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ZERO-DIVISOR GRAPHS OF LOCALIZATIONS AND MODULAR
RINGS

THOMAS CUCHTA, KATHRYN A. LOKKEN, WILLIAM YOUNG

Abstract. In this paper, we examine the algebraic properties of localiza-
tions of commutative rings and how localizations affect the zero-divisor graph’s
structure of modular rings. We also classify the zero-divisor graphs of modular
rings with respect to both the diameter and girth of their resultant zero-divisor
graphs.

1. Introduction

In [4], Beck introduced the concept of the graph of a ring. Beck’s main purpose
was to examine the colorings of commutative rings. The work was continued by D.D.
Anderson and Naseer in [1]. In these two papers all ring elements were included in
the graph. However, this paper only includes the non-zero zero-divisors as vertices
in the graph, just as D.F. Anderson and Livingston introduced in [2]. The diameter
and girth of these zero-divisor graphs, among other things, were examined by D.F.
Anderson and Livingston in [2], by Mulay in [9], and by DeMeyer and Schneider
in [6]. In [2] it was shown that all zero-divisor graphs of commutative rings must
be connected with diameter less than or equal to three and girth three, four, or
infinity.

Throughout, R will denote a commutative ring with unity. The powerset of R
will be denoted P(R). In this paper we will only consider proper ideals of R. A
prime ideal P of a commutative ring R is an ideal of R such that if ab ∈ P, then
a ∈ P or b ∈ P . A zero-divisor is an element z ∈ R such that zr = 0 for some
nonzero r ∈ R. The set of zero-divisors of R will be denoted by Z(R), and Z(R)∗
= Z(R)\{0}.

Let R be a commutative ring with unity. Let S be a multiplicatively closed
subset of R. Define a binary relation ∼ on R × S by (r, s) ∼ (r′, s′) if and only if
there exists s∗ ∈ R\S such that s∗(rs′ − r′s) = 0. This relation is an equivalence
relation. Define r

s = (r, s). The localization of R at S is the set RS = {[ r
s ] | r ∈ R

and s ∈ S} together with two binary operations +, · : RS × RS → RS defined by
[ r
s ] + [ r′

s′ ] = [ rs′+r′s
ss′ ] and [ r

s ] · [ r′

s′ ] = [ rr′

ss′ ]. By the usual convention, · is replaced by
juxtaposition, that is, x ·y = xy. Note that RS is a commutative ring with additive
identity [01 ] and unity [11 ]. Notice that the complement of a prime ideal is always
multiplicatively closed. By convention, a localization RR\P , where P is a prime
ideal, is denoted RP .

The zero-divisor graph of R is denoted Γ(R) = {V, E}, where the vertices V =
{z | z ∈ Z(R)∗} and the edges E = {(z, z′) | zz′ = 0 and z, z′ ∈ V } (edges
are sometimes denoted as (a, b) where a and b are vertices). A path in a graph
is a sequence of vertices, a0, a1, ..., an such that each adjacent pair, ai, ai+1, is a
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nonrepeated valid edge in the edge set; (an, a0) may or may not be an edge. The
distance between two vertices in a graph is a path with the least number of edges.
The diameter of a graph G, denoted diam(G), is the largest distance between any
two vertices. A cycle is a path a0, a1, ..., an such that (an, a0) is an edge. The girth
of a graph G, denoted g(G), is the length of a cycle with the least number of edges.
A graph has girth ∞ if it contains no cycles. A graph is connected if there exists a
path between all vertices of the graph.

A reference for localizations can be found in [8], and a reference for graph theory
can be found in [5]. We compare the zero-divisor graphs of R and RP , the local-
ization of R around P . We consider the localizations of modular rings, and show
they are isomorphic to a particular Zm. We also completely classify the zero-divisor
graphs of modular rings by diameter and girth.

2. Γ(R) and Γ(RP )

From the definition of ∼, an element [ r
s ] of RS is in the equivalence class of [01 ]

if and only if there exists an s∗ ∈ S such that s∗r = 0. Clearly, if [ r
s ] = [01 ], then

for any s′ ∈ S [ r
s′ ] = [ 01 ].

Lemma 1. If [ r
s ] ∈ Z (RP ), then for any s̄ ∈ R\P , [ r

s̄ ] ∈ Z (RP ).

Proof. Assume [ r
s ] ∈ Z(RP ). Then there exists [ r′

s′ ] '= [01 ] such that [ r
s ][ r′

s′ ] = [01 ].
So there exists s∗ ∈ R\P such that s∗rr′ = 0. Let [ r

s̄ ] ∈ RP . Then since s∗rr′ = 0,
[ r
s̄ ][ r′

s′ ] = [ 01 ]. Thus, [ r
s̄ ] ∈ Z (RP ). !

Define the numerator function n : RS → P(R) by n([ r
s ]) = {r′ ∈ R | [ r

s ] = [ r′

s′ ]}.
Lemma 2. If [ r

s ] ∈ Z(RP ), then for every r̂ ∈ n([ r
s ]), r̂ ∈ P ∩ Z(R).

Proof. Suppose [ r
s ] ∈ Z(RP ). Let [ r′

s′ ] '= [01 ] such that [ r
s ][ r′

s′ ] = [ 01 ]. By definition,
there exists s∗ ∈ R\P such that s∗rr′ = 0, so r ∈ Z(R). We know for every
r̂ ∈ n([ r

s ]), [ r
s ] = [ r̂

ŝ ] for some ŝ. So, suppose r̂ '∈ P . Then we know that s∗r̂ '∈ P ,
since P is a prime ideal. If s̄ = s∗r̂, then s̄r′ = 0, which implies that [r′

s′ ] = [01 ], a
contradiction. Thus r̂ ∈ P . !
Definition 3. The total quotient ring of R, denoted T (R), is the localization RS

where S = R\Z(R).

The following lemmas present some relations between elements in T (R) and
elements in RP .

Lemma 4. Assume Z (R) ⊆ P . Then the following are equivalent.
i) [ r

1 ][ r′

1 ] = [01 ] in T (R).
ii) [ r

s ][ r′

s′ ] = [01 ] in T (R) for all s, s′ ∈ R\Z (R).
iii) [ r

s ][ r′

s′ ] = [ 01 ] in RP for all s, s′ ∈ R\P .
iv) rr′ = 0.

Proof. (i ⇒ ii) Assume [ r
1 ][ r′

1 ] = [01 ] in T (R) . Then there exists s∗ ∈ R\Z (R) such
that s∗rr′ = 0. But s∗ '∈ Z(R), so rr′ = 0 which implies [ r

s ][ r′

s′ ] = [01 ] in T (R) for
any s, s′ ∈ R\Z(R).

(ii ⇒ iii) Assume [ r
s ][ r′

s′ ] = [ 01 ] in T (R) for all s, s′ ∈ R\Z (R) . Then there exists
s∗ ∈ R\Z (R) such that s∗rr′ = 0. Since s∗ /∈ Z (R) , we know rr′ = 0. Therefore,
[ r
s ][ r′

s′ ] = [ 01 ] in RP for all s, s′ ∈ R\P .
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(iii ⇒ iv) Assume [ r
s ][ r′

s′ ] = [01 ] in RP . Then there exists s∗ ∈ R\P such that
s∗rr′ = 0. We know s∗ '∈ Z(R) since Z(R) ⊆ P , so rr′ = 0.

(iv ⇒ i) Clear. !
The following lemma shows that a pair of equivalence classes that are equal in

RP are also equal in T (R), under a particular condition.

Lemma 5. Assume Z (R) ⊆ P . Then [ r
s ] = [ r′

s′ ] in RP if and only if [ r
s ] = [ r′

s′ ] in
T (R).

Proof. (⇒) Assume [ r
s ] = [ r′

s′ ] in RP . Then there exists s∗ ∈ R\P such that
s∗(rs′ − r′s) = 0. Since s∗ /∈ Z (R) , we know rs′ − r′s = 0. Hence, [ r

s ] = [ r′

s′ ] in
T (R).

(⇐) Assume [ r
s ] = [ r′

s′ ] in T (R). Then there exists s∗ ∈ R\Z (R) such that
s∗(rs′ − r′s) = 0. Since s∗ /∈ Z (R) , we know rs′ − r′s = 0. Thus, [ r

s ] = [ r′

s′ ] in
RP . !

The next lemma establishes an expected result between zero-divisors of R and
their respective canonical fractions.

Lemma 6. Assume Z (R) ⊆ P . Let r, r′ ∈ Z (R)∗ . Then, r = r′ if and only if
[ r
1 ] = [ r′

1 ] in RP .

Proof. (⇐) Assume [ r
1 ] = [ r′

1 ] in RP . Then, there exists s∗ ∈ R\P such that
s∗(r − r′) = 0. Since s∗ '∈ Z (R), we know r − r′ = 0, which implies r = r′.
(⇒) Trivial. !

It would be convenient to be able to create a homomorphism between R and
T (R), and the next lemma establishes that under certain circumstances, the obvious
candidate for a homomorphism will suffice.

Lemma 7. If R = Z(R) ∪ U(R), then for every [ r
s ] ∈ T (R), there exists r′ ∈ R

such that [ r
s ] = [ r′

1 ].

Proof. Consider r′ = s−1r. Then, for all s∗ ∈ R\Z(R), we have s∗(r − sr′) =
s∗(r − ss−1r) = 0, which implies [r

s ] = [ r′

1 ]. !

A generalized version of the following theorem was presented and proved as
Theorem 2.2 in [3]. However, we will now present a different proof below.

Theorem 8. If R is a commutative ring with identity such that R = Z(R)∪U(R),
then R ∼= T (R).

Proof. Consider the function φ : R → T (R) defined by φ(r) = [ r
1 ]. Consider

[ r
1 ], [ r′

1 ] ∈ T (R) such that [ r
1 ] = [ r′

1 ]. Then, there exists s∗ ∈ R\Z(R) such that
s∗(r − r′) = 0. But s∗ '∈ Z(R), so r − r′ = 0 implies r = r′, thus φ is injective.
Consider any [ r

s ] ∈ T (R). By Lemma 7, we know that [ r
s ] = [ r′

1 ] for some r′ ∈ R.
Thus, φ(r′) = [ r′

1 ] = [ r
s ], so φ is surjective. Let r, r′ ∈ R. Then, φ(r+r′) = [ r+r′

1 ] =
[ r
1 ]+[ r′

1 ] = φ(r)+φ(r′) and φ(rr′) = [ rr′

1 ] = [ r
1 ][ r′

1 ] = φ(r)φ(r′), so φ is an operation
preserving function. Thus, R ∼= T (R). !

Note that since R ∼= T (R), it follows trivially that Γ(R) ∼= Γ(T (R)) under the
above conditions.
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3. Localizations of Zn

Consider Zn, where n=p1
e1p2

e2 ...pk
ek and each pi is prime. Since Zn is a princi-

pal ideal ring, every ideal is generated by a single element. Notice that prime ideals
in Zn will be generated by prime factors of n. Thus, we will only be concerned only
with localizations of Zn around ideals of the form (pi), where 1 ≤ i ≤ k.

Lemma 9. If [ qpi
ei+r
1 ] ∈ Zn(pi), then [ qpi

ei+r
1 ] = [ r

1 ].

Proof. All elements in Zn can be written as qpi
ei + r for some 0 ≤ r < pi

ei

by the division algorithm. Thus [qpi
ei+r
1 ] = [ r

1 ], since if s∗ ∈ Zn\(pi) such that
s∗ = p1

e1 ...pi−1
ei−1pi+1

ei+1 ...pk
ek , then s∗qpi

ei = 0 in Zn. !

The following lemma is in a similar spirit to Lemma 7. It establishes that we
can use the canonical mapping between Zn and prime ideal localizations of Zn as
the basis of an isomorphism.

Lemma 10. If [ r
s ] ∈ Zn(pi), then [ r

s ] = [ r′

1 ] in Zn(pi) for some r′ ∈ Zn.

Proof. Let [ r
s ] ∈ Zn(pi). Since s ∈ Zn\(pi), gcd(pei

i , s) = 1, and thus (pi
ei) ∼= Zs.

So, r ≡ mpi
ei(mod s) for some m. Therefore, there exists r′ = m′pi

ei for some
r′, m′ ∈ Zn such that sr′ ≡ r − mpei

i (mod s). Hence mpi
ei ≡ r − sr′(mod s).

Then, there exists s̄ ∈ Zn\(pi), namely s̄ = p1
e1 ...pi−1

ei−1pi+1
ei+1 ...pk

ek , such that
s̄(r− sr′) = s̄(mpei

i − sm′pei
i ) = 0 in Zn which, by definition, implies [r

s ] = [ r′

1 ]. !

In general, it is a difficult task to determine a ring that is isomorphic to a
given localization. The following theorem yields a very simple isomorphism for
localizations around prime ideals of modular rings.

Theorem 11. Let n=p1
e1p2

e2 ...pk
ek . Then Zn(pi)

∼= Zpi
ei .

Proof. Consider φ : Zpi
ei → Zn(pi) defined by φ(r) = [ r

1 ]. Assume φ(r) = φ(r̄).
Then [ r

1 ] = [ r̄
1 ]. By definition, there exists an s∗ ∈ Zn\(pi) such that s∗(r − r̄) = 0.

Thus, pei
i must divide r − r̄, which is impossible unless r = r̄. So, φ is injective.

Let [ r
s ] ∈ Zn(pi). Then by the previous lemma, we know [r

s ] = [ r′

1 ] for some
r′ ∈ Zn. So, r′ ≡ m (mod n). Then, since n = pe1

1 . . . pek
k , r′ ≡ m (mod pi

ei).
Then, φ(r′) = φ(m) = [m

1 ], and since r′ ≡ m (mod n), this implies [m
1 ] = [ r′

1 ] = [ r
s ],

and hence φ is surjective.
Take r, r̄ ∈ Zpi

ei . Then, φ(r + r̄) = [ r+r̄
1 ] = [ r

1 ] + [ r̄
1 ] = φ(r) + φ(r̄). Similarly,

φ(rr̄) = [ rr̄
1 ] = [ r

1 ][ r̄
1 ] = φ(r)φ(r̄). !

Corollary 12. Let n = p1
e1p2

e2 ...pk
ek . Then Γ(Zn(pi)) ∼= Γ(Zpi

ei ).

The isomorphism established above inspires a question about whether localiza-
tions around non-prime ideals have other nice isomorphisms. It also hints at the
possibility of an unexplored generalization of the theorem to localizations of direct
product decompositions, since a modular ring can be decomposed into a direct
product of powers of primes.
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4. Classification of Γ(Zn)

Theorem 13. The following table holds true:
Factorization of n Diameter Girth
p; p is prime - -
22 0 ∞
32 1 ∞
p2; p is prime and p > 3 1 3
23, or 2p; p odd prime 2 ∞
pq; p,q, distinct odd primes 2 4
pm; p is prime, m > 2, and pm '= 8 2 3
4p; p is an odd prime 3 4
pqk; p, q distinct primes, k ∈ Z+ and pqk does 3 3
not meet any criteria listed above

Proof. Let n = p where p is prime, then Γ(Zn) = ∅, since Zp is a field.
Let n = 22, then diam(Γ(Zn)) = 0 and g(Γ(Zn)) = ∞ by observation.
Let n = 32, then diam(Γ(Zn)) = 1 and g(Γ(Zn)) = ∞ by observation.
Let n = p2 where p is prime and p > 3. Then all zero-divisors of Zp2 are multiples

of p. Consider the zero-divisors m1p, m2p, and m3p. Then, there is a 3-cycle m1p
— m2p — m3p — m1p and it is clear that all zero-divisors are attached to each
other, so diam(Γ(Zn)) = 1 and g(Γ(Zn)) = 3.

Let n = 23, then diam(Γ(Zn)) = 2 and g(Γ(Zn)) = ∞ by observation.
Let n = 2p where p is an odd prime. Thus, Zn

∼= Z2 × Zp. By Theorem 2.5 in
[2], we know that Zn is a star graph. Thus diam(Γ(Zn)) = 2 and g(Γ(Zn)) = ∞.

Let n = pq where p and q are distinct odd primes. Then clearly, Γ(Zn) is complete
bipartite since Zp and Zq are fields, so diam(Γ(Zn)) = 2 and g(Γ(Zn)) = 4.

Let n = pm where p is prime, m > 2, and pm '= 8. Then, since multiples of p are
zero-divisors, consider m1p and m2p, any two arbitrary multiples of p. There will
always be a 2-path m1p — pm−1 — m2p and a 3-cycle m1pm−1 — p — m2pm−1

— m1pm−1. Thus diam(Γ(Zn)) = 2 and g(Γ(Zn)) = 3.
Let n = 4p. Then Z(Zn) = {p!, 2p!, 3p!, 2 ·2, 2 ·3, . . . , 2 · (p−1), 2 · (p+1), . . . , 2 ·

(n − 1)} for all " ∈ N. Consider 2, 2p!1 , p!2m1, and 2m2 where m1 ∈ {1, 3}, m2

is an even element, and "i ∈ N. There is a shortest 3-path, namely p!1m1 — 2m2

— 2p!2 — 2, so diam(Γ(Zn)) = 3. Now consider 2m3 where m3 is a distinct even
element such that m3 '= m2. There is a 4-cycle p!1m1 — 2m2 — 2p!2 — 2m3

— p!1m1. Since the multiples of p must connect to some multiple of 2, and all
multiples of 2 must connect to a multiple of p, any cycle in Γ(Zn) must have an
even number of edges. So, since we have a exhibited a 4-cycle and the girth cannot
be 3, g(Γ(Zn)) = 4.

Let n = pqk; p, q distinct primes, k ∈ Z+ and pqk does not meet any criteria
listed above. Then, p — qk — pk — q is a shortest 3-path, and qk — pq — pk is
a 3-cycle. Thus diam(Γ(Zn)) = 3 and g(Γ(Zn)) = 3. !

5. Conclusions and Acknowledgments

Localizations provide a valuable way to extend rings in general commutative ring
theory. Looking at the implications to zero-divisor graphs may provide a deeper
understanding of the structure of zero-divisor graphs and, in turn, of the zero-
divisors themselves. The classification of modular rings is a step that we hope will
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lead to a more complete classification of zero-divisor graphs, relying less on number
theoric devices and more on broad algebraic properties.

This paper was written over two summers (2007-2008) at the REU program at
Wabash College. Both programs were supported by NSF grants DMS-0453387 and
DMS-0755260. The authors would like to thank Michael Axtell and Joe Stickles
for being advisors over this paper and aiding in understanding of material.
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