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ON THE ORDER OF A GROUP CONTAINING NONTRIVIAL
GASSMANN EQUIVALENT SUBGROUPS

MICHAEL DIPASQUALE

Abstract. Using a result of de Smit and Lenstra, we prove that the order of
a group containing nontrivial Gassmann equivalent subgroups must be divis-

ible by at least five primes, not necessarily distinct. We then investigate the

existence of Gassmann equivalent subgroups in groups with order divisible by
exactly five primes.

Introduction
Let G be a finite group and let H,H ′ ≤ G. Denote the conjugacy class of g ∈ G

by gG. We say the triple (G,H,H ′) is a Gassmann triple if every conjugacy class
intersects H and H ′ in the same number of elements, in other words, |gG

⋂
H| =

|gG
⋂
H ′| for all g ∈ G. The subgroups H and H ′ in such a triple are called

Gassmann equivalent. These triples are named after Fritz Gassmann, who first
articulated the above condition in [5] while explaining the work of Adolf Hurwitz.

Since the time of Gassmann, these ‘almost conjugate’ triples have proved useful
in a variety of areas. In [11] Terras and Stark show how Gassmann triples may be
used to construct nonisomorphic graphs with the same Ihara zeta function. Sunada
describes in [10] how Gassmann equivalent subgroups may give rise to Riemannian
manifolds that are isospectral but not isometric. Finally, Perlis shows in [7] that
two number fields have the same Dedekind zeta function precisely when associated
Galois groups form a Gassmann triple.

In this paper we investigate the number of primes dividing the order of a group
G containing non-conjugate Gassmann equivalent subgroups H and H ′. Such
Gassmann triples are called nontrivial triples, while triples in which H and H ′

are conjugate are called trivial. The motivation for investigating this topic comes
from the research of Jim Stark, an REU student at Louisiana State University in
2007. He noted over six hundred cases in which the order of group containing non-
trivial Gassmann equivalent subgroups was divisible by at least five primes, and he
asks in [9] if this is true in general.

Our main result, Theorem 3.1, answers Stark’s question in the affirmative:

Main Theorem Let (G,H,H ′) be a nontrivial Gassmann triple. Then |G| is
divisible by at least five primes, not necessarily distinct.
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Throughout this article, if |G| =
t∏
i=1

pαi
i with m =

t∑
i=1

αi, we say that |G| is

divisible by m primes. We will clearly indicate those cases in which we desire the
group to be divisible by a number of distinct primes.

In proving the main theorem we rely on several powerful results which allow us
to demonstrate the most difficult steps with ease. In Section 2 we show that the
main theorem restricted to solvable groups is a corollary of a difficult theorem due
to de Smit and Lenstra. We also use the Feit-Thompson Odd Order Theorem and
two results of Burnside in Section 3.
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1. Definitions

We first introduce another criterion for Gassmann equivalence:

Proposition 1.1. Let G be a finite group and H,H ′ ≤ G. The following statements
are equivalent (see Lemma 1.9 in [1]):

• |gG
⋂
H| = |gG

⋂
H ′| for all g ∈ G. (Gassmann’s original criterion)

• There exists a bijection φ : H → H ′ such that φ(h) ∈ hG for all h ∈ H.
(Sheng Chen’s criterion)

From Sheng Chen’s criterion it is evident that two Gassmann equivalent sub-
groups H,H ′ ≤ G have the same order and hence the same index in G. A Gassmann
triple (G,H,H ′) where |G : H| = |G : H ′| = n is called a Gassmann triple of index
n. We give an example of nontrivial Gassmann equivalent subgroups of index 8 in
a group with order 32.

Example: Let G = (Z/8Z)× n Z/8Z (where (Z/8Z)× denotes the multiplicative
group of units mod 8) with multiplication defined by (a, b) ∗ (c, d) = (ac, bc + d).
Define H and H ′ as follows:

H = {(1, 0), (3, 0), (5, 0), (7, 0)}
H ′ = {(1, 0), (3, 4), (5, 4), (7, 0)}

Define a bijection φ : H → H ′ as below:

φ((1, 0)) = (1, 0)
φ((3, 0)) = (3, 4) = (3, 0)(1,2)

φ((5, 0)) = (5, 4) = (5, 0)(1,1)

φ((7, 0)) = (7, 0)

φ satisfies Sheng Chen’s criterion since (1, 0) conjugates (1, 0) and (7, 0) to them-
selves, (1, 2) conjugates (3, 0) to (3, 4), and (1, 1) conjugates (5, 0) to (5, 4). It is
not difficult to show that H and H ′ are not conjugate subgroups, hence (G,H,H ′)
is a nontrivial Gassmann triple, as claimed.
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2. The Solvable Case

In this section we prove that the main theorem is true for solvable groups. We
begin with a few simple results.

Lemma 2.1. Let (G,H,H ′) be a Gassmann triple and let t ∈ H. There exists g ∈
G such that (G,H, g−1H ′g) is a Gassmann triple and t ∈ H

⋂
g−1H ′g. Moreover,

(G,H, g−1H ′g) is trivial if and only if (G,H,H ′) is trivial.

Proof: By Sheng Chen’s criterion, there exists a bijection ψ : H ′ → H with ψ(h′)
conjugate to h′ in G for all h′ ∈ H ′. Hence there is g ∈ G and t′ ∈ H ′ such
that t = ψ(t′) = g−1t′g, implying t ∈ H

⋂
g−1H ′g. Now let x ∈ g−1H ′g. Then

ψ(gxg−1) : g−1H ′g → H is a bijection satisfying Sheng Chen’s criterion, therefore
(G,H, g−1H ′g) is a Gassmann triple. The last statement is transparent, since
g−1H ′g is conjugate to H if and only if H ′ is conjugate to H.

Corollary 2.2. Let (G,H,H ′) be a Gassmann triple such that H = 〈t〉 is cyclic.
Then (G,H,H ′) is trivial.

Proof: By Lemma 2.1 there exists g ∈ G so that t ∈ g−1H ′g. Since |H| = |H ′|,
g−1H ′g = H.

Corollary 2.3. Let (G,H,H ′) be a nontrivial Gassmann triple. Then at least two
primes divide |H| = |H ′|.

Proof: Suppose |H| = |H ′| = p, p a prime. It follows that H,H ′ are cyclic
and hence trivial by Corollary 2.2. So at least two primes divide |H| = |H ′|.

In the following, the Gassmann triple (G,H,H ′) is said to be a solvable Gassmann
triple if the group G is solvable. We now present a theorem of de Smit and Lenstra
(see [2]) which gives our main theorem for solvable Gassmann triples more or less
directly.

Theorem 2.4. (B. de Smit and H.W. Lenstra, Jr.) For every positive integer n
the following are equivalent:

(1) There exists a nontrivial solvable Gassmann triple (G,H,H ′) of index n.
(2) There are prime numbers p, q, r (not necessarily distinct) with pqr|n and

p|q(q − 1).

The forward implication of this theorem gives us everything we need:

Corollary 2.5. Let (G,H,H ′) be a nontrivial solvable Gassmann triple of index
n. Then |G| is divisible by at least five primes.

Proof: By Theorem 2.4, n is divisible by at least three primes. Furthermore, by
Corollary 2.3, at least two primes divide |H|. Hence |G| = n|H| is divisible by at
least five primes.
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3. The General Case

In this section we prove the main result of this paper:

Theorem 3.1. Let (G,H,H ′) be a nontrivial Gassmann triple. Then |G| is divis-
ible by at least five primes, not necessarily distinct.

The outline of our proof for Theorem 3.1 is as follows. We first claim that all
groups divisible by four or fewer primes are either solvable or are isomorphic to A5

(Claim 1). It then follows from Corollary 2.5 that if G 6∼= A5 and |G| is divisible by
four or fewer primes, then G contains no nontrivial Gassmann equivalent subgroups.
We finish the proof by showing that A5 also has no nontrivial Gassmann equivalent
subgroups.

We break the proof of Claim 1 into three cases:
(1) G has odd order or is divisible by at most two distinct primes⇒ G solvable.
(2) G has order 2pqr, where 2 < p < q ≤ r ⇒ G solvable.
(3) G has order 22pq, where p < q ⇒ G solvable or G ∼= A5.

Case 1: By the Odd Order Theorem of Feit and Thompson every group of odd
order is solvable (see [4]). By Burnside’s paqb Theorem every group with order
paqb, where p, q are prime, is solvable (see [8] pp. 247-8).

In proving Cases 2 and 3, we use the following additional results due to Burnside.
For proofs of these, consult [8], pp. 289-290.

Theorem 3.2. Let G be a finite group and let S be a Sylow-p subgroup of G such
that S ≤ Z(NG(S)). Then G = N o S where N CG.

Here NG(S) refers to the normalizer of S ≤ G while Z(NG(S)) denotes the center
of NG(S). We also use the following corollary of Theorem 3.2.

Corollary 3.3. Let G be a finite group and let S be a cyclic Sylow-p subgroup of
G where p is the smallest prime divisor of |G|. Then S satisfies the conditions of
Theorem 3.2 and G = N o S where N CG.

Now we proceed with Cases 2 and 3.
Case 2: Let |G| = 2pqr, with 2 < p < q ≤ r, and let S be a Sylow-2 subgroup of

G. Corollary 3.3 tells us that we may write G = NoS, where NCG and |N | = pqr.
Since N has odd order, it is solvable. Since G/N has order 2, it is solvable. Hence
G is solvable.

Case 3: Let |G| = 22pq, where p < q, excluding the case p =3, q =5. Let S
be a Sylow-2 subgroup of G. S hence has order 4. If S is cyclic, then we can use
Corollary 3.3 and proceed as in Case 2. Hence let S ∼= Z2 × Z2. We first prove the
case where |G| is not divisible by 3. Let NG(S) act on S by conjugation, giving a
homomorphism φ : NG(S)→ Aut(S), where Aut(S) is the automorphism group of
S. Since S ∼= Z2 × Z2 is a vector space over Z2, Aut(S) ∼= GL2(Z2) and hence has
order (22 − 1)(22 − 2)=6. Let Qpi

denote any Sylow-pi subgroup of NG(S). Then
NG(S) = 〈Qpi

|pi divides |NG(S)|〉. NG(S) is hence mapped trivially under φ if Qpi

is mapped trivially for every prime pi dividing |NG(S)|. We let Q2 = S. Clearly,
since S is abelian, it acts on itself trivially by conjugation and φ(S) = 1. Since 3
does not divide |NG(S)| by hypothesis, |Qpi | is relatively prime with |Aut(S)|=6
for all primes pi dividing |NG(S)| where pi 6= 2. It follows that φ(Qpi

) = 1 for all
of these. Hence S ≤ Z(NG(S)) and we use Theorem 3.2 to claim that G = N o S
where N CG. As above, N and G/N are solvable, hence G is as well. Now suppose
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p = 3 and q > 5 (|G| = 22 · 3q, q > 5). Let nq denote the number of Sylow-q
subgroups of G and let Q be a Sylow-q subgroup of G. Basic results on Sylow
subgroups give us: 1) nq ≡ 1 (mod q), and 2) nq = |G : NG(Q)| divides 22 · 3. By
2), nq=1,2,3,4,6, or 12. Coupling this with 2) and the restriction q > 5 we have the
following cases:

(1) q >5 and nq=1.
(2) q =11 and nq=12.

(1) ⇒ Q C G. In this case Q is solvable and G/Q is divisible by exactly two
distinct primes hence is solvable by Burnside’s result. Hence G is solvable.

(2) ⇒ |G : NG(Q)|=12 ⇒ |NG(Q)|=11 ⇒ NG(Q) = Q. Since Q is cyclic, hence
abelian, this gives Q = Z(NG(Q)) = NG(Q), hence Theorem 3.2 applies, giving
G = N oQ, where N CG. G/N is solvable, and so is N , since it has order 22 · 3.
Hence G is solvable.

We are left with the case where G has order 22 · 3 · 5 = 60. If G is not solvable,
it must be simple, since the existence of 1 < N C G would imply G and G/N
solvable by order considerations. There is exactly one simple group of order 60 up
to isomorphism, namely A5 (see [3] pp. 145-6).

Up to this point we have shown that if |G| is divisible by at most four primes and
is not isomorphic to A5, then G is solvable. For all such groups G, Corollary 2.5
(or more precisely its contrapositive statement) guarantees that any Gassmann
equivalent subgroups of G must be trivial. The only thing left to show is that A5

contains no nontrivial Gassmann equivalent subgroups.
We prove this by showing that any two proper subgroups of A5 with a particular

order are either conjugate or not Gassmann equivalent. Due to Lagrange’s theorem
we need only check subgroups of order 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30. Subgroups
of order 2, 3, or 5 are cyclic and hence there cannot be any nontrivial Gassmann
equivalent subgroups of A5 with these orders by Corollary 2.2. Subgroups of order
4 are all conjugate because they are Sylow-2 subgroups of A5. Theorem 2, part (c)
of [7] states that any two Gassmann equivalent subgroups of prime index p in Ap
are conjugate; it follows that there are no Gassmann equivalent subgroups of A5

with order 12. Furthermore, there are no subgroups of A5 with order 15, 20, or 30
by the simplicity of A5. Any subgroup with order 30 would have index 2 and hence
be normal. If there were a subgroup H of order 15 or 20, letting A5 act on the coset
space G/H would give a nontrivial homomorphism φ : A5 → S3 or φ : A5 → S4.
The kernel of φ in either case would be a proper nontrivial normal subgroup of A5,
hence no such H exists.

We are left with subgroups H of order 6=2 · 3 and 10=2 · 5. If such an H
were abelian, it would be cyclic because it would be the direct product of two
cyclic groups of relatively prime order. Hence by Corollary 2.2 any two abelian
Gassmann equivalent subgroups of order 6 or 10 in A5 are conjugate. It follows
that we need only examine the case in which H is isomorphic to one of the dihe-
dral groups D6 or D10. We consider the case H ∼= D6. Then H is given by the
presentation H =

〈
r, s|r3 = s2 = 1, srs−1 = srs = r−1

〉
. It follows, since we are

in A5, that r is a 3-cycle and s is a product of 2 disjoint 2-cycles (for example,
H = 〈(1, 2, 3), (1, 2)(4, 5)〉). We claim that a choice of r determines precisely one
subgroup H ∼= D6 of order 6 in A5. This will enable us to use Lemma 2.1 to
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prove that any two Gassmann equivalent subgroups isomorophic to D6 must be
conjugate.

To see that a choice of r determines a unique subgroup isomorphic to D6, let
a1, a2, a3, a4, and a5 represent the distinct integers 1 to 5, and set r = (a1, a2, a3).
From srs = r−1 and srs = (s(a1), s(a2), s(a3)) we see that s must be of the
form (a1, a2)(a4, a5), (a1, a3)(a4, a5), or (a2, a3)(a4, a5), since s cannot take one of
a1, a2, a3 to a4 or a5 (if it did then we would not have srs = r−1). However, each of
these choices of s together with r generate precisely the same subgroup, namely H =
{(), (a1, a2, a3), (a1, a3, a2), (a1, a2)(a4, a5), (a1, a3)(a4, a5), (a2, a3)(a4, a5)}. Hence
a choice of r determines a unique subgroup of A5 isomorphic to D6. Now suppose
we are given two Gassmann equivalent subgroups H,H ′ ≤ A5 with H,H ′ ∼= D6,
and let H = 〈r, s〉. By Lemma 2.1 there is a conjugate K of H ′ containing r. But
we have seen that this implies K = H, hence the Gassmann triple (G,H,H ′) is
trivial. A similar argument may be made for subgroups of order 10 isomorphic to
D10. A5 therefore does not contain any nontrivial Gassmann triples.

This concludes the proof of Theorem 3.1. In the next section we address some
questions that arise from this theorem.

4. Gassmann Triples in groups divisible by exactly five primes

Having proved this result, a natural question to ask next is whether, given an
integer m divisible by precisely five primes, there is a group G with |G| = m
containing nontrivial Gassmann equivalent subgroups. If m = p5, with p prime,
the answer is yes. Guralnick has constructed for p > 2 a group of order p5 with
nontrivial Gassmann equivalent subgroups of order p2 in Example 4.1 of [6]. The
case p = 2 is furnished by the group given in the example of Section 1.

However, one does not have to look very far to find several counterexamples to
our question. Theorem 2.4 tell us that any nontrivial Gassmann triple of a solvable
group G must have index divisible by three primes p, q, and r such that p | q(q−1).
We use this condition to set up several examples of groups with order divisible
by precisely five primes which do not contain any nontrivial Gassmann equivalent
subgroups simply because of their orders. In the following let m be an integer
with m =

∏k
i=1 p

αi
i such that pj 6≡ 1 (mod pi) for all pairs pi ≤ pj dividing m,∑k

i=1 αi = 5, and 2 ≤ k ≤ 5. This condition forces m to be odd since its order
is divisible by at least 2 distinct primes and every odd prime is congruent to 1
mod 2. The Odd Order Theorem of Feit and Thompson then implies that any
group G with |G| = m is solvable and we can apply Theorem 2.4 to G.

First consider the case in which all five primes are distinct, say m =
∏5
i=1 pi.

Since no choice of three primes from {pi}5i=1 will satisfy the condition p | q(q−1), no
group of order m contains nontrivial Gassmann equivalent subgroups. An example
of such an integer is m = 5 · 7 · 13 · 17 · 23.

Now suppose (1) m = pqr2s or (2) m = pqr3 (p, q, r, s primes). Suppose there
is some nontrivial Gassmann triple (G,H,H ′) with |G| = m. By Theorem 2.4,
|G : H| = n is divisible by three primes and two of them must be r. Consider
Case (1) first. Without loss of generality, we let the other prime dividing n be s,
so that r2s | |G : H|. Then we have |H| = |H ′| = pq. Suppose p < q. Then we
have q 6≡ 1 (mod p) by the condition on m above, implying that H and H ′ are
cyclic and (G,H,H ′) is a trivial triple by Lemma 2.2. For Case (2) we get the same
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reduction. Examples of integers satisfying (1) and (2) are m = 5 · 7 · 132 · 17 and
m = 5 · 7 · 133.

We hence leave the reader with a slightly modified question: Given a set {pi}5i=1

of five primes, what is the minimal order of a group G such that
∏k
i=1 pi divides

|G| and G contains nontrivial Gassmann equivalent subgroups?
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