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FORMULAS FOR FIBONACCI-LIKE
SEQUENCES PRODUCED BY

PASCAL-LIKE TRIANGLES

Hiroshi Matsui and Toshiyuki Yamauchi
Kwansei Gakuin High School, Nishinomiya City JAPAN
e-mail: miyaderal272000@yahoo.co.jp

ABSTRACT

In this paper we are going to present three formulas to express Fibonacci-
like sequences with the Fibonacci sequence.
In reference [1] we constructed Pascal-like triangles using probabilities of a
game, and these Pascal-like triangles can be considered generalizations of the
well known Pascal’s triangle. Using these triangles, we can make Fibonacci-
like sequences.
These formulas can reveal very interesting relationships between Fibonacci-
like sequences and the Fibonacci sequence, and we can expect a rich possi-
bility of the research from these Fibonacci-like sequences.

1 MATHEMATICAL BACKGROUND OF
PASCAL-LIKE TRIANGLES

First we are going to present the game by which we can make Pascal-like
triangles.

Definition 1.1. Let p,n, m be fixed natural numbers such that m <n. We
have p players who are seated in a circle. The game begins with the first
player. Proceeding in order, a box is passed from hand to hand. The box
contains n numbered cards. The numbers on the cards in the box are assigned
in numerical order, from 1 to n. Any number z, such that x < m, is printed
on a red card. When a player receives the box, he draws a card from the box.
The player who draws a red card loses the game. The players cannot see the
card when they draw, hence they draw at random. Once a card is taken from



the box, that card will not be returned to the box. Therefore, when the first
player draws the first card, the number of the card can be any number 1,
2, ..., n, while the second player can draw any number 1,2,..., n except the
number of the card that the first player drew, and the game continues until
one of the players gets a red card and loses the game.

Definition 1.2. For natural numbers p,n, m,v such that m <n and v <p

we define U(p, n,m,v) = Zi;t n—v-pzCm—1, where ¢ = Ln_m—?_v—i—lJ.

Theorem 1. For any natural numbers n, m, p, v such that m <n and v <p
we have the following (a) and (b).

(a) U(p,n,m,v) is the number of possible cases in which the vth player
becomes the loser of the game in Definition 1.1 with p players, n cards and
m red cards.

(b) U(p,n,m,v) +U(p,n,m+1,v) =U(p,n+1,m+ 1,v).

(a) We represent n cards as {a, as, ---,a,}, and these cards must be
picked up in this order. Therefore the first card to be drawn is a;, and the
number of the card can be 1, 2, ---.n. The last one is a,,. The game ends
with the yth card if the yth card is red and other m — 1 red cards are in the
(y+1)th, -- -, the nth places. There are ,,_,C),—1 ways to put red cards into
places this way, and ,_,C),—; is the number of the possible cases that the
game ends with the yth card.

The number of cards to be drawn is n — m + 1 at most, since we have m
red cards. The vth player draws the vth, the (v + p)th, the (v + 2p)th,. ..,
the (v+ (t — 1)p)th card, where ¢ is the biggest natural number that satisfies
v+ (t—1)p <n—m+1, and hence
t=[(n—m+p—v+1)/p|.

Therefore by Definition 1.2 U(p, n, m,v) is the number of the possible cases
in which the vth player becomes the loser of the game.



(b) By Definition 1.2 we have

t1—1
U(pa n,m,v) = an'ufpzcmfla (11)
z=0
to—1
Ulp.n,m+1,0) = n_yp:Ch (1.2)
z=0
and
t3—1
U(p7n+ I,m+ 17'U) = Zn#»lfvfpzcm; (13)
z=0
where
t= L —m+p—v+1)/p], (1.4)
to=|n—(m+1)+p—v+1)/p]
and
ts=[(n+1—(m+1)+p—v+1)/p]. (1.6)
It is clear that ¢ < t; = t3. and hence we have for z =0,1,--- , 1
n—v—pom—l + n—v—pom = n+1—v—pom- (17)

By (1.4) and (1.5) t; =ty or t; = ty + 1. We are going to deal with these
two cases separately.

(i) If t; = t5 , by (1.1), (1.2), (1.3), (1.4), (1.5), (1.6) and (1.7) we have
U(p,n,m,v) +U(p,n,m+1,v) =U(p,n+1,m+1,v).

(ii) We suppose that ¢; = t5 + 1, then we have only to prove that the #;th
term of (1.1) is equal to the #;th term of (1.3), since (1.2) does not have the
tith term.

By the fact that ¢t = t, + 1, we know that n —m +p — v + 1 is a multiple of
p, and hence we have

n—m+p—uv-+1=npt.

From this we have

n—v—pti—1)=m-—1



and
n+1l—v—p(t; —1)=m,
which imply that

{ n—v—p(tl—l)cmfl =m-1Cm1 =1, (18)

n+1—v—p(t3—1)cm - mcm = 1.

By (1.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7) and (1.8) we have U(p, n, m, v)+
Up,n,m+1,0v)=Up,n+1,m+1,v). O

Remark 1.1. The authors have already proved Theorem 1 in reference [1].
They present the proof of Theorem 1 here, since the proof is important for
the reader to understand the structure of U(p,n, m,v).

Definition 1.3. Let G(p,n,m,v)zw.

Since ,,C,, is the total number of the possible cases of choosing m red cards
from n cards, by Theorem 1 it is easy to see that G/(p, n, m,v) is the proba-
bility that the vth player becomes the loser in the game.

Example 1.1. We are going to calculate U(3,8,3,1) and G(3,8,3,1).

Three persons are going to play the game of Definition 1.1 with the condition

that n = 8 and m = 3. Then we have 8 cards and two of them are red cards.
We represent 8 cards as {ai,as,as, -+, ag}, and we assume that these

cards are to be picked up according to this order. Therefore the first card to

be picked up is a;, and the number of a; can be 1, 2, --- 8. The last one to

be picked up is ag.

The 1st player can draw the 1st, the 4 rd, the 7th cards.

The 1st player becomes a loser with the 1st card if the 1st card is red and

other 2 red cards are in the 2nd, the 3rd, the 4th,-- -, the 8th places. There

are 7Cy ways to put red cards into places this way.

The 1st player becomes a loser with the 4th card if the 4th card is red and

other 2 red cards are in the 5th, the 6th, the 7th and the 8th places. There
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are 4C5 ways to do this.

The 1st player cannot become a loser with the 7th card since it is impossible
to put other 2 red cards in the 8th place.

The total number of the possible cases is

U(3,8,3,1) = 70y + 4,Cy = 2146 = 27.

It is clear that

G(3,8,3,1)="05m = 4.

2 SEQUENCES PRODUCED BY PASCAL-
LIKE TRIANGLES

By Theorem 1 U(p, n, m, v) has a property that reminds us of ,,C,,, and hence
the list {U(p,n,m,v), m <n and n =1,2,3,---} forms a triangle that is very
similar to the Pascal’s triangle. It will be natural to call this a Pascal-like
triangle. We are going to observe this fact in Example 2.1.

Example 2.1. The list { U(3,n,m,1), m <n and n = 1,2,3,---,7}.
It is sufficient to calculate the values of U(3,n,1,1) and U(3,n,n,1) forn =
1, 2, ...,7, since by Theorem 1(b) the value of U(3,n,k,1) with 1 < k < n

can be obtained by these values.

Since ¢ = |2=lH3=1bl | — | ni2 ]

3 Y
U(3,n,1,1) =3 no1-5.Co=t = |22,
Since ¢ = |2=nt3=lHL | =1 |

U(Sa n,n, ]-) = Zi;(l) n—1—3zCn—1 = 1.

Figurel
1
1,1
1,2,1
2,3,3,1
2,5,6,4,1
2,7,11,10,5,1
3,9,18,21,15,6,1



It is interesting to see the differences and similarities between this triangle
and the Pascal’s triangle.

It is well known that the numbers on diagonals of the Pascal’s triangle
add to the Fibonacci sequence, but the numbers on diagonals of a Pascal-like
triangle add to a Fibonacci-like sequence. We are going to illustrate this fact
in the following Example 2.2.

Example 2.2. If you use Figure 1, then you get the sequence b; = 1,0y =
1,b3=141=2,0,=242=4,b5=24+3+1=06,bs =2+5+3=10,b; =
34+7+6+1=17,---, and the rule of this sequence is

B bp—2+1, ifn=1(mod3).
bn = bna + { bus, ifn=0(mod 3).

It is natural to call this sequence a Fibonacci-like sequence, because it
has a rule that is very much like that of the Fibonacci sequence.
We are going to generalize the result of Example 2.2 to define a sequence

B,(n).

Definition 2.1. Let p be a fixed natural number. We define B, (1) = B,(2) =
1 and for natural number n

By(n—2)+1, ifn=1(mod p).
Bp(n):Bp(n—1)+{ B,(n—2), ifn:()(modg)-

In [4] we constructed B,(n) by using U(p,n,m,1), but in this paper we
defined it without using the result of [4].

3 THE RELATIONSHIPS BETWEEN THE
SEQUENCE B,(n) AND THE FIBONACCI
SEQUENCE F,

There are some very interesting relationships between the sequence B,(n)
and F,.



Example 3.1. Here we compare the Fibonacci sequence F), and B,(n).
(1) F, is {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ...}.

(2) Bo(n) is {1, 1, 3, 4, 8, 12, 21, 33, 55, 88, 144, 232, 377, 609, 987, ...}.
(3) By(n) is {1, 1, 2, 4, 6, 10, 17, 27, 44, 72, 116, 188, 305, 493, 798, ...}.

It is well known that we can express Bs(n), Bs(n) with the Fibonacci se-
quence.

By(n) = Fypy — DD See 4004695 of [5).

Bs(n) = [ (%2)]. See A052952 of [5].

The authors presented a formula to express By(n) with the Fibonacci se-
quence F, in Reference [3].

The authors are going to present formulas for B,(n) when p > 4 in Theorem

2, 3 and 4.

Theorem 2. Let p = 4q¢ for a natural number ¢. Here we denote B,(n) by
f(n), and we define Fy = f(0) = 0.
Then f(n) satisfies the following equations.

([(dqt) = P,

[(dgi 1) = P,
f(dqt +2) = P e (3.1)

. . .

Proof. Since f(1) = f(2) = 1, the second and the third equations of (3.1) is
valid for ¢ = 0. Therefore it is sufficient to prove that the left terms of the
equations of (3.1) satisfy the condition of Definition 2.1.



By using (3.1) fort =m and k = 0,1, ---, 4¢ — 3 we have

fldgm + k) + f(dgm + k + 1)
_ Fogmi e Fogma2q + Fogmak+1Fogma2q
Fy,

. Fqu+k+2F2qm+2q
Fy,

= f(4gm + k + 2). (3.2)

By using the (4¢ — 1)th and 4¢th equations of (3.1) for ¢t = m we have

f(4gm +4qg — 2) + f(4dgm + 4q — 1)
_ F2qm+4q—2F2qm+2q + Fqu+4q—1F2qm+2q
Fy,

Fagm+1qFogm
= I = f(dgm + dg), (3.3)

Fy,

where the last equation is derived from the first equation of (3.1) for ¢t = m+1.
By using the (4¢q + h)th equation of (3.1) for ¢t = m and the first equation of
(3.1) for t = m + 1 we have

f(4gm +4q — 1) + f(4gm + 4q)
_ Fqu+4Q*1F2qm+2q + F2qm+2qFZQm+4q
Fy,

_ Fqu+2qF2qm+4q+1 (3 4)
Fy,

By using the second equation of (3.1) for ¢t = m + 1 we have

Foym Fogm
fldgm +4q+1) = 2 ”‘1; 2amida (3.5)
2q

We are going to compare (3.4) and (3.5). It is well known that for any natural
numbers u and v with v > v

(_1)0Fu7'u - v+1Fu - FvFqul
, and hence if we let u = 2¢m + 4q and v = 2gm + 2q, then we have

FZQm+2qF2qm+4q+1 + FZq = FZQm+4qF2qm+2q+1- (3'6)



Therefore by (3.4),(3.5),(3.6)

f(dgm +4q — 1) + f(4gm +4q) + 1 = f(dgm +4q + 1). (3.7)

By (3.2),(3.3),(3.7) the left terms of (3.1) satisfy the condition of Definition
21. 0O

Theorem 2 presents a formula for a natural number p such that p is a multiple
of 4, and this is a generalization of the formula in [3]. This formula is quite
simple, but the following formulas are for an arbitrary natural number p and
the formulas are a little bit complicated.

Theorem 3. Let p be an even number Here we denote B,(n) by f(n), and
we define Fy = f(0) = 0.
Then f(n) satisfies the following equations.

;

f(pt) — Fpttp—Fpt—Fo—Fp
W —Fp—2
B o= Fopi—FL4Fy
fpt +1) = 2oegb———,

— Fptipto—Fpryo—Fo—Fpo
f(pt + 2) o 2Fp 41— Fp—2 )

. Pt gpih—Fp —F,.— —1)*F,_
J(pt + k) = Peetimp o) Took, (3.8)

_ _ Fot4ptp—3—Fpt4p—3—Fp_3+F3
flpt+p—3) = DY ,

_ 9\ — Fotdpip—2—Fptip—2-Fp2—I>
flpt+p—2) = Y ,
_ _ Fotipip-1—Fptip-1—Fp 1+F1

\ fipt+p—1)= 2Ry —Fp—2 :

Proof. Since f(1) = f(2) = 1, the second and the third equations of (3.8) is
valid for ¢ = 0. Therefore it is sufficient to prove that the left terms of the
equations of (3.8) satisfy the condition of Definition 2.1.



By using (3.8) fort =m and k = 0,1, ---, p — 3 we have

flpm+k)+ f(pm+k+1)
_ Fpm+p+k - Fpm+k — Fy — (_1)kafk

2F o — I, 2
+Fpm+p+k+1 — Fymiksr — Frpr — (=D F,
2F 1 — F, 2
_ Fomipirsz — Fpminsr — oo — (Z1)"2F, 4y
2F 1~ F, 2
= flpm+k+2). (3.9)

By using the (p — 1)th and the pth equations of (3.8) for ¢ = m we have

flpm+p—=2)+ f(pm+p—1)
_ Fpm+p+p—2 — Fpm+p—2 — Fp—2 — 5 Fpm+p+p—1 — Fpm+p—1 — Fp—l + £

2F, 1 — F, — 2 2F, 4 — F, — 2
— Fomiptp = Fpmap — Fp — Fy
2F,  — F, —2
_ Bpomanytp = Fpmar) — Fo — Iy
2F,, — F, —2
= f(p(m +1)), (3.10)

, where the last equation is derived from the first equation of (3.8) for t =
m + 1.
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By using the pth equation of (3.8) for t = m and the first equation of (3.8)
for t = m + 1 we have

flom+p—1)+ f(p(m+1)) +1
Fpm+p+p*1 - Fpm+p71 - prl + Fy Fp(m-l—l)-i—p - Fp(m—l—l) — Fy — Fp

= 1
2F . — F,—2 * 2F 1 — F,—2 *
— Fpm-l—p-i—p-l-l — Fpm-l—p-i—l — Fp+1 + I 11
2F, 1 — F,— 2
_ FBomipiptr = Fomipn + Fpr + 11 — F — 2
2F 1 — F,— 2
_ Fpm+1)1pr1 — Fpemry+1 — F1+ F
2F 1 — F,—2
= flp(m+1)+1), (3.11)

, where the last equation is derived from the second equation of (3.8) for
t=m+1.

By (3.9),(3.10) and (3.11) the left terms of (3.8) satisfy the condition of
Definition 2.1. [

Theorem 4. Let p be an odd number Here we denote B,(n) by f(n),
and we define Fy = f(0) = 0.

Then f(n) satisfies the following equations.

( f(pt) — Fot4pt+Fpi—Fo—Fp

2Fp+l*Fp ’
flpt+1)= Fpt+p+12+;ﬂi+i;fl+ml,
f(pt+2) = Fpt+p+2;'£;zji;fz—l~“p72,
f(pt+k)= FptipsitFpear—Fr— (-1 Fp (3.12)

2Fp+1—Fp ’

Flpt+p—3) = F+§FFF
_ Fpt+P+P—2+ Pt+P—27Fp—2+F2
f(pt+p_2) B +1—Fp

7
_ _ Fottptp—1+Fptip—1—Fp_1—F1
f(pt+p 1) = 2Fpi1—F) .

Y

Y
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Proof. Since f(1) = f(2) = 1, the second and the third equations of (3.12)
is valid for t = 0. Therefore it is sufficient to prove that the left side of the
equations in (3.12) satisfy the condition of Definition 2.1. By using (3.12)
fort=mand k=0,1,---,p—3

flpm+k)+ f(pm+k+1)
_ Fpm+p+k + Fpm+l~c — F — (_1)ka—k

2Fp+1 - Fp
+Fpm+p+k+1 + Fpmahsr — Frar — (=) F,
2Fp+1 - Fp
_ Fomiprbrr + Fpmakrr = Fryo — (1) Fp 0
- 2Fpp1 — By
= flpm+k +2). (3.13)

By using the (p — 1)th and the pth equations of (3.12) for t = m we have

flpm+p—2)+ f(pm+p—1)
_ Fpm+p+p—2 + Fpm+p—2 — Fp—2 + F + Fpm+p+p—1 + Fpm+p—1 — Fp—l — 5

2Fp 0 — 260 — I
— Fpm+p+p+Fpm+p — Fp — Iy
2Fp+1 - Fp
= f(p(m +1)), (3.14)

where the last equation is derived from the first equation of (3.12) for ¢ =
m + 1.
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By using the pth equation of (3.12) for t = m and the first equation of (3.12)
fort =m+1

flom+p—1)+ f(p(m+1)) +1
Fymiptp—1 + Fpmap—1 = Fpor = F1 | Fypmiyp + Fpmyy) — Fo — F

B 2Fp+1_Fp i 2Fp+1_Fp o

_ Fpm+p+p+1 + Fpm+p+1 — Fp+1 -5

= +1

2Fp+1 - Fp

— Fpm+p+p+1 + Fpm+p+1 + Fp+1 — I - Fp
a 2Fp1 — By

_ Fymit)+pt1 + Fpmrny41 — F1 + Fp

- 2Fpp1 — By

= f(p(m+1)+1), (3.15)

, where the last equation is derived from the second equation of (3.12) for
t=m+ 1.

By (3.12),(3.14) and (3.15) the left terms of (3.12) satisfy the condition of
Definition 2.1. [

Theorem 2, Theorem 3 and Theorem 4 show that there are very close
relationships between Fibonacci-like sequences and the Fibonacci sequence.
Therefore we can expect a wide range of applications for these Fibonacci-like
sequences.

ACKNOWLEDGEMENT

Contributions from Naoki Saida, Satoshi Hashiba and Munetoshi Sakaguchi.
Although they were not the primary authors, their contributions were signif-
icant. We would like to thank Mr. Harrison Gray, Mr. Daisuke Minematsu
and Dr.Ryohei Miyadera for helping us to prepare this article.

13



References

1] R. Miyadera, S.Hashiba, T.Hashiba, Y. Nakagawa, H. Matsui,
T.Yamauchi, M. Sakaguchi and D.Minematsu, Pascal like triangles and
Sierpinski like gaskets, Visual Mathematics Art and Science FElectric
Journal of ISIS-Symmetry, 9(1), 2007.

2] R. Miyadera, S.Hashiba and D.Minematsu, Mathematical Theory of
Magic Fruits, -Interesting patterns of fractions- Archimedes’ Lavora-
tory

(3] Ryohei Miyadera, Naoki Saida, Hiroshi Natsui, ” Elementary Problems,
B-1019”, Fibonacci Quarterly, 44.3, 2006.

[4] Ryohei Miyadera, Hiroshi Matsui and Daisuke Minematsu, A Gener-
alization of ,C), and Pascal like Triangles, Mathematical Gazette to
appear.

[5] The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/ njas/sequences/

14



	Formulas for Fibonacci-Like Sequences Produced by Pascal-Like Triangles
	Recommended Citation

	Fibonacci like sequence.dvi

