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Numerical Solutions for Intermediate Angles of the Laplace-Young

Capillary Equations

Genevieve Dupuis

University of Notre Dame

Jessica Flores

University of Puerto Rico at Humacao

Abstract

Capillarity is the phenomena of fluid rise against a solid vertical wall. In this paper, we consider
bounded cases of intermediate corner angles (π/2 < α + γ < π/2 + 2γ) , where γ is the angle of contact
and 2α is the wedge angle. The Laplace-Young Capillary equations are used to determine the rise of
the fluid, especially at corners. While there exist asymptotic expansions for the height rise occurring
at the corner of an intermediate angle, not all coefficients are known analytically. Therefore, numerical
solutions are necessary, even though only a few numerical methods have been published. We explain
our least-squares finite element method used in determining solutions to the Laplace-Young Capillary
equations, and then give our numerical results.

1 Introduction

The solutions of the Laplace-Young Capillary equations, u(x, y), give the height rise of liquid at a given
point in Cartesian coordinates (x, y) in the domain Ω. In terms of polar coordinates, u(r, θ) is equivalent to
the height rise at a point (r, θ), with the conversion x = rcosθ, y = rsinθ. On domains containing a wedge
angle, much attention has been given to developing asymptotic solutions to the height at the corner point
[7], [9], r = 0. The angle 2α measures the wedge, where θ = 0 bisects the wedge angle. The angle given by
the contact of the liquid against the vertical wall is γ (see Figure 1). Corner angles are classified into three
different categories: small, intermediate, and large; previously determined analytic solutions are given below
for each case.

1) Small angles: 0 < α < π/2 − γ

As the solution for the small angles approaches the corner, the height rise, u(r, θ), is unbounded [5]:

u ∼ cosθ − (a2 − sin2θ)1/2

ar
+ O(r3),

where a = sinα/cosγ and θ = ±α.

2) Intermediate angles: π/2 − γ < α < π/2 + γ

The analytic solutions that have been determined for intermediate angles are bounded and in the form
of a power series expansion [5]:

u ∼ u0 −
rcosθ

(a2 − 1)1/2
+· · · .

3) Large angles: π/2 + γ < α < π

Height solutions for large angles remain bounded, but the slopes approaching r = 0 are not. An analytical
solution to the large angles is not yet given and knowledge of the far field condition is required to determine
u [7].
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Figure 1: α and γ

2 Laplace-Young Capillary Equations and Analytical Solutions

Solving the Laplace-Young equations gives the height rise of fluid at a given point. These equations are as
follows:























∇ ·
(

∇u
√

1 + |∇u|2

)

= κu in Ω

n ·
(

∇u
√

1 + |∇u|2

)

= cos γ on ∂Ω,

(1)

where κ is the capillary constant of the liquid. κ > 0 indicates positive gravity, κ < 0 indicates negative
gravity, and κ = 0 indicates zero-gravity scenario. The unit vector normal to the boundary ∂Ω is denoted
by n.

The focus in this paper is the intermediate corner angles, and the asymptotic power series solution for
these bounded solutions is as follows:

u(r, θ) = u0 + ru1(θ) + r2u2(θ) + r3u3(θ) + ... =

i
∑

i=0

riui(θ).

Here, u0 is given to be the height rise of the solution at r = 0 and u1(θ) = cosθ
(a2−1)1/2

, which determines

the slope to the solution as r → 0 and θ = ±α. The coefficients of this power series, ui(θ), are known in
terms of u0. However, since u0 is not known analytically, the only coefficient truly known is u1(θ) because
it does not depend on θ. Thus, once u0 is determined, the remainder of the power series solution is known
analytically[8]. Note that this power series is the same solution given in the introduction.

3 Numerical Methods

3.1 Rescaling Laplace-Young

In solving the Laplace-Young equations, a rescaling of the equations to capillary unit lengths (κ) simplifies
the problem. Taking the original form of the Laplace-Young equations with a solution of uold , and making
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a substitution of uold = Lunew, where L = 1/κ, (1) becomes the following equations:























∇ ·
(

∇Lunew
√

1 + |∇Lunew|2

)

= κLunew in Ω

n ·
(

∇Lunew
√

1 + |∇Lunew|2

)

= cos γ on ∂Ω.

(2)

Where ∇Lunew occurs, the substitution (in Cartesian coordinates) xold = Lxnew and yold = Lynew is used,
noting that L is a constant:

∇Lu =

(

Lux

Luy

)

=

(

∂Lu/∂Lx
∂Lu/∂Ly

)

=

(

ux

uy

)

= ∇u.

It follows that ∇Lunew = ∇unew and (1) becomes the rescaled Laplace-Young equation:























∇ ·
(

∇u
√

1 + |∇u|2

)

= u in Ω

n ·
(

∇u
√

1 + |∇u|2

)

= cos γ on ∂Ω.

(3)

The scale for the solutions on Ω is now given in capillary length units, and this form of the Laplace-Young
equations will be used throughout the rest of the paper.

3.2 Linearization

Since (3) has nonlinear terms associated with it, a linearization of the equations will be done with a current
approximation of the unknown, such that

b ≈ u.

An initial value of b must be assigned, and b = 0 works as a first approximation. Now, we consider the series
of linear problems from























∇ ·
(

∇u
√

1 + |∇b|2

)

= u in Ω

n ·
(

∇u
√

1 + |∇b|2

)

= cos γ on ∂Ω.

(4)

For simplification of notation, let

A = A(∇b) =
1

√

1 + |∇b|2
,

and A(∇b) will be the known approximation of the nonlinear system. The system can then be written as

{

∇ · (A∇u) − u = 0

n · (A∇u) − cosγ = 0.
(5)

Using the product rule and the property ∇ · (∇) = ∆, (5) becomes

{

A∆u + ∇A · ∇u − u = 0

n · (A∇u) − cosγ = 0.
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In addition to these equations, define U = ∇u as a new unknown to approximate. Also true is that ∇×∇ = 0,
and therefore another equation can be added: ∇ × U = 0 in the domain Ω. Combining all equations, the
PDE system now looks like











A∇ · U + ∇A · U − u = 0

∇× U = 0 in Ω

∇u− U = 0,

(6)

with a boundary condition of
n · (AU) − cosγ = 0 on ∂Ω.

With A = A(∇b), the system is now linear.

3.3 Least-Squares Finite Element

We seek to find a solution to (6) by the least-squares finite element approach. To do this we define the
following least-squares functional:

G(U, u) = ||A∇ · U + ∇A · U − u||2 + ||∇ × U ||2 + ||∇u− U ||2,

for all u ∈ V = {v ∈ H1(Ω) : n · ∇v = cos γ} and U ∈ U = {V ∈ H1(Ω) : n · V = cos γ}. Minimizing
G(U, u) over U × V yields a symmetric positive definite variational problem. When U and V are replaced
with appropriate finite element spaces, the problem becomes a large positive definite system of algebraic
equations which can be solved efficiently. For more details on the least-squares finite element approach,
please see [3].

We thus solve a sequence of linear problems of the form (6), where each iteration takes b = uold and
u = unew. As we iterate, the solution tends toward that of (3), the original nonlinear problem.

4 Convergence of Solutions

4.1 Sobolev Spaces

We begin our discussion of convergence by defining our notation for Sobolev Spaces [1]. Let W k,p(Ω) denote
the standard Sobolev Space defined by integers k and p, where

u ∈ W k,p ⇔ (
∑

|α|≤k

|Dαu|p)1/p ≡ ||u||k,p < ∞.

When p = 2, we simplify the notation by introducing the spaces

Hk(Ω) = W k,2(Ω),

and use the norm || · ||k = || · ||k,2.
Consider an illustration of this notation in the one dimensional case: If a single-variable function is

contained in the Sobolev Space H0(Ω), the following condition holds:

∫ 1

0

f(t)2dt < ∞.

To be contained in the Sobolev space H1(Ω), a function, f , and its first derivative, f ′, must be bounded
in the interval [0, 1]:
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∫ 1

0

(f(t)2 + f ′(t)2)dt < ∞.

And likewise, this can be generalized such that if a function is contained in the Sobolev Space Hn(Ω) if

∫ 1

0

(f(t)2 + f ′(t)2 + . . . + f(n)(t)2)dt < ∞.

With these definitions, it can be seen that the Sobolev Spaces embed into each other. When a function
is contained in H2(Ω) for example, it is also contained in H1(Ω) and H0(Ω). Similar definitions hold for the
multi-variable case that we present.

4.2 Convergence of the Least-Squares Solution

Now, convergence of the least-squares solution is consistent with the convergence of the functional. Previous
results from Cai et al [3] have been given to confirm functional convergence, and showing that the given
method fits into the case outlined will prove the convergence of the solutions. To begin, the form of the
problem must be given as follows:

{

∇ · (A∇u) − u = f in Ω

n · A∇u = 0 on δΩ.

Therefore, the Laplace-Young equations must be modified into this form. To do so, take the original
system:

{

∇ · A∇ũ − ũ = 0 in Ω

n · A∇ũ = cosγ on δΩ
(7)

and consider the related problem
{

∆u0 = 0 in Ω

n · A∇u0 = cosγ on δΩ,
(8)

which has a solution u ∈ Hk(Ω) that is unique up to a constant, where k < π/2 + 1. [4]. And from this, (7)
similarly has a solution ũ ∈ Hk(Ω). Note: α can be chosen sufficiently small in order to find a sufficiently
large k.

Let u = u0 − ũ, then
∇ ·A∇u − u = ∇ ·A∇(u0 − ũ) − (u0 − ũ)

= ∇ ·A∇u0 − u0

≡ f.

Notice that f ∈ Hk−2(Ω) since there are two derivatives of u. And on δΩ,

n ·A∇u = n · A∇u0 − n · A∇ũ = 0.

Combining these two equations, a system matching the required form is created:

{

∇ · (A∇u) − u = f in Ω

n · A∇u = 0 on δΩ.
(9)
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Now that the system given has the correct form, assumptions about the problem must be satisfied[3].

Assumption A0:
∫

Ω
u = 0 so that a Poincare inequality holds. It is known that ũ satisfies

∫

ũ = 0, and

we may choose u0 ∈ Hk(Ω)/R so that
∫

u = 0 as well.

Assumption A1: Ω is bounded, open, connected, convex, and piecewise C1,1. We consider only such
domains.

Assumption A2: The boundary of Ω is composed of Dirichlet and Neumann parts. The boundary
conditions in equation (9) are of Neumann type.

Assumption A3: A is C1,1.

Recall the linearized form of the Laplace-Young equations:

{

A(∇b)∇ ·U + ∇A(∇b) ·U − u = 0

n · (A(∇b)U) − cosγ = 0,
(10)

where A(∇b) = 1√
1+|∇b|2

and b ≈ u is the old solution used to linearize the system.

A Sobolev space embeds into a continuous space in R
n under the following conditions from [4]

Wm,p(Ω) ↪→ C0,1(Ω),

where

a) m ≥ 0 and 1 ≤ p ≤ ∞ where m and p are integers,

b) n
p

+ 1 < m,

c) Ω is open, connected, Lipschitz boundary.

Therefore,

if u ∈ Wm+j,p(Ω), then
∑

|α|≤j

|Dαu| ∈ Wm,p(Ω) ↪→ C0,0(Ω),

which means that u ∈ Cj,1(Ω) for any j ∈ N.
More specifically, for the Laplace-Young equations, n = 2, p = 2, and j = 1. Choose some δ > 0, so that

when ∇b ∈ Hm+1(Ω), it embeds into C1,1(Ω) for m = 2 + δ. Thus,

b ∈ H4+δ(Ω) ⇒ ∇b ∈ H3+δ(Ω) ↪→ C1,1(Ω).

Lemma 4.1 Let A(f) = 1√
1+|f|2

. If f ∈ C1,1(Ω), then A(f) ∈ C1,1(Ω).

Proof. Since f ∈ C1,1(Ω) for a given f , then ∇f ∈ C0,1(Ω). Thus, it must be shown that A(f) and ∇A(f)
are contained in C0,1(Ω). Since the function A is continuous, and the composition of continuous functions is
also continuous, then it follows that A(f) ∈ C0,1(Ω). Now, ∇A(f) = −f∇f

(1+f2)3/2
, which is also a composition

of continuous functions, and therefore also continuous and in C0,1(Ω).

Note: u0 ∈ Hk(Ω) = H4+δ(Ω) for 4 + δ < π
2α

+ 1. Solving for the domain angle, α < π
2(3+δ)

. Therefore,

a choice of α < π
6 if δ ∈ R or α < π

8 if δ ∈ N.
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Let Th be a regular triangulation of the domain, Ω, and assume there exist two finite element approxi-
mation subspaces defined over Th:

Uh ⊂ U and Vh ⊂ V.

The finite element approximation to the problem is determining (Uh, uh) ∈ Uh ×Vh such that

G(Uh, uh) ≤ G(Vh, vh) ∀ (Vh, vh) ∈ Uh × Vh. (11)

Uh and Vh are defined as piecewise linear finite element spaces:

Vh = {v ∈ C0(Ω) : q|k ∈ P1(K) ∀ K ∈ Th, v ∈ V}

and
Uh = {V ∈ C0(Ω)n : vl|k ∈ P1(K) ∀ K ∈ Th, V ∈ U},

where P1(K) is the space containing polynomials with degree no more than one. Note that extending the
results is easy to show for finite element approximations with higher-order.

Theorem 4.2 Given the form of the problem and A0 − A3. Assume that the solutions (U, u) of (9) are
contained in H1+δ(Ω)n+1 for some δ ∈ [0, 1]. Let (Uh, uh) ∈ Uh × Vh be the solution of (11). Then,

‖u − uh‖1,Ω + ‖U − Uh‖1,Ω ≤ Chδ(‖u‖(1+δ),Ω + ‖U‖(1+δ),Ω),

where C does not depend on h, u, or U .

Proof. Using the results of the assumptions given and showing the form of the problem matches, the proof
follows directly from [3].

Therefore, functional convergence of the solution works to confirm the convergence to the correct desired
solution of the Laplace-Young equations.

5 Numerical Results

Numerical results are given for intermediate angles and the domain used in computation is defined as:

Ω = {(r, θ); 0 < r < R,−α < θ < α} .

Table 1 demonstrates the convergence of the numerical slope to analytical solutions. As the discretization,
Th, of the domain is further refined with increasing values of n, the slope of the solution becomes arbitrarily
close to the analytical solution. If h is defined as the width of each triangle along ∂Ω in Th, then n = 1/h.
Near the corner, a finer discretization is used with 2n divisions, and further away there are only n divisions
so that there is more focus near r = 0. An illustration of the triangulation of Ω is given in Figure 2 for a
value of n = 16.

Table 1 shows this trend in the case where α = π/3 and γ = π/4. Recall that the slope of the solution
as r → 0 is given in the power series solution by

u1 =
cosθ

(a2 − 1)1/2
,

and for our specific case, θ = α = π/3 and γ = π/4. Therefore, the desired analytical slope is u1 =√
2/2 ≈ 0.707107. Table 1 shows the error in the slope is reduced approximately linearly, giving confidence

in the method and our approximation to u0.
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Figure 2: Triangulation of Ω, n = 16

n slope error in slope height

8 -0.568429 0.138678 1.25086
16 -0.652611 0.054496 1.2375

32 -0.693487 0.013620 1.22373
64 -0.701674 0.005433 1.21642

128 -0.703394 0.003713 1.2145
...

...
...

...

∞
√

2/2 ≈ 0.707107 0.0 unknown

Table 1: Slope Convergence: α = π/3 and γ = π/4
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γ α = π/3 α = π/4
40 1.3692 n/a
45 1.2145 n/a

50 1.0683 1.54862
55 0.928488 1.30146

60 0.792122 1.08994
65 0.65801 0.894685

70 0.525264 0.708507
75 0.393391 0.527729

80 0.262018 0.350248
85 0.130943 0.174659

Table 2: Heights: n = 128

In Table 2, various combinations of α and γ are given, along with the numerical results for their heights.
In all cases, n = 128 and similar analysis of the convergence of the numerical slopes to the analytical slopes
was confirmed.
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