1), by [1] and [2] of the proof of this theorem we have

J2(2(22(t+1) + k)) = 2k + 1. (3.7)

By (3.7) and the fact that k < 22(t+1) we have J2(2(22(t+1) + k)) = 2k + 1 ≤
22(t+1) + k, and by the first part of (2) of Theorem 3.1

J2(2(22(t+1)+1 + 2k)) = 2J2(2(22(t+1) + k)) + 2(22(t+1) + k) − 1. (3.8)

By (3.8) and (3.7)

J2(2(22(t+1)+1 + s))

= J2(2(22(t+1)+1 + 2k)) = 2J2(2(22(t+1) + k)) + 2(22(t+1) + k) − 1

= 2(2k + 1) + 22(t+1)+1 + 2k − 1

= 22(t+1)+1 + 6k + 1 = 22(t+1)+1 + 3s + 1.

Therefore we have proved (2) of this theorem for h = t+1 and any even
number s.

The graph produced by J2(n) is quite interesting.

Example 3.2. The graph of the list {J2(n) , n = 1, 2, 3, ..., 200}. The
horizontal coordinate is for the number of numbers (or people in the original
Josephus Problem) involved in the game, and the vertical coordinate is for
the number that remains when the game is over. This graph is very similar
to Graph 2.1 and Graph 2.5, but there are two kinds of slopes in this graph.

Graph 3.4. 50 100 150

50

100
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200
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Example 3.3. The list {J2(2n), n = 1, 2, ...63} = {1, 3, 6, 1, 3, 5, 7, 9,
12, 15, 18, 21, 24, 27, 30, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27,
29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81,
84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126 }, and
if this sequence is reduced mod 2, then we have {1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 }.
If we divide this sequence into subsequences, the pattern of the sequence be-
comes obvious.
{1}
{1,0}
{1, 1, 1, 1}
{1, 0, 1, 0, 1, 0, 1, 0}
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0 }
We are going to prove the existence of the pattern mathematically.

Theorem 3.3. For any non negative integer h we have the following formula
for J2(n).

(1) J2(2(22h + s)) = 1 (mod 2) (0 ≤ s < 22h).

(2) J2(2(22h+1+s)) =

{
1 (mod 2), (0 ≤ s < 22h+1 and s is even.)
0 (mod 2), (0 ≤ s < 22h+1 and s is odd.)

proof. This theorem is direct from Theorem 3.2.

4 Some Interesting Facts about the Josephus

Problem in both Direction Under Various

Moduli.

We are going to study another variant of the Josephus Problem.

Definition 4.1. In this variant of the Josephus Problem two numbers are
to be eliminated at the same time, but two processes of elimination go for

13



different directions. Let n and k be natural numbers such that k ≥ 2. Suppose
that there are n numbers. Then the first process of elimination starts with the
1 st number and the kth, (2k)th, (3k)th number, ... are to be eliminated. The
second process starts with the nth number, and the (n−k+1)th, (n−2k+1)th,
(n − 3k + 1)th number, ... are to be eliminated. We suppose that the first
process comes first and the second process second at every stage. We denote
the position of the survivor by JB(n, k).

Here we are going to study an example of Definition 4.1.

Example 4.1. Suppose that there are n = 14 numbers and k = 2. Then
the 2nd, 4th, 6th number will be eliminated by the first process. Similarly the
13th, 11th, 9th number will be eliminated by the second process. Then we
have Graph 4.1. Here we covered eliminated numbers by the first process and
the second process with gray color disks and gray color rectangles respectively.

Now two directions are going to overlap. The first process will eliminate
the 8, 12 and the second process will eliminate 5, 1. See Graph 4.2.

After this the first process will eliminate 3, 14, and the second process will
eliminate 10. The number that remains is 7.

Graph 4.1.
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1

Graph 4.2.
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Next we are going to study B(n, 2). We denote JB(n, 2) by JB(n). The
function JB(n) has very interesting properties. It has fractal-like graphs.
The sequence {JB(n), n = 1, 2, ...} has a remarkable property when divided
by 2.

Example 4.2. Graph 4.3 is the graph of the list {JB(n) , n = 2, 3, ..., 256}.
The horizontal coordinate is for the number of numbers involved in the game,
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and the vertical coordinate is for the number that remains when the game is
over. For example by JB(256) = 214 we have the point (256, 214) in the
graph.
Graph 4.4 is the graph of the list {JB(n) , n = 2, 3, ..., 1024}.
If we compare these graphs, we can find the the self-similarity.

Graph 4.3. 50 100 150 200 250

50

100

150

200

Graph 4.4. 200 400 600 800 1000

200

400

600

800

As to the research of self-similarity by the authors see [9].
There is a very interesting fact about the function JB(n).

Example 4.3. The list of the sequence {JB(n), n = 1, 2, 3, ..., 63}is
{1, 1, 3, 4, 3, 6, 1, 3, 9, 1, 11, 5, 11, 7, 9, 14, 5, 12, 7, 12, 11, 14, 9, 22, 5, 20, 7, 28, 3, 30,
1, 11, 25, 9, 27, 5, 35, 7, 33, 3, 41, 1, 43, 5, 43, 7, 41, 19, 33, 17, 35, 13, 43, 15, 41, 27,
33, 25, 35, 29, 35, 31}.
We denote this sequence JB(n) modulo 2 by JB( mod 2).
Then JB( mod 2) is
{1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,
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1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

We can find a very beautiful pattern if we divide it into subsequences.
{1},
{1, 1},
{1, 0, 1, 0},
{1, 1, 1, 1, 1, 1, 1, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.
We have presented this pattern in [9], and we have proved this mathematically
using recursive relations. See [10].

Example 4.4. Similarly the list of the sequence {JB(n), n = 1, 2, 3, ..., 126}is
{1, 1, 3, 4, 3, 6, 1, 3, 9, 1, 11, 5, 11, 7, 9, 14, 5, 12, 7, 12, 11, 14, 9, 22,
5, 20, 7, 28, 3, 30, 1, 11, 25, 9, 27, 5, 35, 7, 33, 3, 41, 1, 43, 5, 43, 7, 41,
19, 33, 17, 35, 13, 43, 15, 41, 27, 33, 25, 35, 29, 35, 31, 33, 54, 13, 52, 15,
52, 19, 54, 17, 46, 29, 44, 31, 52, 27, 54, 25, 46, 37, 44, 39, 44, 43, 46, 41,
54, 37, 52, 39, 60, 35, 62, 33, 86, 13, 84, 15, 84, 19, 86, 17, 78, 29, 76, 31,
84, 27, 86, 25, 110, 5, 108, 7, 108, 11, 110, 9, 118, 5, 116, 7, 124, 3, 126 },
and if this sequence is reduced modulo 4 , then we get
{1, 3, 0, 3, 2, 1, 3, 1, 1, 3, 1, 3, 3, 1, 2, 1, 0, 3, 0, 3, 2, 1, 2, 1, 0, 3, 0, 3,
2, 1, 3, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 3, 1,
1, 3, 1, 3, 3, 1, 2, 1, 0, 3, 0, 3, 2, 1, 2, 1, 0, 3, 0, 3, 2, 1, 2, 1, 0, 3, 0, 3,
2, 1, 2, 1, 0, 3, 0, 3, 2, 1, 2, 1, 0, 3, 0, 3, 2, 1, 2, 1, 0, 3, 0, 3, 2, 1, 2, 1,
0, 3, 0, 3, 2, 1, 2, 1, 0, 3, 0, 3, 2, 1}.
We can find a very beautiful pattern if we divide them into subsequences.
{1, 1, 3 }
{0, 3, 2, 1 }
{3, 1, 1, 3, 1, 3, 3, 1 }
{2, 1, 0, 3, 0, 3, 2, 1 } {2, 1, 0, 3, 0, 3, 2, 1 }
{3, 1, 1, 3, 1, 3, 3, 1 } {3, 1, 1, 3, 1, 3, 3, 1 } {3, 1, 1, 3, 1,3, 3, 1}
{3, 1, 1, 3, 1, 3, 3, 1}
{2, 1, 0, 3, 0, 3, 2, 1 } {2, 1, 0, 3, 0, 3, 2, 1 } {2, 1, 0, 3, 0,3, 2, 1 }
{2, 1, 0, 3, 0, 3, 2, 1} {2, 1, 0,3, 0, 3, 2, 1} {2, 1, 0, 3, 0, 3, 2, 1 }
{2, 1, 0, 3, 0, 3, 2, 1 } {2, 1, 0, 3, 0, 3, 2, 1 }

If we ignore the first 7 terms, then the remaining terms of the sequence
show a very simple pattern.
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5 Computer Programs for the Josephus Prob-

lem and its Variants.

Here we present a Mathematica program and a Java program.

Example 5.1. This Mathematica function jose[m, k] returns the last number
that remains in the Josephus Problem in both direction with m numbers and
each process eliminates every k th number.

jose[m_, k_] := Block[{t, p, q, u, v, w}, w = k - 1;

t = Range[m];

p = t;

q = t;

Do[p = RotateLeft[p, w];

u = First[p];

p = Rest[p];

q = Drop[q, Position[q, u][[1]]];

If[Length[p] == 1, Break[],];

q = RotateRight[q, w];

v = Last[q];

q = Drop[q, -1];

p = Drop[p, Position[p, v][[1]]];

If[Length[q] == 1, Break[],], {n, 1, Ceiling[m/2]}];p[[1]]];

Example 5.2. This is a Java applet to show how we remove numbers in the
Josephus Problem in both direction.

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class crossjose_x_ver2 extends Applet

implements ActionListener

{

double S,C,S2,C2;

Button b_con=new Button("NEXT");//Here we make a button.

Button b_uncon=new Button("BACK");//Here we make a button.

int L; //the number of numbers (players) we use in the game.

int R; //We remove every Rth number.

int k=0; //the number of numbers (players) we have removed.
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private TextField box=new TextField(1);//textfield

private Label moji=new Label("　 PEOPLE　");//Label

private TextField box2=new TextField(1);//textfield

private Label moji2=new Label("　 TH　");//Label

private Button ok=new Button("OK");//Label

//Here we make buttons and labels.

public void init()

{

add(b_con); add(b_uncon);

b_con.addActionListener(this);

b_uncon.addActionListener(this);

resize(750,650);

add(box);

add(moji);

add(box2);

add(moji2);

add(ok);

ok.addActionListener(this);

}

//Here we define the function of buttons.

public void actionPerformed(ActionEvent e)

{

//We get a number from the text field.

String t=box.getText();

String t2=box2.getText();

//Once the button is pushed,

String s=e.getActionCommand();

//move one step forward.

if(s=="NEXT")

{

if(k<L-1) ++k;/*When we finish the game,

we have no more step forward.*/

repaint();

}
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//go back one step.

else if(s=="BACK")

{

if(1<=k) --k;/

*When we have not started the game,

we cannot go back.*/

repaint();

}

else if(s=="OK")

{

//We get the number.

L=Integer.parseInt(t);

R=Integer.parseInt(t2);

R=R-1;

if(L>20) L=20; //We restrict the number under 20.

if(L<=R) R=1; /*We cannot jump more than

the number of the numbers (players).*/

if(R<1) R=1;

k=0; //To reset the previous moves.

repaint();

}

}

public void paint(Graphics g)

{

for(int i=1;i<=L;i++)

{

//We display numbers.

S=Math.sin(2*Math.PI/L*i)*250;

C=Math.cos(2*Math.PI/L*i)*250;

String M=Integer.toString(i);

g.setFont(new Font("Serif", Font.BOLD, 50));

g.drawString(M,350+(int)S, 350+(int)C);

}

int[] p;

p=new int[L];//We prepare array.

/*We put 1 for every number. If we remove it, we put 0.*/

for(int s=0;s<=L-1;s++)
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{

p[s]=1;

}

//This is the main problem of Josephus Problem.

int Ac1=0; //This is for the first process to jump.

int Ac2; //This is for the first process to remove.

int Bc1=L-1;//This is for the second process to jump.

int Bc2;//This is for the second process to remove.

for(int F=1;F<=k;F++)

{

int con=0;

//We use this variable to jump the given times.

//First process A jumps to the next number.

if(F%2==1)

{

//jump once.

for(;Ac1<=L;Ac1++)

{

if(con==R) break;

if(p[Ac1]==1 && Ac1<=L-2) //jump once.

{

con=con+1;

continue;

}

if(p[Ac1]==1 && Ac1==L-1)

/*Since the process is at the last number,

it will jump to the first number.*/

{

Ac1=-1;

con=con+1;

continue;

}

if(p[Ac1]==0 && Ac1==L-1) Ac1=-1;

/*Since the last number is removed,

the process goes to the first number.*/

}
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//remove

for(Ac2=Ac1;Ac2<=L-1;Ac2++)

{

//We look for the number to remove.

if(p[Ac2]==1)

{

p[Ac2]=0;//We removed.

break;

}

if(Ac2==L-1) Ac2=-1;

/*Since the last number is removed,

the process goes to the first number.*/

}

if(Ac2<=L-2) Ac1=Ac2+1;

if(Ac2==L-1) Ac1=0;

//Put a disk on the number.

g.setColor(Color.black);

S2=Math.sin(2*Math.PI/L*(Ac2+1))*250;

C2=Math.cos(2*Math.PI/L*(Ac2+1))*250;

g.fillOval(350+(int)S2-5, 350+(int)C2-38, 60, 60);

//If it is the last number, we display it in red.

if(k==L-1)

{

//We look for the number that remains.

int w=0;

for(;w<=L-1;w++)

{

if(p[w]==1) break;

}

//display in red.

S=Math.sin(2*Math.PI/L*(w+1))*250;

C=Math.cos(2*Math.PI/L*(w+1))*250;

g.setColor(Color.red);

String N=Integer.toString(w+1);

g.drawString(N,350+(int)S, 350+(int)C);

}
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}

//Next the second process (B) jumps to the next number.

if(F%2==0)

{

//Jump once.

for(;Bc1>=0;Bc1--)

{

if(con==R) break;

if(p[Bc1]==1 && Bc1>=1) /Jump once.

{

con=con+1;

continue;

}

if(p[Bc1]==1 && Bc1==0)

/*Since we are at the first number,

we go to the last number.*/

{

Bc1=L;

con=con+1;

continue;

}

if(p[Bc1]==0 && Bc1==0) Bc1=L;

/*Since the first number is removed,

we got to the last*/

}

//remove

for(Bc2=Bc1;Bc2>=0;Bc2--)

{

//We look for a number to remove.

if(p[Bc2]==1)

{

p[Bc2]=0;//We removed the number.

break;

}

if(Bc2==0) Bc2=L; /*Since the first number is removed,

we go to the first number.*/

}

if(Bc2>=1) Bc1=Bc2-1;
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if(Bc2==0) Bc1=L-1;

　　　　//We put a disk on the number.

g.setColor(Color.blue);

S2=-Math.sin(2*Math.PI/L*(L-Bc2-1))*250;

C2=Math.cos(2*Math.PI/L*(L-Bc2-1))*250;

g.fillOval(350+(int)S2-5, 350+(int)C2-38, 60, 60);

//if this is the last number, display it in red.

if(k==L-1)

{

//We look for the number to remove.

int w=0;

for(;w<=L-1;w++)

{

if(p[w]==1) break;

}

//display in red.

S=-Math.sin(2*Math.PI/L*(L-w-1))*250;

C=Math.cos(2*Math.PI/L*(L-w-1))*250;

g.setColor(Color.red);

String N=Integer.toString(w+1);

g.drawString(N,350+(int)S, 350+(int)C);

}

}//the end of "if".

}//the end of "for".

}//the end of "paint".

}//the end of the program.

If you are willing to use Mathematica or Mathematica player (a free
software), please download the following demonstrations.
See [11],[12] and [13].
If you want to learn to use Mathematica program to study the Josephus
Problem, [3] is a very good book to read.
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