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A BECKMAN-QUARLES TYPE THEOREM FOR LAGUERRE
TRANSFORMATIONS IN THE DUAL PLANE

TIMOTHY FERDINANDS AND LANDON KAVLIE

Abstract. We prove that any bijective transformation on the space of parabo-

las in the dual plane which preserves distance 1 between the parabolas must
necessarily be a Laguerre transformation.

1. Introduction

Rigid motions are known to be isometries, that is, they preserve distances be-
tween points. The converse of this statement is also known to be true. In 1953,
Beckman and Quarles published a theorem proving a stronger version of the con-
verse. In particular, any transformation of Euclidean space with dimension greater
than one which preserves a distance ρ between points must necessarily be a rigid
motion [1]. Since then, many variations of this theorem exist in many contexts by
various authors. For examples, see [2, 3, 5, 7].

One such example is Lester’s characterization of Möbius transformations in the
complex plane. In complex analysis, Möbius transformations are the fractional
linear transformations, and they are known to preserve the space of circles and
lines. See Figure 1.

Figure 1. Möbius transformations map circles and lines to other
circles and lines. They also preserve the angle of intersection.
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In addition, the Coxeter distance defined as the angle of intersection between
two intersecting circles (or lines) is preserved. Using the Coxeter distance δ and
the space of circles and lines C , Lester proved the following result:

Theorem 1 (Lester [6]). For a fixed real ρ > 0, let X → X̄ be a bijective mapping
from C to itself such that, for all A,B in C ,

δAB = ρ if and only if δĀB̄ = ρ.

Then the mapping is induced on C by a Möbius transformation of C.

As in complex analysis, we found that in the dual plane, the fractional linear
transformations preserve the space that includes parabolas with vertical axes of
symmetry and non-vertical lines. The dual numbers are given by D := {z =
x + yj : x, y ∈ R, j2 = 0}, and the fractional linear transformations are called
Laguerre transformations. The space of parabolas, denoted by P, contains all
objects of the form y = ax2 + bx+ c for a, b, c ∈ R.

Figure 2. Laguerre transformations map parabolas and lines to
other parabolas and lines. They also preserve the difference of
slope at the intersection point(s).

Then, we found that the distance δ between two parabolas, here defined to be
the difference of slope at the intersection point(s), is also preserved by the Laguerre
transformations. So, modeling Lester’s result, we give the following Beckman-
Quarles type result:

Theorem 2. Suppose T is a bijective mapping from the space of parabolas P to
itself so that, for every A,B ∈P,

δ(A,B) = 1 if and only if δ(T (A), T (B)) = 1.

Then T induces a Laguerre transformation of the dual plane D.

Of particular interest is the final section of the proof where we demonstrate that
a map of the plane which preserves parabolas and distance one must be a Laguerre
transformation. The corresponding fact in the Möbius case is classical and was
therefore omitted from Lester’s proof. This step can be viewed as a special case of
the following more general result:
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Theorem 3 (Bolt, Ferdinands, and Kavlie [4]). Every injective map from a region
bounded by a vertical parabola that maps vertical parabolas and nonvertical lines
to other vertical parabolas and nonvertical lines must be the composition of a non-
isotropic dilation dλ : (x, y) → (λx, λ2y), 0 6= λ ∈ R with a direct or indirect
Laguerre transformation.

2. Laguerre Geometry in the Dual Plane

2.1. The Dual Plane D.

Definition 1. A dual number is a number of the form x+ yj where x, y ∈ R and
j2 = 0 (j is known as a nilpotent). The dual plane D is the set of ordered pairs
(x, y) taken from the dual number x+ yj.

As in the complex numbers, any dual number z = x+ yj has real part x, dual
part y, and conjugate z̄ = x− yj.

Arithmetic in D is accomplished similarly to arithmetic in the complex plane C.
Geometrically, addition in D is vector addition as shown in Figure 3.

z1

z2

z3!z1"z2

x

y

Figure 3. Addition of dual numbers is analogous to vector addtion.

Algebraically,

(2 + 4j) + (3− 6j) = (2 + 3) + (4− 6)j = 5− 2j.

Multiplication in C can be explained using polar coordinates. This is done by
multiplying their magnitudes and adding the angles. On the other hand, in D,
multiplication is done by multiplying the real parts and adding their corresponding
slopes as shown in Figure 4.

Algebraically,

(2 + 4j) · (3− 6j) = 2 · 3 + 4 · 3j + 2 · (−6j) + 4 · (−6)j2 = 6.
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z1 z2

z3!z1"z2

m3!m1#m2

m1 m2
1 x3!x1"x2x1 x2

x

y

Figure 4. Multiplication of dual numbers is accomplished by mul-
tiplying the real parts and adding their corresponding slopes.

Further investigating D, we find that D is a commutative ring with unity. How-
ever, it is not a field. It has a one parameter family of zero divisors, namely kj for
k ∈ R. (Notice, also, that division by kj is not defined for any value of k.)

The extended complex plane Ĉ is defined as C ∪ {∞}. Similarly, the extended
dual plane D̂ is defined by D ∪ { 1

aj : a ∈ R}. In other words, this is the union of D
with a line at infinity.

2.2. Laguerre Transformations in D.

Definition 2. A Laguerre transformation in the dual plane is a function µ: D̂→ D̂
given by:

µ(z) = αz+β
γz+∆ or µ(z) = αz̄+β

γz̄+∆ .

for α, β, γ, δ ∈ D with real(αδ − βγ) 6= 0. These are called direct and indirect
Laguerre transformations, respectively.

The restriction real(α∆ − βγ) 6= 0 avoids the transformations which take the
entire extended dual plane to a single point or vertical line. We may further restrict
real(α∆− βγ) = 1. These particular Laguerre transformations form a group under
function composition that is isomorphic to the group SL2(D).

The space of parabolas is preserved by a Laguerre transformation (the word
preserved refers to properties that remain constant under a transformation T and
T−1). This is verified by using the transformations µ(z) = αz, z + β, 1

z from which
any Laguerre transformation is derived. a = 0 is acceptable which implies that
these parabolas include all non-vertical lines.

When using the transformation µ(z) = 1
z , we can see that the parabola y =

ax2 + bx+ c must go through the point − 1
aj . Hence, the only parabolas which go

through the point 1
0j are lines.
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When characterizing the relationship between two parabolas, we refer to those
that intersect 0, 1, or 2 times as non-intersecting, tangent, or intersecting, respec-
tively. This number of intersection points is preserved under a Laguerre transfor-
mation.

Another way of representing the parabola y = ax2 + bx + c is by the ordered
triplet (a, b, c). We then denote the space of all such parabolas by P. In this way,
the space P can be identified with R3.

2.3. An Invariant Distance in D.

Definition 3. The distance between two parabolas A := (a, b, c), and B := (d, e, f)
is the difference of their slopes at their intersection points. Algebraically, δ(A,B) =√

(b− e)2 − 4(a− d)(c− f).

This has many “distance-like” properties. For example:
(1) If A and B are intersecting, δ(A,B) > 0.
(2) If A = B, then δ(A,B) = 0.
(3) δ(A,B) = δ(B,A).
(4) Laguerre transformations preserve δ(A,B).
However, this distance is a not a distance in the usual sense:
(1) If A and B are tangent but A 6= B, it is still the case that δ(A,B) = 0.
(2) There is no triangle inequality.
(3) If A and B are non-intersecting, the distance is undefined. (We may think

of this as an imaginary distance.)
For computational reasons, we find it best to parametrize (a, b, c) as t+ (at2 +

bt+ c)j when taking the Laguerre transformation of a parabola.

2.4. Canonical Forms. For simplicity, we use the canonical forms of two parabo-
las (reaching them by Laguerre transformations).

• Non-intersecting: y = 0 and y = kx2 + 1 for k > 0.
• Tangent: y = 1 and y = −1. Equivalently, y = 0 andt y = k for k 6= 0

(They intersect only at 1
0j ).

• Intersecting: y = kx and either y = −kx or y = 0, for k 6= 0.

3. Proof of Theorem 2

3.1. T Preserves Tangent Parabolas. We now show that T preserves tangency.

Proposition 1. Two parabolas are tangent if and only if their images under T are
tangent.

Proposition 1 follows immediately from the following lemmas. It is important
to notice that since T is a bijection and preserves distance 1, T and T−1 can neither
create nor destroy parabolas a distance 1 apart from each other.

Lemma 1. T (and T−1) cannot take tangent parabolas to intersecting parabolas.

Proof. Suppose A,B are tangent parabolas. In canonical form, A := (0, 0, 1) and
B := (0, 0,−1). Now take an arbitrary C := (a, b, c) ∈ P. We characterize all
D := (d, e, f) ∈P a distance 1 away from A,B, and C. This requires:

1 = e2 − 4d(f − 1)



6 TIMOTHY FERDINANDS AND LANDON KAVLIE

Figure 5. Canonical forms for (a)non-intersecting, (b)tangent,
and (c)intersecting parabolas.

1 = e2 − 4d(f + 1)

1 = (e− b)2 − 4(d− a)(f − c)
Solving these equations, for d, e, f we find:
(1) If a = 0, there is either a 1-parameter family D := (0,±1, f) for arbitrary

f , or no D’s since the equations put a restriction on b (e = 1 implies b = 2, 0
and e = −1 implies b = 0,−2).

(2) If a 6= 0, there are exactly 2 D’s. Namely, D := (0,±1, c + −b2±2b
4a ) where

the ±’s match.
In contrast, we now show that if A,B are intersecting, there exists a C so that

there is a unique solution for D.
In canonical form, we take A := (0, k, 0) and B := (0,−k, 0) for k 6= 0. Let

C := (1, 0, 0) and D := (d, e, f) be arbitrary. As before, this requires:

1 = (e− k)2 − 4df

1 = (e+ k)2 − 4df

1 = e2 − 4(d− 1)f

Solving for d, e, f , we observe that D must be the unique parabola (1− 1
k2 , 0, k

2

4 ).
Since parabolas distance 1 away can neither be created nor destroyed, T cannot take
tangent parabolas to intersecting parabolas. The same argument can be applied to
T−1. �

Lemma 2. T (and T−1) cannot take tangent parabolas to non-intersecting parabo-
las.

Proof. Suppose A,B are tangent parabolas. In canonical form, A := (0, 0, k), k 6= 0,
and B := (0, 0, 0). We characterize all C := (a, b, c) ∈P a distance 1 away from A
and B. This requires:
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1 = b2 − 4a(c− k)
1 = b2 − 4ac

Solving for C, we get that C := (0,±1, c) for arbitrary c. Notice that all such
C’s are a distance 0 or 2 away from each other.

Suppose A,B are non-intersecting parabolas. In canonical form, A := (0, 0, 0)
and B := (k, 0, 1) for k > 0. We once again let C := (a, b, c) be arbitrary. Similarly
as before we find:

1 = b2 − 4(a− k)(c− 1)
1 = b2 − 4ac

Solving for a, b, c we get C := (k − kc,±
√
−4kc2 + 4kc+ 1, c) for arbitrary c.

We see that the range of appropriate c’s must satisfy the inequality:

−4kc2 + 4kc+ 1 ≥ 0.

We find that the acceptable c’s are on the interval
[

1
2 −

1
2

√
1 + 1

k ,
1
2 + 1

2

√
1 + 1

k

]
.

Now, we show that there exists C1, C2 such that δ(C1, C2) = 1.
When C1 := (k2 ,

√
k + 1, 1

2 ) (the midpoint of the interval) and C2 := (k −
kγ,
√

4kγ − 4kγ2 + 1, γ) for each k, we must show that such a γ exists. We get the
following equation for the distance from C1 to C2:

1 =
(√

4kγ − 4kγ2 + 1−
√
k + 1

)2

− 4
(
k − kγ − k

2

)(
γ − 1

2

)
Solving for γ, we get γ = 1

2 ±
√

3k+7k2+4k3

4k+4k2 . Since 1
2

√
1 + 1

k ≥
√

3k+7k2+4k3

4k+4k2 ≥ 0
for k > 0, γ is in our acceptable interval and must exist.

Since parabolas a distance 1 away from a given parabola can be neither created
nor destroyed, T cannot take tangent parabolas to non-intersecting parabolas. The
same argument can be applied to T−1. �

3.2. T induces a Transformation of D. Here, we extend our work from the
previous section to show that T induces a transformation of the dual plane.

Remark. Any three mutually tangent parabolas meet at a single point.

This can be seen by taking A,B to be tangent parabolas in canonical form. The
only possibility for a third parabola tangent to both A and B is another horizontal
line.

Definition 4. Given a point p and a real number m, define Tp,m as the set of all
parabolas with slope m at p.

In particular, if p = x0 + y0j, then Tp,m includes parabolas that have the form
y = a(x−x0)2 +m(x−x0)+y0 for a ∈ R. Any two parabolas of this form intersect
only once (and are therefore tangent) at p. If p = 1

aj , we denote by Tp,m the family
of parabolas that have the form y = −ax2 +mx+ c for c ∈ R. Any two parabolas
of this form again intersect only once (and are therefore tangent) at p.

Now, we show that T preserves these families of parabolas.

Lemma 3. Given p ∈ D̂ and m ∈ R, there exists p′ ∈ D̂ and m′ ∈ R so that
T(Tp,m) = Tp′,m′ .
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Figure 6. Tp,0 with p := (0, 0).

Proof. Take p ∈ D̂ and m ∈ R and let P,Q ∈ Tp,m. Since P and Q are tangent,
Proposition 1 tells us that T(P ) and T(Q) are tangent. Let p′ ∈ D̂ be their point
of tangency, and let m′ be their slope at p′.

To show T(Tp,m) ⊂ Tp′,m′ , take A ∈ Tp,m with A 6= P,Q. A is tangent to both
P and Q. T(A) is tangent to T(P ) and T(Q) by Proposition 1. By the remark above
about mutually tangent parabolas, T(A),T(P ), and T(Q) are mutually tangent at
the same point, p′. Thus T(A) ∈ Tp′,m′ .

To show T(Tp,m) ⊃ Tp′,m′ , take a parabola A′ ∈ Tp′,m′ . since T is surjective,
there is an A ∈ P so that T(A) = A′. As before, by the above remark and
Proposition 1, A ∈ Tp,m. �

We now introduce an induced map T̂: D̂ → D̂. Let p ∈ D̂ and let m ∈ R. By
Lemma 3, there exist p′ ∈ D̂ and m′ ∈ R so that T(Tp,m) = Tp′,m′ . Set T̂(p) := p′.
Next we show that this mapping is well-defined; that is, it does not depend on the
choice of m as in Figure 7. The following lemma is necessary for that result.

Figure 7. The intersecting objects Tp,0 and Tp,1 for p := (0, 0).

Lemma 4. Suppose A,B ∈P so that A,B are intersecting and p is a point on A,
but p is not on B. Then, there exists a unique C ∈P so that C is tangent to A at
p, and C is tangent to B.

Proof. Take A,B ∈ P to be intersecting in canonical form. So, A := (0, 0, 0) and
B := (0, k, 0) for k > 0.

First, we characterize all parabolas C := (a, b, c) where C is tangent to both A
and B. This requires:
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0 = b2 − 4ac
0 = (b− k)2 − 4ac

Solving for a, b, and c, we get a one parameter family for C: ( k
2

16λ ,
k
2 , λ). Now,

we pick a point (d, 0) on A (d 6= 0) and assume that C passes through (d, 0). We
then get the unique parabola, C = ( k

−4d ,
k
2 ,−

kd
4 ). �

Proposition 2. T̂ is well-defined.

Proof. Take two families of parabolas at a point p, namely Tp,m1 ,Tp,m2 so that
m1 6= m2. Now, let T (Tp,m1) = Tp′

1,m
′
1

and T (Tp,m2) = Tp′
2,m

′
2
. Suppose p′1 6= p′2.

Notice that each parabola in Tp,m1 must necessarily intersect each parabola
from Tp,m2 twice. There exists P ∈ Tp′

1,m
′
1

so that p′2 6∈ P . Then, there is an
Q ∈ Tp′

2,m
′
2

that intersects P twice (Q exists since the closure of Tp′
2,m

′
2

is all of
D̂). Then, by Lemma 4, there is a C ∈ P so that C is tangent to Q at p′2 and
tangent to P . In particular, C ∈ Tp′

2,m
′
2

is tangent to P ∈ Tp′
1,m

′
1
. This contradicts

Proposition 1. �

3.3. The Induced Mapping T̂. We’ve based our definition of T̂ on T. However,
in the next lemma, we show that T is also determined by T̂.

Lemma 5. If P ∈P, then T(P ) = {T̂(p) : p ∈ P}

Proof. Take p ∈ P and let m be the slope of P at p. Construct Tp,m. Notice
that P ∈ Tp,m. Lemma 3 gives us p′ ∈ D̂,m′ ∈ R such that T(Tp,m) = Tp′,m′ .
Since P ∈ Tp,m and T (Tp,m) = Tp′,m′ , T(P ) ∈ Tp′,m′ . That is, T(P ) ∈ TT̂(p),m.

Therefore, T̂(p) ∈ T(P ) and T(P ) ⊃ {T̂(p) : p ∈ P}.
Now take p′ ∈ T(P ). Let m′ be the slope of T(P ) at p′. Construct Tp′,m′ .

Notice that T(P ) ∈ Tp′,m′ . Now, from Lemma 3 for T−1, there exist p ∈ D̂ and
m ∈ R so that T (Tp,m) = Tp′,m′ . By the definition of T̂, T̂(p) = p′. Moreover,
since T is bijective, p ∈ Tp′,m′ . Therefore, p ∈ P and T(P ) ⊂ {T̂(p) : p ∈ P}. �

Hence T̂ maps parabolas to parabolas; it maps tangent parabolas to tangent
parabolas; and it preserves distance 1 between parabolas.

Moreover, the second part of the proof of Lemma 5 guarantees that T̂: D̂→ D̂
is surjective since any p′ ∈ D̂ belongs to T (P ) for some P . Surjectivity allows us to
conclude that intersection points cannot be created by T̂. To show that intersection
points cannot be destroyed by T̂, we must show that T̂ is injective. From this, it
follows that the number of intersection points between parabolas is preserved.

Lemma 6. T̂ is injective.

Proof. Take x, y ∈ D̂ to be distinct. First, let x and y lie on distinct vertical lines.
Let A,B,C be distinct parabolas so that x, y ∈ A; A is tangent to B at x and C is
tangent to A at y, B and C are non-intersecting as in Figure 8. If T̂(x) = T̂(y), then
T̂(B) and T̂(C) must be tangent at T̂(x) = T̂(y). This is impossible by Proposition
1 and Lemma 5.

Now, let x and y lie on the same vertical line. Once again, take A and B to
be tangent parabolas so that x ∈ A and y ∈ B but neither x nor y is the point
of tangency. Let z be the point of tangency. We know that T̂(A) and T̂(B) must
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Figure 8. A tangent to B at x and A tangent to C at y.

be tangent at T̂(z) by Proposition 1 and Lemma 5. Now, if T̂(x) = T̂(y), then
T̂(x) = T̂(y) = T̂(z) is the point of tangency of T̂(A) and T̂(B). However, this is
impossible by the first part of this lemma. �

3.4. T̂ is Laguerre: a Grid Argument. We now use a Laguerre transformation
to normalize T̂. In particular, if T̂(0) = w1, T̂(1) = w2, T̂( 1

0j ) = w3, we define

µ(w) = w−w1
w−w3

· w2−w3
w2−w1

.

It then follows that the composition µ◦T̂ sets (µ◦T̂)(0) = 0, (µ◦T̂)(1) = 1, and
(µ ◦ T̂)( 1

0j ) = 1
0j . We will prove that, for z ∈ D, (µ ◦ T̂)(z) = z or (µ ◦ T̂)(z) = z̄.

Due to the group structure of the Laguerre transformations, it will then follow that
T̂ is either a direct or indirect Laguerre transformation, respectively.

Since the points 0, 1, 1
0j uniquely determine the parabola, y = 0, we know that

µ ◦ T̂ preserves this line. Recall that a parabola is a line if and only if it goes
through the point 1

0j . Knowing this, we can conclude that our new transformation

µ◦ T̂ preserves lines. Since any line is either intersecting to the preserved line y = 0
or a “tangent” horizontal line (and tangency is preserved), we can conclude that
horizontal lines are preserved.

In later arguments, it is important to note that Laguerre transformations pre-
serve vertical lines. From the next lemma, we can also conclude that our induced
transformation T̂ also preserves vertical lines.

Lemma 7. Under T̂, vertical lines must go to vertical lines.

Proof. Let A be a vertical line. Now, suppose T̂(A) is not a vertical line. Then,
there exists x′, y′ ∈ T̂(A) so that x′ and y′ do not have the same real part. We may
then draw a parabola P ′ ∈P through x′ and y′. Since T is surrjective, there exists
P ∈ P so that T(P ) = P ′. Notice that x′, y′ come from some x, y ∈ A. However,
no parabola in P can have two distinct points which lie on the same vertical line.
This is a contradiction. �

Lemma 8. Suppose (µ ◦ T̂)(a+ bj) = a+ bj, then µ ◦ T̂ preserves the vertical and
horizontal lines x = a and y = b.
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Proof. This follows immediately from the fact that that µ ◦ T̂ preserves both hori-
zontal and vertical lines. �

Consider the line y = x. Since µ ◦ T̂ preserves y = 0 and the distance between
y = 0 and y = x, we get that µ ◦ T̂ must take y = x to either y = x, or y = −x.
Assume µ ◦ T̂ takes y = x to y = x. We will proceed to show T̂ is a direct Laguerre
transformation. (In the case where µ ◦ T̂ takes y = x to y = −x, we first reflect
across y = 0. This corresponds with T̂ being an indirect Laguerre transformation.)

We make repeated use of the following rather obvious fact.

Lemma 9. If L,M are lines so that (µ ◦ T̂)(L) = L and (µ ◦ T̂)(M) = M , then
µ ◦ T̂ preserves their intersection point(s) as well.

Note that the case where L or M are vertical lines is not excluded in Lemma 9.
From Lemmas 8 and 9 we see that the lines x = 0, x = 1, and y = 1 are preserved,
and hence so are the points 1 + j and j.

Since the points j, 1, and 1
0j uniquely determine the line y = −x+ 1, then µ◦ T̂

preserves this line. We now have that µ◦ T̂ preserves the “grid” as shown in Figure
9.

Figure 9. Lines and points that µ ◦ T̂ preserves.

The line y = x−1 is distance 1 away from y = 0, and contains 1. Since y = x−1
and y = −x+ 1 are the only two such lines, y = x− 1 must go to one of these two.
Since µ ◦ T̂ is surjective for parabolas, and µ ◦ T̂ preserves y = −x + 1, y = x − 1
must also be preserved. Using lemmas 8 and 9 we see that the points −j and 2 + j
and the lines y = −1 and x = 2 must be preserved. Applying lemma 9 once again
tells us the points 1− j, 2, and 2− j are preserved. Continuing in this manner (as
in Figure 10), we find that for all a, b ∈ Z the point a+ bj is preserved.

Figure 10. Extending the grid from Figure 9.
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Consider the four points 0, 1, j and 1 + j. We already know that the lines y = x
and y = −x+ 1 are preserved. Lemmas 8 and 9 tell us that the point 1

2 + 1
2j and

the lines x = 1
2 and y = 1

2 are preserved. Additionally the points 1
2j,

1
2 , 1 + 1

2j,
and 1

2 + j are preserved. We have split the unit square into four equal squares of
side length 1

2 . Continually repeating this process for each square, we see that for
all p, q, r, s ∈ Z, the point p

2q + r
2s j is preserved. The numbers p

2q are known as the
dyadic rationals, which are dense in R

Now, we introduce the concept of betweenness of horizontal lines.

Definition 5. If A,B,C are the horizontal lines y = a, y = b, y = c, respectively,
then B is between A and C if and only if a < b < c or c < b < a.

Lemma 10. µ ◦ T̂ preserves betweenness of horizontal lines.

Proof. Let A,B,C, be horizontal lines so that B is between A and C. Let P ∈P
be tangent with B, intersecting with A, and non-intersecting with C as in Figure 11.
Since µ◦T̂ preserves horizontal lines, we know that (µ◦T̂)(A), (µ◦T̂)(B), (µ◦T̂)(C)
all remain horizontal lines. Suppose (µ ◦ T̂)(B) is not between (µ ◦ T̂)(A) and
(µ◦T̂)(C). Then either (µ◦T̂)(B) is intersecting to both (µ◦T̂)(A) and (µ◦T̂)(C),
or non intersecting to both (µ ◦ T̂)(A) and (µ ◦ T̂)(C). Since µ ◦ T̂ preserves the
number of intersection points, we have a contradiction. �

Figure 11. Horizontal lines with B between A and C. Also, a
parabola P so that P is tangent to B and intersecting A.

Lemma 11. µ ◦ T̂ preserves y = k for each k ∈ R

Proof. Suppose µ ◦ T̂ takes y = k to y = k + ε for some nonzero ε. Since the
dyadic rationals are dense in R, there exists two lines y = b1 and y = b2 so that
k < b1 < b2 < k+ ε or k+ ε < b2 < b1 < k for dyadic rationals b1, b2. By definition,
this implies y = b1 is between y = k and y = b2, but y = b1 is not between y = b2
and y = k + ε. As previously shown, y = b1 and y = b2 must be preserved. But, if
µ◦ T̂ takes y = k to y = k+ε we get a contradiction since µ◦ T̂ preserves horizontal
betweenness. �

Lemma 12. µ ◦ T̂ preserves x = k for each k ∈ R
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Proof. µ ◦ T̂ preserves y = x and the intersection point of x = k and y = 0. Hence,
Lemma 8 tells us the line x = k is preserved. �

Completion of Theorem 2. Take p = a + bj ∈ D. Then p is the intersection point
of the vertical and horizontal lines x = a and y = b, both of which are preserved
from Lemmas 11 and 12. Lemma 9 then tells us that p is preserved. Therefore,
µ ◦ T̂ acts identically on D, and T̂ is a Laguerre transformation. �
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