View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Rose-Hulman Institute of Technology: Rose-Hulman Scholar

Rose-Hulman Undergraduate Mathematics Journal

Volume 9 .
Issue 2 Article 1

Duursma Zeta Functions of Type IV Virtual Codes

Sarah Catalano
U S Naval Academy, sarahlynncat@gmail.com

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation

Catalano, Sarah (2008) "Duursma Zeta Functions of Type IV Virtual Codes," Rose-Hulman Undergraduate
Mathematics Journal: Vol. 9 : Iss. 2, Article 1.

Available at: https://scholar.rose-hulman.edu/rhumj/vol9/iss2/1


https://core.ac.uk/display/268182323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol9
https://scholar.rose-hulman.edu/rhumj/vol9/iss2
https://scholar.rose-hulman.edu/rhumj/vol9/iss2/1
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol9/iss2/1?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

On Duursma Zeta Functions of Type IV Virtual Codes
Sarah Catalano
10-16-2008

1 Introduction

Though less than 60 years old, the field of error-correcting codes now per-
vades many aspects of our daily lives - from CDs and DVDs to cell-phone
communication. This paper looks at a topic in coding theory which indirectly
relates, interestingly enough, to one of the most famous unsolved problems
in mathematics, the Riemann hypothesis.

In 1999, Iwan M. Duursma defined the zeta function for a linear code in
terms of a generating function related to the Hamming weight enumerator
(the precise definition is given below). Duursma has written numerous papers
on the subject of zeta functions of linear error-correcting (see [D1]-[D6]) and
the greater part of this project is centered on his ground breaking work in
the field. Duursma’s work in Eztremal Weight Enumerators and Ultraspher-
ical Polynomials will be extended to formally self-dual codes (again, precise
definitions are given below). More specifically, this paper extends Duursma’s
work to zeta functions of formally Hermitian self-dual codes of Type IV. (In
fact, Duursma’s work extends to the even broader class of virtual Hermitian
self-dual weight enumerators of Type IV. See the remark before Definition
12]in §2/for details.)

The final and more ambitious goal of this thesis is to study the formulation
for a Riemann hypothesis analog. The unsolved Riemann hypothesis has been
a mystery since Riemann’s work in the 1800’s. The search for an analog for
linear codes arose in the 1990’s. This hypothesis deals with the nature of
non-trivial zeros for zeta functions. The main result, which deals with the
Riemann hypothesis analog in a special case, is Theorem [16| below.

Examples of Duursma zeta functions of self-dual codes of small length

are computed in with the help of the mathematical software program
SAGE[S].



1.1 General Background

Let F = GF(q) denote a finite field with ¢ elements, where ¢ is a power of a
prime. A linear code is a subspace of " for some n > 1. This integer n is
called the length of C'. Let C be a linear code of length n over F. If ¢ = 2
then the code is called binary. Similarly, if ¢ = 3 then the code is called
ternary and if ¢ = 4 then the code is called quaternary. Throughout,
assume that F” has been given the standard basis e; = (1,0,...,0) € F",
es =(0,1,0,...,0) e F*, ..., e, = (0,0,...,0,1) € F". The dimension of C is
denoted k, so the number of elements of C is equal to ¢".

Another important parameter associated to the code is the number of
errors which it can, in principle, correct. The Hamming metric is useful for
quantifying such errors. For any two x,y € F", let d(z,y) denote the number
of coordinates where these two vectors differ:

d(z,y) = {1 <i<n |z #y}l (1)
Define the weight wt of v € F” to be the number of non-zero entries of v.
Note, d(x,y) = wt(x — y) because the vector = — y has non-zero entries only
at locations where x and y differ. The smallest distance between distinct
codewords in a linear code C' is the minimum distance of C"

d =d(C) = min.ec, £0d(0, ¢) (2)

(for details see [HILL| Theorem 5.2). Call a linear code of length n, dimension
k, and minimum distance d an [n,k,d] code, or [n,k| code if we wish to
disregard the minimum distance. The Singleton Bound states that if an
[n, k,d] linear code over F exists, then £ < n —d+ 1. An MDS Code, or
Maximum Distance Separable, is one where equality holds.

A linear code C' of length n and dimension k£ over F has a basis of &
vectors of length n. If those vectors are arranged as rows of a matrix G, call
the k x n matrix G a generator matrix for C.

Let C be a linear code in V' = F", as above. If F = GF(p) (p prime) then
we associate to V' the usual Euclidean inner product, denoted by a dot - or
by brackets (...,...):

(v, W) =v-w=vywy + Vawg + ... + VW,

where v = (v1,...,v,) € V and w = (wy, ..., w,) € V. If however, F = GF(p?)
(e.g., GF(4)) then there is a “conjugation” - : F — [F (denoted z € F — Z € F,



as with the analogous complex conjugation)E which respects addition and
satisfies az = az for all « € GF(p) and 2z € F = GF(p?). (Using the notation
in §2.1.2 in the text [JKT]|, we have x + /my = x — \/my.) With this, we
define the Hermitian inner product on V:

(v, W) = V- W = VW] + VW3 + ... + VWy,. (3)

The conjugate of a code C over F = GF(p?) is the code of conjugates:
C = {¢ | c € C}. This is also a linear code over F.

The dual code of C' is the vector space of all code words in " which are
orthogonal (with respect to the given inner product) to each codeword in C:

Ct={veF"|{v,c)=0Yce C}.

When there is possible ambiguity, if the inner product is the Hermitian inner
product then we call this the Hermitian dual code and if the inner product
is the Euclidean inner product then we sometimes call this the Euclidean
dual code. Note that the Hermitian dual code is the conjugate of the
Euclidean dual code. Also, if G is a generator matrix for C' then the Euclidean
dual code is the kernel or null space of G and the Hermitian dual code is the
conjugate of the kernel of G.

Whether V' is given the Euclidean inner product or the Hermitian inner
product, we say C' is Hermitian self-dual if C' = C*.

The Hamming weights of ' are denoted

A, ={ce C | wt(c) =1}, 0<i<nmn,

i.e., the number of codewords of weight i. The (Hamming) weight enu-
merator polynomial A¢ is defined by

Ac(z,y) = A"y =a" + A" Yyt 4+ A",
=0
Let We(z) = Ac(1, z), so therefore Ac(z,y) = 2"We(y/x). The support
of C' is the set supp(C) = {i | A; # 0}. If Ac(z,y) = Agi(z,y) then C is
called a formally self-dual code. The spectrum (or weight distribution)
of C is the list of coefficients of A¢:

spec(C) = [Ag, ..., Ay).

'We shall also use - : V — V to denote this map extended coordinate-wise to V.
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Two codes are formally equivalent if they have the same spectrum.

Remark 1 For example, if C is any linear code over F = GF(p*) then C is
formally equivalent to C and the Hermitian dual of C is formally equivalent
to the Fuclidean dual of C. In particular, C is formally self-dual with respect
to the Euclidean inner product if and only if C is formally self-dual with
respect to the Hermitian inner product.

There is another notation of equivalence of codes which is important.
Two codes C' and C’ are equivalent if there is a permutation of the indices
{1,2,...,n} which sends each the codewords of C' to those of C’. Saying
two codes are formally equivalent is weaker than saying that the codes are
equivalent. In other words, if C' and C’ are equivalent codes then they must
have the same spectrum, but the converse is not true in general.

In fact, it is known that two codes are permutation equivalent if and only
if they are isometric (by a result of MacWilliams).

All the examples below satisfy the Riemann hypothesis but only the hex-
acode? example is covered by Theorem [16 below.

Example 1 Let

10010101
G- 01010110
100110011
000O0T1T1T1T1

be the generator matriz of a code C over GF(2). This is a binary self-dual

8,4,4] code. In fact, this is an extremal Type II code (these terms will be
defined below).
The spectrum is [1,0,0,0,14,0,0,0, 1], weight enumerator polynomial is

Ac(z,y) = 2° + Ma'y* + 5,

27242741

and zeta function is 50T (97"

2Note this code satisfies the Riemann hypothesis vacuously, since its zeta function has
no zeroes.



Example 2 Let

20121100000 2
02012110000 2
c_|00201211000:2
“[ooo0o201211002
000020121102
000002012112

be the generator matriz of a code C over GF(3). This is a ternary self-dual
[12,6,6] code. In fact, this is an extremal Type III code (these terms will be
defined below).

The spectrum is [1,0,0,0,0,0,264,0,0,440,0,0, 24|, weight enumerator
polynomial is

Ac(z,y) = 2" + 2642%° + 4402°y" + 249"

3T243T+1

and zeta function is TUT)(1-3T) "

Define the finite field of four elements as follows. Let z denote a root of
the quadratic polynomial 22+ +1 € GF(2)[z], where GF(2)[z] denotes the
polynomial ring in the indeterminate x. Let GF(4) = {0, 1,2, z + 1} (which
we identify with the quotient ring GF(2)[z]/(z* + x + 1)). This set is a field
of characteristic 2 under the usual polynomial addition and multiplication,
keeping in mind 22 + z + 1 = 0. For any a € GF(4), define @ = a®. This is
a conjugation in the sense of the paragraph above equation (3) above, so we
can define the Hermitian dual code C* of a code C C GF(4)" as before.

Example 3 Let

IS TN N
— N W

be the generator matriz of a code C' over GF(4). This is a quaternary Her-
mitian self-dual [6,3,4] code and is referred to as the hexacode. In fact,
this is an extremal Type IV code (these terms will be defined below). Note
that this code is MDS.

The spectrum is [1,0,0,0,45,0, 18], weight enumerator polynomial is

Ac(z,y) = 25 + 452%y* + 18y°

and zeta function is m.



The dual code® of C' has parameters [n,n — k|. Moreover, denote the
minimum distance of the dual code by d*. For future reference, note that
if C = C* then (equating dimensions) k = n — k, forcing n to be even and
k =n/2. The genus of an [n, k, d]-code C' is defined by

Y C)=n+1—-Fk—d.
This measures how “far away the code is from being MDS”.

Lemma 4 If C is a self-dual code then its genus satisfies v =n/2 +1 —d.

proof: It suffices to show that k = n/2 if C = C*. But this was observed in
the discussion above. [

1.2 MacWilliams Identity

The goal of this section is to prove the MacWilliams identity (for simplic-
ity, restricted to the binary case). This identity is necessary to verify the
functional equation (5) for the Duursma zeta function. Several lemmas are
needed to prove this identity. The proof given below follows Hill Ch. 13
[HILL].

Lemma 5 Let C be a binary linear [n, k] code.

1. Fizy € GF(2)"—C*. Asx ranges over the vector space C, the quantity
x -y takes the value 0 and 1 equally often.

2. The following identity holds:

cy o2k ye Ot
Z(_l)y_{o y ¢ Ct

ceC

proof: Part 1: Let A={xe€C |z-y=0}and B={z e C |z -y=1}.
Let u be a codeword of C such that u-y=1. Let u+ A={u+a|a € A}.
Then v+ A C B, forifa € A, then (u+a)-y=a-y+u-y=0+1=1.
Similarly uw + B C A. Hence, |A| = |u+ A| < |B| = |u+ B| < |A|. Thus,
4] = |B].

Part 2: If y € C*, then c-y = 0 for all c € C, and so > _(—1)°Y =
|C|-1 =2 Ify ¢ C* then by Part 1, as = ranges over the vector space C, the

3Either the Euclidean or Hermitian.



quantity x -y takes the value 0 and 1 equally often, giving > _~(—1)“Y = 0.

O

ceC

Lemma 6 For each x € GF(2)" the following polynomial identity holds:

Z Zwt(y)(_l)x.y _ (1 N Z)wt(x)(l + Z)n_Wt(JC).
yeGF(2)™

proof:

> yeGr@)n ZMW(—1)mY = D opne{04} Dopae{01} " Duynefony 2T ()Tt Enyn
= Zyle{(),l} T zyne{o,l} (H?:1 Zyi(_l)myi)
= [l (Zje{(m} Zj(_l)xij)
= (1 — 2)"@)(1 4 z)n—@)
since D01 (=17 =1+zifr=0,and =1—z, ifr=1. O

Theorem 7 (MacWilliams’ identity): If C is a linear code over any finite
field ¥ of order q then

Aci(z,y) = O] Ac(z + (¢ — Dy, z — ).

This is the general statement of the MacWilliams identity. It is equally
valid whether C'* is the Euclidean dual or the Hermitian dual, since they are
formally equivalent by Remark (1. This proof will restrict to the binary case.

proof: Express the polynomial f(2) = Y ..o >, cappn 27 (=1)7Y in
two ways.

On one hand, Lemma 6/ implies

f(Z) = Zcec(l — z)Wt(C)<1 + Z)n—wt(c)

= (1+2)" Yeee (52)™

=(1+ Z)”Wc(i;—i) =Ac(1+2,1-2)

On the other hand, reversing the order of summation gives



F(2) = earen 20 (Xec(=1)7)
= Zyeci ZWt(y)2k (by Lemma@ Part 2)

= QkWCJ_ (Z)
Replacing z by y/z in the above gives

Ac(l+y/w, 1 —y/z) =28 Ac(1,y/x).

Since A¢c and Ap. are homogeneous polynomials of degree n, multiplying
both sides by x™ gives the theorem in the binary case. [J

If C = C*, then |C| = ¢™2. Therefore, the MacWilliam’s Identity can
be rewritten in this case as

+ (¢ — 1)y Ty,

Vi Vi

Ac(z,y) = ¢ " Ac(z + (¢ — Dy,x — y) = Ac(

where g = 2.

2 Duursma Zeta Function

2.1 Definition

The following definition generalizes the idea of the weight enumerator poly-
nomial of a code. It is not known how to determine if a particular polyno-
mial in two variables with non-negative integral coefficients is a Hamming
weight enumerator of an actual code. Therefore, we must enlarge the class
of polynomials we look at to so-called “virtual” weight enumerators, defined
as follows.

Definition 8 A homogeneous polynomial F(x,y) = 2" + >, fiz" 'y* of
degree n with complex coefficients is called a virtual weight enumer-
ator (or VWE) with support supp(F) = {i | f; # 0}. If F(z,y) =
"+ >0 fix™ 'y with f; # 0 then call n the length of F and d the
minimum distance of F. Define F* by F* = F o o, where



(1 12)

The minimum distance of F'* is denoted d*. Such an F of even degree
satisfying the invariance condition

r+(qg—1)y x—vy
Fla,y) = PG T20) pi ),
ViV
is called a virtual self-dual weight enumerator (or VSDWE for short)
over F = GF(q) having genus

Y(F)=n/2+1—d.

If b > 1 is an integer and supp(F) C bZ then the VWE F is called b-
divisible.

An example of a virtual weight enumerator F'(z, y) is the Hamming weight
enumerator of an actual code C, Ac(z,y). In fact, in the case F(x,y) =
Ac(z,y), the length of F' is the length of the code C' and the minimum
distance of F' is the minimum distance of the code C. An example of a
virtual self-dual weight enumerator is the Hamming weight enumerator of a
self-dual code.

It is amazing that the b-divisible virtual self-dual weight enumerators can
be classified.

Theorem 9 (Gleason-Pierce-Assmus-Mattson) Let F' be a b-divisible VS-
DWE over GF(q).
Then either

I g=0=2,
II. ¢q=2,b=4,
Il g=0b=3,

IV. g=4,b=2,

V. qis arbitrary, b =2, and F(x,y) = (2® + (¢ — 1)y?)™>.



For Assmus and Mattson’s proof of this theorem, please see Sloane [Sl].

Next, in order to carefully define the problem that this paper addresses,
the notion of Types of weight enumerators are introduced. Theorem [9/ moti-
vates the following definition.

Definition 10 If F' is a b-divisible VSDWE over F then F' is called

Typel, if g=0b=2, 2|n,
Type II, if =2, b=4, 8|n,
Type II1, if ¢g=0=3, 4|n,
Type IV, if g=4, b=2, 2|n.

The divisibility condition is extremely restricting and, for example, forces
the length n to be even.

Theorem 11 (Sloane-Mallows-Duursma) If F' is a b-divisible VSDWE with
length n and minimum distance d then

2[n/8] + 2, if Fis Type I,

4[n/24] + 4, if F is Type II,
3[n/12] + 3, if F is Type III,
2[n/6] 4+ 2, if Fis Type IV.

For a proof, see Duursma |D3].

An extremal b-divisible virtual self-dual weight enumerator is one for
which equality holds in the above theorem. The next section focuses on the
Type IV extremal case. With Theorems 9 and the foundations of Du-
ursma’s paper [D3] extend from self-dual codes to virtual self-dual weight
enumerators. This is because the coding-theoretic versions of the Theorem
9 and 11} used by Duursma, in fact hold for virtual self-dual weight enumer-
ators.

Definition 12 (Duursma [D1]) Assume F' is a virtual weight enumerator
polynomial of length n and minimum distance d. A polynomial P(7) having
coefficients in C of degree n + 2 — d — d* for which

(2T + (1 =T)y)" Flz,y) —a" e
Ty i e A

is called a Duursma zeta polynomial of F.

P(T) =+

10



The right-hand side of the above displayed equation is simply the Taylor
expansion (about 7" = 0) of the left-hand side.

Proposition 13 If d > 2 and d*- > 2 then there ezists a unique Duursma
zeta polynomial of degree < n — d.

sketch of proof: This is proven in the appendix to Chinen [C2|. Here is

the rough idea. Expand W in powers of T to get

b070ynT0 + (bl’lxy"A + bLOyn)Tl + (b272m2yn72 + b271xyn71 + bg,oyn)Tz + ...
+(bn—dn—a®"" Y + by g2y L b oy T+

where 0; ; are coefficients which may depend on ¢g. The Duursma polynomial
is a polynomial of degree n 4+ 2 — d — d*. Provided d* > 2, the Duursma,
polynomial can be written as P(T) = ag+a;T+...+a,_4T" % Now, rewrite
the terms of degree < n

F I )
($7y) T Tn—d_|_‘”

(T +y(1=T))" B
(1—T)(1—qT)P(T)_"'+ -

by means of the matrix equation B - ad = A given by

b0,0 bl,O cee bn—d,O U A /(q . 1)
0 b171 Ce bn—d,l n " .
0 0 byy ... fn—d=t | _ An-1/ _(q 1)
0 ... 0 byagnud o Ad/(q—1)

It is not hard to see that the defining equation for the b; ;’s above implies
that the diagonal entries of this matrix B are non-zero. Therefore the matrix
is invertible and the existence is established.

To establish uniqueness, suppose that

(T +y(1 -T))" B Flr,y) —a" . 4

1—T)1—qD) Pl(T)_...Jr—q_1 T %+ ..
and

(T +y(1-T))" B Flo,y) —a" . 4

=TI —qD) PQ(T)_...Jr—q_1 T+ ..

11



hold. Subtracting these gives

(T +y(1-=T))"
(1-T)(1—4qT)

This forces P, = P,. I

An example will be given in

The Duursma zeta function of F' is defined in terms of the zeta poly-
nomial by means of

(Pl(T) - P2(T>) =0.

P(T) ‘ (4)

(1-T)(1—qT)
In case of ambiguity denote this function by Zr. The most common usage
of this is in the case when F(z,y) = Ac(z,y) is the weight enumerator of
an actual code C'. In this case, we abuse notation and write Zo instead of
Zp. Define the Riemann hypothesis to be the following statement: all
(complex) zeros of Z(T) satisfy |I'| = 1/,/q. This is the analog for linear
codes of the still unsolved conjecture regarding the Riemann zeta function.

The Duursma zeta function satisfies an analog of the functional equation
for the Riemann zeta function. But before stating the functional equation,
new notation is needed.

Recall F+ = F o 0, where

(1)

There is a functional equation relating Z and Z+ = Z. (and hence also P
and Pt = Pp.). Note that even though F may not depend on ¢, F'* (and
hence Z1) does.

Z(T) =

Proposition 14 The Duursma zeta function satisfies the functional equa-

tion
1 1 \1—
21 = 2(=) () 5
(1) ) (= )
Analogously, the zeta polynomial P = Pr satisfies the functional equation
PHT) = P( )T (©
qT ’

where vy =n/2+1—d and v* =n/2+1 —d*.

12



This paper concerns the zeros of the zeta function in the case where F'is
an extremal virtual b-divisible self-dual weight enumerator of type IV.

2.2 Extremal Virtual Self-Dual Weight Enumerators

Following Duursma [D3], define the ultraspherical polynomial C"(z) on
the interval (—1,1) by

CM(cos ) = Z ( m;—k )( ng ) cos((k — €)8).
0<kt<n
k+l=n

This is the terminology used (for example) by Duursma; some other authors
call these “Gegenbauer polynomials.” This defines a function C!"(z), for z in
the interval —1 < x < 1.

The following theorem? is due to Duursma [D3], section 5.2.

Theorem 15 Let Q(T') = P(T)(1 + 2T') and let P be the Duursma zeta
polynomial of an extremal Type IV wvirtual self-dual weight enumerator of
length n = 3m + 3 and minimum distance d = m + 3. Then

12

T+T‘1>

QT*/V2) = 5

m
Tm m—41
(3m)! Cm (

The main result is stated below.

Theorem 16 The Duursma zeta function of an extremal self-dual weight
enumerator of Type IV with length divisible by 3 satisfies the Riemann hy-
pothesis.

proof: It’s a known fact [Sz| that all the roots of ultraspherical polynomi-
als C"" lie on the interval (—1,1). This polynomial is degree n and so there
are n such roots. In the theorem above, replacing T by ¢ (6 real) gives

2i0 UL p—
Qe /2):m6 Ch(cos B).

4Be careful of serious typos in section 5.2 of Duursma, which are corrected below.

13



Note that with 7 = e, 7L = cosf, and [T2/2| = [¢*?/2| = 1. By
the above comment, there are m values of § for which C""!(cosf) = 0.
Therefore, all the roots of the degree m polynomial Q have the form e%* /2;
hence all the roots of P lie on the circle of radius 1/,/q = % This verifies
the Riemann hypothesis in the case with length divisible by 3. [

3 Examples

The first example below computes a Duursma zeta function “by hand” in a
simple case. This is done to help the reader understand the steps that the
algorithm implemented in SAGE performs when computing the Duursma zeta
function “directly”.

Example 17 Consider the binary self-dual code C' of length n = 6, dimen-
sion £k = 3, and minimum distance d = 2. This is unique up to equiva-
lence and has weight enumerator W (xz,y) = 2® + 32ty + 32%y* + y. The
SAGE commands

SAGE
sage: g = var("q")
sage: T = var("T")
sage: x = var("x")
sage: y = var("y")
sage: f1 = lanmbda q,T,N sun([ sum([g”i for i in range(k+1)])*T*k for k in range

sage: f2 = lanbda x,y, T,n: sun([ binomal(n,j)*(x-y)?"j*y*(n-j)*T?j for j in range
sage: a0, al, a2, a3,a4 = var("a0, al, a2, a3, a4")
sage: F = expand(f1(2,T,6)*f2(x,y,T,6)*(a0+al*T+a2* T 2+a3* T"3+a4*T"4))

compute the first 6 terms (as a power series in T') of the series %P(T)
when ¢ =2, n =6, k =3, and d = 2. Next, SAGE computes the coefficients
and read off the matrix B:

SAGE

sage: aa = (F.coeff("T"4")).coeffs("x")
sage: v = [expand(aa[i][0]/y~(6-i)) for i in range(5)]

sage: BO = [v[O].coeff("a%"¥%tr(i)) for i in range(5)]
sage: Bl = [v[1].coeff("a%"¥%tr(i)) for i in range(5)]
sage: B2 = [v[2].coeff("a%"¥%tr(i)) for i in range(5)]
sage: B3 = [v[3].coeff("a%"%tr(i)) for i in range(5)]
sage: B4 = [v[4].coeff("a%"%tr(i)) for i in range(5)]

sage: BO.reverse(); Bl.reverse(); B2.reverse(); B3.reverse(); B4.reverse()
sage: B = matrix([BO, B1, B2, B3, B4] )

14

NT)
(n+1)])



sage: B

[ 1 -3 4 -2 1]
[ 0 6-12 12 0]
[ 0 0 15 -15 15]
[ 0 0 0 20 0
[ 0 0o 0 0 15

Note that the diagonal entries are binomial coefficients.
Finally, the vector A is determined by solving the equation B - d = A:

SAGE

sage: WIX6 = 3*xMN4ryN2+3*xA2*yNA+yn6

sage: ¢ = [Wx6(1,y).coeff("y %" %tr(i)) for i in range(2,7)]
sage: c.reverse()

sage: cc = vector(c)

sage: (B*(-1)*cc).list()

[4/5, 0, 0, 0, 1/5]

This implies that the zeta polynomial of C'is given by P(T) = £+ + £7*.

The next examples illustrate the computation of the Duursma zeta func-
tion for a quaternary code.

Example 18 The hexacode from Example (3/is an MDS code. In general, it
is true that the Duursma zeta polynomial of any MDS code is P(T") = 1.

Example 19 Here is a more interesting example. Let z denote the same
element as was defined in Example (3. Let

1 0 0 0OOO0O O 0 O 1 z+1 1 1 z 1 1 z+1 z
o 1 0 0 0 0 0 0 0 z+1 =z+1 0 z 0 1 z z+1 z+1
0O 0 1 0 0 0 0 0 0 =z+1 1 0 z4+1 z4+1 z+4+1 z 0 z
0O 0 0 1 0 0O 0o 0 O 0 z+1 1 0 z+1 z+1 z+4+1 z z
G= 0O 0 0 0 1 0 0 0 O z 1 1 z4+1 z+41 1 1 z 1
0O 0 0 0 0O 1 0o O O z z+1 z+1 =z+1 0 1 z+1 0 z
0O 0 0 0 0 0O 1 0 O 0 z z+1 z4+1 z+41 0 1 z+1 z
0O 0 0 0 0 0 0 1 0 =z+1 z 1 0 z 0 z+1 z4+1 z+41
0O 0 0 0 0 0 0 0 1 =z+1 1 1 z 1 1 z+1 1 z

be a generator matrix of a code C'. This is an extremal Type IV code over
a field with four elements. According to SAGE, the zeta polynomial for this
codeis P(T) = 15T*+ 3T3+ 22172+ 12T+ 3. It can be checked directly,
using SAGE , that this satisfies the Riemann hypothesis.
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SAGE

sage: F.<z> = G(4,"z")
sage: MS = MatrixSpace(F, 9, 18)
sage: G = M5([

..... [1, 0, O, O, O, O, O, O, O, 1, z*2, 1, 1, z, 1, 1, z"2, z],\
..... [0, 2, O, O, O, O, O, O, O, z"2, z*2, O, z, O, 1, z, z"2, z"2],\
..... [o, 0, 1, 0, O, O, O, O, O, z*2, 1, 0O, z"2, z"2, z"2, z, 0, z],\
..... [0, O, O, 1, O, O, O, O, O, O, z*2, 1, O, z"2, z"2, z"2, z, z],\
..... [0, O, O, O, 2, O, O, O, O, 2z, 1, 1, z"2, z"2, 1, 1, z, 1],\
..... [0, O, O, O,b O, 1, O, O, O, z, z"2, z"2, z*2, O, 1, z"2, O, z],\
..... [0, O, O, O, Ob O, 1, O, O, O, z, z"2, z"2, z"2, O, 1, z"2, z],\
..... [0, O, O, O,b Ob O, O, 1, O, z"2, 2z, 1, O, z, O, z"2, z"2, z"2],\
..... [0, 0, 0,0, 0,0, 0,0 1, z*2, 1, 1, z, 1, 1, z"2, 1, z]])

sage: C = Linear Code(GQ
sage: print C spectrum()

[1, 0, O, O, O, O, O, O, 2754, O, 18360, O, 77112, 0, 110160, O, 50949, 0, 2808]
sage: R <T> = Pol ynom al R ng(CC,"T")

sage: P = C. sd_zeta_pol ynom al (4)

sage: P

48/ 143* T4 + 48/ 143*T"3 + 32/ 143*T"2 + 12/ 143*T + 3/ 143

sage: rts = R(P).roots()

sage: [abs(r[0]) for r in rts]

[ 0. 500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000]

Background Information: SAGE [S] is a computer algebra program whose
open source kernel is written in the Python programming language.
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