# Rose-Hulman Undergraduate Mathematics Journal 

Volume 9
Issue 2

# Zero-divisor Graphs of Localizations and Modular Rings 

Thomas Cuchta<br>Marshall University Kathryn A. Lokken, cuchta@marshall.edu<br>Kathryn A. Lokken<br>University of Wisconsin, Madison<br>William Young<br>Purdue University

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

## Recommended Citation

Cuchta, Thomas; Lokken, Kathryn A.; and Young, William (2008) "Zero-divisor Graphs of Localizations and Modular Rings," Rose-Hulman Undergraduate Mathematics Journal: Vol. 9 : Iss. 2 , Article 3.
Available at: https://scholar.rose-hulman.edu/rhumj/vol9/iss2/3

# ZERO-DIVISOR GRAPHS OF LOCALIZATIONS AND MODULAR RINGS 

THOMAS CUCHTA, KATHRYN A. LOKKEN, WILLIAM YOUNG


#### Abstract

In this paper, we examine the algebraic properties of localizations of commutative rings and how localizations affect the zero-divisor graph's structure of modular rings. We also classify the zero-divisor graphs of modular rings with respect to both the diameter and girth of their resultant zero-divisor graphs.


## 1. Introduction

In [4], Beck introduced the concept of the graph of a ring. Beck's main purpose was to examine the colorings of commutative rings. The work was continued by D.D. Anderson and Naseer in [1]. In these two papers all ring elements were included in the graph. However, this paper only includes the non-zero zero-divisors as vertices in the graph, just as D.F. Anderson and Livingston introduced in [2]. The diameter and girth of these zero-divisor graphs, among other things, were examined by D.F. Anderson and Livingston in [2], by Mulay in [9], and by DeMeyer and Schneider in [6]. In [2] it was shown that all zero-divisor graphs of commutative rings must be connected with diameter less than or equal to three and girth three, four, or infinity.

Throughout, $R$ will denote a commutative ring with unity. The powerset of $R$ will be denoted $\mathcal{P}(R)$. In this paper we will only consider proper ideals of $R$. A prime ideal $P$ of a commutative ring $R$ is an ideal of $R$ such that if $a b \in P$, then $a \in P$ or $b \in P$. A zero-divisor is an element $z \in R$ such that $z r=0$ for some nonzero $r \in R$. The set of zero-divisors of $R$ will be denoted by $Z(R)$, and $Z(R)^{*}$ $=Z(R) \backslash\{0\}$.

Let $R$ be a commutative ring with unity. Let $S$ be a multiplicatively closed subset of $R$. Define a binary relation $\sim$ on $R \times S$ by $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ if and only if there exists $s^{*} \in R \backslash S$ such that $s^{*}\left(r s^{\prime}-r^{\prime} s\right)=0$. This relation is an equivalence relation. Define $\frac{r}{s}=(r, s)$. The localization of $R$ at $S$ is the set $R_{S}=\left\{\left.\left[\frac{r}{s}\right] \right\rvert\, r \in R\right.$ and $s \in S\}$ together with two binary operations $+, \cdot: R_{S} \times R_{S} \rightarrow R_{S}$ defined by $\left[\frac{r}{s}\right]+\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{r s^{\prime}+r^{\prime} s}{s s^{\prime}}\right]$ and $\left[\frac{r}{s}\right] \cdot\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{r r^{\prime}}{s s^{\prime}}\right]$. By the usual convention, $\cdot$ is replaced by juxtaposition, that is, $x \cdot y=x y$. Note that $R_{S}$ is a commutative ring with additive identity $\left[\frac{0}{1}\right]$ and unity $\left[\frac{1}{1}\right]$. Notice that the complement of a prime ideal is always multiplicatively closed. By convention, a localization $R_{R \backslash P}$, where $P$ is a prime ideal, is denoted $R_{P}$.

The zero-divisor graph of $R$ is denoted $\Gamma(R)=\{V, E\}$, where the vertices $V=$ $\left\{z \mid z \in Z(R)^{*}\right\}$ and the edges $E=\left\{\left(z, z^{\prime}\right) \mid z z^{\prime}=0\right.$ and $\left.z, z^{\prime} \in V\right\}$ (edges are sometimes denoted as $(a, b)$ where $a$ and $b$ are vertices). A path in a graph is a sequence of vertices, $a_{0}, a_{1}, \ldots, a_{n}$ such that each adjacent pair, $a_{i}, a_{i+1}$, is a

[^0]nonrepeated valid edge in the edge set; $\left(a_{n}, a_{0}\right)$ may or may not be an edge. The distance between two vertices in a graph is a path with the least number of edges. The diameter of a graph G , denoted $\operatorname{diam}(G)$, is the largest distance between any two vertices. A cycle is a path $a_{0}, a_{1}, \ldots, a_{n}$ such that $\left(a_{n}, a_{0}\right)$ is an edge. The girth of a graph G , denoted $\mathrm{g}(G)$, is the length of a cycle with the least number of edges. A graph has girth $\infty$ if it contains no cycles. A graph is connected if there exists a path between all vertices of the graph.

A reference for localizations can be found in [8], and a reference for graph theory can be found in [5]. We compare the zero-divisor graphs of $R$ and $R_{P}$, the localization of $R$ around $P$. We consider the localizations of modular rings, and show they are isomorphic to a particular $\mathbb{Z}_{m}$. We also completely classify the zero-divisor graphs of modular rings by diameter and girth.

$$
\text { 2. } \Gamma(R) \text { AND } \Gamma\left(R_{P}\right)
$$

From the definition of $\sim$, an element $\left[\frac{r}{s}\right]$ of $R_{S}$ is in the equivalence class of $\left[\frac{0}{1}\right]$ if and only if there exists an $s^{*} \in S$ such that $s^{*} r=0$. Clearly, if $\left[\frac{r}{s}\right]=\left[\frac{0}{1}\right]$, then for any $s^{\prime} \in S\left[\frac{r}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$.
Lemma 1. If $\left[\frac{r}{s}\right] \in Z\left(R_{P}\right)$, then for any $\bar{s} \in R \backslash P,\left[\frac{r}{\bar{s}}\right] \in Z\left(R_{P}\right)$.
Proof. Assume $\left[\frac{r}{s}\right] \in Z\left(R_{P}\right)$. Then there exists $\left[\frac{r^{\prime}}{s^{\prime}}\right] \neq\left[\frac{0}{1}\right]$ such that $\left[\frac{r}{s}\right]\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$. So there exists $s^{*} \in R \backslash P$ such that $s^{*} r r^{\prime}=0$. Let $\left[\frac{r}{\bar{s}}\right] \in R_{P}$. Then since $s^{*} r r^{\prime}=0$, $\left[\frac{r}{\bar{s}}\right]\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$. Thus, $\left[\frac{r}{s}\right] \in Z\left(R_{P}\right)$.

Define the numerator function $n: R_{S} \rightarrow \mathcal{P}(R)$ by $n\left(\left[\frac{r}{s}\right]\right)=\left\{r^{\prime} \in R \left\lvert\,\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{s^{\prime}}\right]\right.\right\}$.
Lemma 2. If $\left[\frac{r}{s}\right] \in Z\left(R_{P}\right)$, then for every $\hat{r} \in n\left(\left[\frac{r}{s}\right]\right), \hat{r} \in P \cap Z(R)$.
Proof. Suppose $\left[\frac{r}{s}\right] \in Z\left(R_{P}\right)$. Let $\left[\frac{r^{\prime}}{s^{\prime}}\right] \neq\left[\frac{0}{1}\right]$ such that $\left[\frac{r}{s}\right]\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$. By definition, there exists $s^{*} \in R \backslash P$ such that $s^{*} r r^{\prime}=0$, so $r \in Z(R)$. We know for every $\hat{r} \in n\left(\left[\frac{r}{s}\right]\right),\left[\frac{r}{s}\right]=\left[\frac{\hat{r}}{\hat{s}}\right]$ for some $\hat{s}$. So, suppose $\hat{r} \notin P$. Then we know that $s^{*} \hat{r} \notin P$, since $P$ is a prime ideal. If $\bar{s}=s^{*} \hat{r}$, then $\bar{s} r^{\prime}=0$, which implies that $\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$, a contradiction. Thus $\hat{r} \in P$.

Definition 3. The total quotient ring of $R$, denoted $T(R)$, is the localization $R_{S}$ where $S=R \backslash Z(R)$.

The following lemmas present some relations between elements in $T(R)$ and elements in $R_{P}$.

Lemma 4. Assume $Z(R) \subseteq P$. Then the following are equivalent.
i) $\left[\frac{r}{1}\right]\left[\frac{r^{\prime}}{1}\right]=\left[\frac{0}{1}\right]$ in $T(R)$.
ii) $\left[\frac{r}{s}\right]\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$ in $T(R)$ for all $s, s^{\prime} \in R \backslash Z(R)$.
iii) $\left[\frac{r}{s}\right]\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$ in $R_{P}$ for all $s, s^{\prime} \in R \backslash P$.
iv) $r r^{\prime}=0$.

Proof. ( $i \Rightarrow$ ii) Assume $\left[\frac{r}{1}\right]\left[\frac{r^{\prime}}{1}\right]=\left[\frac{0}{1}\right]$ in $T(R)$. Then there exists $s^{*} \in R \backslash Z(R)$ such that $s^{*} r r^{\prime}=0$. But $s^{*} \notin Z(R)$, so $r r^{\prime}=0$ which implies $\left[\frac{r}{s}\right]\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$ in $T(R)$ for any $s, s^{\prime} \in R \backslash Z(R)$.
(ii $\Rightarrow$ iii) Assume $\left[\frac{r}{s}\right]\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$ in $T(R)$ for all $s, s^{\prime} \in R \backslash Z(R)$. Then there exists $s^{*} \in R \backslash Z(R)$ such that $s^{*} r r^{\prime}=0$. Since $s^{*} \notin Z(R)$, we know $r r^{\prime}=0$. Therefore, $\left[\frac{r}{s}\right]\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$ in $R_{P}$ for all $s, s^{\prime} \in R \backslash P$.
$(i i i \Rightarrow i v)$ Assume $\left[\frac{r}{s}\right]\left[\frac{r^{\prime}}{s^{\prime}}\right]=\left[\frac{0}{1}\right]$ in $R_{P}$. Then there exists $s^{*} \in R \backslash P$ such that $s^{*} r r^{\prime}=0$. We know $s^{*} \notin Z(R)$ since $Z(R) \subseteq P$, so $r r^{\prime}=0$.
(iv $\Rightarrow i$ ) Clear.
The following lemma shows that a pair of equivalence classes that are equal in $R_{P}$ are also equal in $T(R)$, under a particular condition.
Lemma 5. Assume $Z(R) \subseteq P$. Then $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{s^{\prime}}\right]$ in $R_{P}$ if and only if $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{s^{\prime}}\right]$ in $T(R)$.
Proof. $(\Rightarrow)$ Assume $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{s^{\prime}}\right]$ in $R_{P}$. Then there exists $s^{*} \in R \backslash P$ such that $s^{*}\left(r s^{\prime}-r^{\prime} s\right)=0$. Since $s^{*} \notin Z(R)$, we know $r s^{\prime}-r^{\prime} s=0$. Hence, $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{s^{\prime}}\right]$ in $T(R)$.
$(\Leftarrow)$ Assume $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{s^{\prime}}\right]$ in $T(R)$. Then there exists $s^{*} \in R \backslash Z(R)$ such that $s^{*}\left(r s^{\prime}-r^{\prime} s\right)=0$. Since $s^{*} \notin Z(R)$, we know $r s^{\prime}-r^{\prime} s=0$. Thus, $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{s^{\prime}}\right]$ in $R_{P}$.

The next lemma establishes an expected result between zero-divisors of $R$ and their respective canonical fractions.
Lemma 6. Assume $Z(R) \subseteq P$. Let $r, r^{\prime} \in Z(R)^{*}$. Then, $r=r^{\prime}$ if and only if $\left[\frac{r}{1}\right]=\left[\frac{r^{\prime}}{1}\right]$ in $R_{P}$.
Proof. $(\Leftarrow)$ Assume $\left[\frac{r}{1}\right]=\left[\frac{r^{\prime}}{1}\right]$ in $R_{P}$. Then, there exists $s^{*} \in R \backslash P$ such that $s^{*}\left(r-r^{\prime}\right)=0$. Since $s^{*} \notin Z(R)$, we know $r-r^{\prime}=0$, which implies $r=r^{\prime}$.
$(\Rightarrow)$ Trivial.
It would be convenient to be able to create a homomorphism between $R$ and $T(R)$, and the next lemma establishes that under certain circumstances, the obvious candidate for a homomorphism will suffice.

Lemma 7. If $R=Z(R) \cup U(R)$, then for every $\left[\frac{r}{s}\right] \in T(R)$, there exists $r^{\prime} \in R$ such that $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{1}\right]$.
Proof. Consider $r^{\prime}=s^{-1} r$. Then, for all $s^{*} \in R \backslash Z(R)$, we have $s^{*}\left(r-s r^{\prime}\right)=$ $s^{*}\left(r-s s^{-1} r\right)=0$, which implies $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{1}\right]$.

A generalized version of the following theorem was presented and proved as Theorem 2.2 in [3]. However, we will now present a different proof below.
Theorem 8. If $R$ is a commutative ring with identity such that $R=Z(R) \cup U(R)$, then $R \cong T(R)$.
Proof. Consider the function $\phi: R \rightarrow T(R)$ defined by $\phi(r)=\left[\frac{r}{1}\right]$. Consider $\left[\frac{r}{1}\right],\left[\frac{r^{\prime}}{1}\right] \in T(R)$ such that $\left[\frac{r}{1}\right]=\left[\frac{r^{\prime}}{1}\right]$. Then, there exists $s^{*} \in R \backslash Z(R)$ such that $s^{*}\left(r-r^{\prime}\right)=0$. But $s^{*} \notin Z(R)$, so $r-r^{\prime}=0$ implies $r=r^{\prime}$, thus $\phi$ is injective. Consider any $\left[\frac{r}{s}\right] \in T(R)$. By Lemma 7, we know that $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{1}\right]$ for some $r^{\prime} \in R$. Thus, $\phi\left(r^{\prime}\right)=\left[\frac{r^{\prime}}{1}\right]=\left[\frac{r}{s}\right]$, so $\phi$ is surjective. Let $r, r^{\prime} \in R$. Then, $\phi\left(r+r^{\prime}\right)=\left[\frac{r+r^{\prime}}{1}\right]=$ $\left[\frac{r}{1}\right]+\left[\frac{r^{\prime}}{1}\right]=\phi(r)+\phi\left(r^{\prime}\right)$ and $\phi\left(r r^{\prime}\right)=\left[\frac{r r^{\prime}}{1}\right]=\left[\frac{r}{1}\right]\left[\frac{r^{\prime}}{1}\right]=\phi(r) \phi\left(r^{\prime}\right)$, so $\phi$ is an operation preserving function. Thus, $R \cong T(R)$.

Note that since $R \cong T(R)$, it follows trivially that $\Gamma(R) \cong \Gamma(T(R))$ under the above conditions.

## 3. LOCALIZATIONS OF $\mathbb{Z}_{n}$

Consider $\mathbb{Z}_{n}$, where $n=p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \ldots p_{k}{ }^{e_{k}}$ and each $p_{i}$ is prime. Since $\mathbb{Z}_{n}$ is a principal ideal ring, every ideal is generated by a single element. Notice that prime ideals in $\mathbb{Z}_{n}$ will be generated by prime factors of $n$. Thus, we will only be concerned only with localizations of $\mathbb{Z}_{n}$ around ideals of the form $\left(p_{i}\right)$, where $1 \leq i \leq k$.

Lemma 9. If $\left[\frac{q p_{i} e_{i}+r}{1}\right] \in \mathbb{Z}_{n\left(p_{i}\right)}$, then $\left[\frac{q p_{i}{ }^{e_{i}}+r}{1}\right]=\left[\frac{r}{1}\right]$.
Proof. All elements in $\mathbb{Z}_{n}$ can be written as $q p_{i}{ }^{e_{i}}+r$ for some $0 \leq r<p_{i}{ }^{e_{i}}$ by the division algorithm. Thus $\left[\frac{q p_{i}{ }_{i}+r}{1}\right]=\left[\frac{r}{1}\right]$, since if $s^{*} \in \mathbb{Z}_{n} \backslash\left(p_{i}\right)$ such that $s^{*}=p_{1}{ }^{e_{1}} \ldots p_{i-1}{ }^{e_{i-1}} p_{i+1}{ }^{e_{i+1}} \ldots p_{k}{ }^{e_{k}}$, then $s^{*} q p_{i}^{e_{i}}=0$ in $\mathbb{Z}_{n}$.

The following lemma is in a similar spirit to Lemma 7. It establishes that we can use the canonical mapping between $\mathbb{Z}_{n}$ and prime ideal localizations of $\mathbb{Z}_{n}$ as the basis of an isomorphism.

Lemma 10. If $\left[\frac{r}{s}\right] \in \mathbb{Z}_{n\left(p_{i}\right)}$, then $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{1}\right]$ in $\mathbb{Z}_{n\left(p_{i}\right)}$ for some $r^{\prime} \in \mathbb{Z}_{n}$.
Proof. Let $\left[\frac{r}{s}\right] \in \mathbb{Z}_{n\left(p_{i}\right)}$. Since $s \in \mathbb{Z}_{n} \backslash\left(p_{i}\right), \operatorname{gcd}\left(p_{i}^{e_{i}}, s\right)=1$, and thus $\left(p_{i}{ }^{e_{i}}\right) \cong \mathbb{Z}_{s}$. So, $r \equiv m p_{i}{ }^{e_{i}}(\bmod s)$ for some $m$. Therefore, there exists $r^{\prime}=m^{\prime} p_{i}{ }^{e_{i}}$ for some $r^{\prime}, m^{\prime} \in \mathbb{Z}_{n}$ such that $s r^{\prime} \equiv r-m p_{i}^{e_{i}}(\bmod s)$. Hence $m p_{i}{ }^{e_{i}} \equiv r-s r^{\prime}(\bmod s)$. Then, there exists $\bar{s} \in \mathbb{Z}_{n} \backslash\left(p_{i}\right)$, namely $\bar{s}=p_{1}{ }^{e_{1}} \ldots p_{i-1}{ }^{e_{i-1}} p_{i+1}{ }^{e_{i+1}} \ldots p_{k}{ }^{e_{k}}$, such that $\bar{s}\left(r-s r^{\prime}\right)=\bar{s}\left(m p_{i}^{e_{i}}-s m^{\prime} p_{i}^{e_{i}}\right)=0$ in $\mathbb{Z}_{n}$ which, by definition, implies $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{1}\right]$.

In general, it is a difficult task to determine a ring that is isomorphic to a given localization. The following theorem yields a very simple isomorphism for localizations around prime ideals of modular rings.

Theorem 11. Let $n=p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \ldots p_{k}{ }^{e_{k}}$. Then $\mathbb{Z}_{n\left(p_{i}\right)} \cong \mathbb{Z}_{p_{i} e_{i}}$.
Proof. Consider $\phi: \mathbb{Z}_{p_{i} e_{i}} \rightarrow \mathbb{Z}_{n\left(p_{i}\right)}$ defined by $\phi(r)=\left[\frac{r}{1}\right]$. Assume $\phi(r)=\phi(\bar{r})$. Then $\left[\frac{r}{1}\right]=\left[\frac{\bar{r}}{1}\right]$. By definition, there exists an $s^{*} \in \mathbb{Z}_{n} \backslash\left(p_{i}\right)$ such that $s^{*}(r-\bar{r})=0$. Thus, $p_{i}^{e_{i}}$ must divide $r-\bar{r}$, which is impossible unless $r=\bar{r}$. So, $\phi$ is injective.

Let $\left[\frac{r}{s}\right] \in \mathbb{Z}_{n\left(p_{i}\right)}$. Then by the previous lemma, we know $\left[\frac{r}{s}\right]=\left[\frac{r^{\prime}}{1}\right]$ for some $r^{\prime} \in \mathbb{Z}_{n}$. So, $r^{\prime} \equiv m(\bmod n)$. Then, since $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}, r^{\prime} \equiv m\left(\bmod p_{i}{ }^{e_{i}}\right)$. Then, $\phi\left(r^{\prime}\right)=\phi(m)=\left[\frac{m}{1}\right]$, and since $r^{\prime} \equiv m(\bmod n)$, this implies $\left[\frac{m}{1}\right]=\left[\frac{r^{\prime}}{1}\right]=\left[\frac{r}{s}\right]$, and hence $\phi$ is surjective.

Take $r, \bar{r} \in \mathbb{Z}_{p_{i} e_{i}}$. Then, $\phi(r+\bar{r})=\left[\frac{r+\bar{r}}{1}\right]=\left[\frac{r}{1}\right]+\left[\frac{\bar{r}}{1}\right]=\phi(r)+\phi(\bar{r})$. Similarly, $\phi(r \bar{r})=\left[\frac{r \bar{r}}{1}\right]=\left[\frac{r}{1}\right]\left[\frac{\bar{r}}{1}\right]=\phi(r) \phi(\bar{r})$.

Corollary 12. Let $n=p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \ldots p_{k}{ }^{e_{k}}$. Then $\Gamma\left(\mathbb{Z}_{n\left(p_{i}\right)}\right) \cong \Gamma\left(\mathbb{Z}_{p_{i} e_{i}}\right)$.
The isomorphism established above inspires a question about whether localizations around non-prime ideals have other nice isomorphisms. It also hints at the possibility of an unexplored generalization of the theorem to localizations of direct product decompositions, since a modular ring can be decomposed into a direct product of powers of primes.

## 4. Classification of $\Gamma\left(\mathbb{Z}_{n}\right)$

Theorem 13. The following table holds true:

| Factorization of $n$ | Diameter | Girth |
| :--- | :---: | :---: |
| $p ; p$ is prime | - | - |
| $2^{2}$ | 0 | $\infty$ |
| $3^{2}$ | 1 | $\infty$ |
| $p^{2} ; p$ is prime and $p>3$ | 1 | 3 |
| $2^{3}$, or $2 p ; p$ odd prime | 2 | $\infty$ |
| $p q ; p, q$, distinct odd primes | 2 | 4 |
| $p^{m} ; p$ is prime, $m>2$, and $p^{m} \neq 8$ | 2 | 3 |
| $4 p ; p$ is an odd prime | 3 | 4 |
| $p q k ; p, q$ distinct primes, $k \in \mathbb{Z}^{+}$and pqk does <br> $n o t ~ m e e t ~ a n y ~ c r i t e r i a ~ l i s t e d ~ a b o v e ~$ | 3 | 3 |

Proof. Let $n=p$ where $p$ is prime, then $\Gamma\left(\mathbb{Z}_{n}\right)=\emptyset$, since $\mathbb{Z}_{p}$ is a field.
Let $n=2^{2}$, then $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=0$ and $g\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=\infty$ by observation.
Let $n=3^{2}$, then $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=1$ and $g\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=\infty$ by observation.
Let $n=p^{2}$ where p is prime and $p>3$. Then all zero-divisors of $\mathbb{Z}_{p^{2}}$ are multiples of $p$. Consider the zero-divisors $m_{1} p, m_{2} p$, and $m_{3} p$. Then, there is a 3 -cycle $m_{1} p$ - $m_{2} p-m_{3} p-m_{1} p$ and it is clear that all zero-divisors are attached to each other, so $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=1$ and $g\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=3$.

Let $n=2^{3}$, then $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=2$ and $g\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=\infty$ by observation.
Let $n=2 p$ where $p$ is an odd prime. Thus, $\mathbb{Z}_{n} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{p}$. By Theorem 2.5 in [2], we know that $\mathbb{Z}_{n}$ is a star graph. Thus $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=2$ and $g\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=\infty$.

Let $n=p q$ where $p$ and $q$ are distinct odd primes. Then clearly, $\Gamma\left(\mathbb{Z}_{n}\right)$ is complete bipartite since $\mathbb{Z}_{p}$ and $\mathbb{Z}_{q}$ are fields, so $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=2$ and $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=4$.

Let $n=p^{m}$ where p is prime, $m>2$, and $p^{m} \neq 8$. Then, since multiples of $p$ are zero-divisors, consider $m_{1} p$ and $m_{2} p$, any two arbitrary multiples of $p$. There will always be a 2 -path $m_{1} p-p^{m-1}-m_{2} p$ and a 3 -cycle $m_{1} p^{m-1}-p-m_{2} p^{m-1}$ $-m_{1} p^{m-1}$. Thus diam $\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=2$ and $g\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=3$.

Let $n=4 p$. Then $Z\left(\mathbb{Z}_{n}\right)=\left\{p^{\ell}, 2 p^{\ell}, 3 p^{\ell}, 2 \cdot 2,2 \cdot 3, \ldots, 2 \cdot(p-1), 2 \cdot(p+1), \ldots, 2\right.$. $(n-1)\}$ for all $\ell \in \mathbb{N}$. Consider $2,2 p^{\ell_{1}}, p^{\ell_{2}} m_{1}$, and $2 m_{2}$ where $m_{1} \in\{1,3\}, m_{2}$ is an even element, and $\ell_{i} \in \mathbb{N}$. There is a shortest 3 -path, namely $p^{\ell_{1}} m_{1}-2 m_{2}$ $-2 p^{\ell_{2}}-2$, so $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=3$. Now consider $2 m_{3}$ where $m_{3}$ is a distinct even element such that $m_{3} \neq m_{2}$. There is a 4 -cycle $p^{\ell_{1}} m_{1}-2 m_{2}-2 p^{\ell_{2}}-2 m_{3}$ - $p^{\ell_{1}} m_{1}$. Since the multiples of $p$ must connect to some multiple of 2 , and all multiples of 2 must connect to a multiple of $p$, any cycle in $\Gamma\left(\mathbb{Z}_{n}\right)$ must have an even number of edges. So, since we have a exhibited a 4 -cycle and the girth cannot be $3, \mathrm{~g}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=4$.

Let $n=p q k ; p, q$ distinct primes, $k \in \mathbb{Z}^{+}$and $p q k$ does not meet any criteria listed above. Then, $p-q k-p k-q$ is a shortest 3-path, and $q k-p q-p k$ is a 3-cycle. Thus $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=3$ and $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=3$.

## 5. Conclusions and Acknowledgments

Localizations provide a valuable way to extend rings in general commutative ring theory. Looking at the implications to zero-divisor graphs may provide a deeper understanding of the structure of zero-divisor graphs and, in turn, of the zerodivisors themselves. The classification of modular rings is a step that we hope will
lead to a more complete classification of zero-divisor graphs, relying less on number theoric devices and more on broad algebraic properties.

This paper was written over two summers (2007-2008) at the REU program at Wabash College. Both programs were supported by NSF grants DMS-0453387 and DMS-0755260. The authors would like to thank Michael Axtell and Joe Stickles for being advisors over this paper and aiding in understanding of material.

## References

[1] Anderson, D.D. and Naseer, M., Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500-514.
[2] Anderson, David F. and Livingston, Philip S., The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
[3] Anderson, David F., Levy, Ron, and Shapiro, Jay, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, Journal of Pure and Applied Algebra 180(3) (2003), 221-241.
[4] Beck, I., Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
[5] R. Diestel, Graph Theory, Springer-Verlag, 1997.
[6] DeMeyer, F.and Schneider, K., Automorphisms and zero-divisor graphs of commutative rings, International J. of Commutative Rings 1(3) (2002), 93-106.
[7] Dummit, David S., and Foote, Richard M., Abstract Algebra, 3rd Ed. (2004).
[8] Kaplansky, Irving, Commutative Rings, Univ. of Chicago Press, Chicago, rev. ed., 1974.
[9] Mulay, S.B., Cycles and symmetries of zero-divisors, Comm. Alg. 30(7) (2002), 3533-3558.


[^0]:    Date: 18 August 2008.

