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UNIQUE PROPERTIES OF THE FIBONACCI AND LUCAS
SEQUENCES

STEPHEN A. PARRY

Abstract. The algebraic structure of the set of all Fibonacci-like sequences,

which includes the Fibonacci and Lucas sequences, is developed, utilizing an
isomorphism between this set and a subset of the 2-by-2 integer matrices.

We will then proceed to define the determinant of a sequence and Fibonacci-

like matrices. The following results are then obtained: (1) the Fibonacci se-
quence is the only such sequence with determinant equal to 1; (2) the set of all

Fibonacci-like sequences forms an integral domain; (3) even powers of Lucas

matrices are multiples of a Fibonacci matrix; and (4) only powers of multiples
of Fibonacci matrices or Lucas matrices are multiples of Fibonacci matrices.

1. INTRODUCTION

The Fibonacci and Lucas sequences are subsets of a family of recursive sequences.
By establishing important algebraic concepts, we will be able to create a ring that
includes these two sets. Yang [9] established an important isomorphism between
Z[A] and Z[φ]. We will take this isomorphism in addition to the work of Horadam
[5] into consideration. Although Dannan [1] studied the ring of all second-order
recursive sequences under the rational numbers, we will only concern ourselves
with a ring, Ω ∈ G L (2,Z). Using the structure of the ring [3], we will prove specific
relations among the Fibonacci sequence, the Lucas sequence, and other recursive
sequences.

2. BACKGROUND

A recursive sequence is any sequence of numbers indexed by n ∈ Z, which can
be generated by solving the recurrence equation. The types of recursive sequences
that we will discuss in this paper are in the form An = αAn−1 + βAn−2, whereα =
1, β = 1. The Fibonacci sequence and the Lucas sequence are sequences that
belong to this particular family of recursive sequences.

Definition 1. We will define the Fibonacci numbers as

Fn = Fn−1 + Fn−2, F1 = 1, F2 = 1. (1)

Definition 2. We will define the Lucas numbers as

Ln = Ln−1 + Ln−2, L1 = 1, L2 = 3. (2)

These two sequences have more in common then their recursive structure. There
are many well-known and established relations between the Lucas and the Fibonacci
sequences. We will find the following relations to be the most helpful [7].

Ln = Fn+1 + Fn−1 (3)

5Fn = Ln−1 + Ln+1 (4)
1
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3. FIBONACCI-LIKE SEQUENCES AND MATRICES

We will now define and discuss important properties of Fibonacci-like sequences
in terms of recursive sequences and 2x2 matrices. This section will help us un-
derstand the commonalities between elements in the set of general Fibonacci-like
sequences.

Definition 3. We will define a Fibonacci-like sequence as

An = An−1 +An+1.

Theorem 1. Any Fibonacci-like sequence can be written as

An = A1Fn + (A2 −A1)Fn−1.

Proof. Let n=1
A1 = A1F1 + (A2 −A1)F0.

Let n=2
A2 = A1F2 + (A2 −A1)F1.

By adding the two expressions, we obtain

A1 = A1F1 +(A2 −A1)F0

A2 = A1F2 +(A2 −A1)F1

A1 +A2 = A1F3 +(A2 −A1)F2

Since A1 and A2 are constants, we can use the recursive definition (1) to conclude
the sum is equal to A3.

Ak−1 = A1Fk−1 +(A2 −A1)Fk−2

Ak−2 = A1Fk−2 +(A2 −A1)Fk−3

Ak = A1Fk +(A2 −A1)Fk−1

�

Example. If we have a sequence Bn = {..., 1, 9, 10, 19, ...}, where B1 = 1, we can
write Bn as Fn + 8Fn−1.

Bn = 1 9 10 19
−1Fn = −1 −1 −2 −3
Cn = 0 8 8 16

Then,
Cn = 0 8 8 16
−8Fn = 0 −8 −8 −16
Dn = 0 0 0 0

Definition 4. We will define a Fibonacci-like matrix to be a matrix in the form[
An An−1

An−1 An−2

]
.

Throughout this paper, we will think of Fibonacci-like matrices and Fibonacci-
like sequences interchangeably. The set F will represent all 2x2 Fibonacci-like ma-
trices whose entries are integer multiples of Fibonacci numbers. We will define L
similarly for the Lucas numbers. The elements in F are called Fibonacci matrices,
while elements in L are called Lucas matrices.
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Definition 5. We define the set, Ω, which contains all 2x2 Fibonacci-like matrices.

Ω =
[
a+ b b
b a

]
⊂ G L (2,Z).

Definition 6. We will express the determinant of a Fibonacci-like matrix

An An−1

An−1 An−2
= |AnAn−2 −A2

n−1|.

Remark 1. The determinant of a Fibonacci-like sequence is alternating. Therefore,
if we neglected to include the absolute value of the determinant in our definition,
then the values for the determinant would either be −λ or λ; in order to simplify
this behavior, we include the absolute value.

After converting Fibonacci-like sequences into Fibonacci-like matrices, we take
the determinant of each matrix, which provides us with a way to classify every
Fibonacci-like sequence.

Theorem 2. The Fibonacci sequence is the only Fibonacci-like sequence with de-
terminant equal to 1.

Proof. Given the characteristic polynomial of the Fibonacci sequence, x2 = x+ 1,
we can write x as a continued fraction [6].

x =
.. .

. . . +
1

1 +
1

1 +
1
1

We can also express any Fibonacci ratio as a continued fraction:

Fn+1

Fn
=

1

1 +
1

1 +
1

. . . +
. . .

1 +
F2

F1

.

The determinant of
[
c+ d d
d c

]
is |c2 + dc − d2|. For simplicity, we will let c2 +

dc− d2 = 1. Then,

1 +
d

c
−
(
d

c

)2

=
1
c2

...
d

c
= 1 +

1
c

c2 − 1
d

.
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We know that d − c = c2−1
d since c2 + dc − d2 = 1, which implies cd − d2 =

1 − c2. Therefore, we can conclude the sequence of numbers, {..., d − c, c, d, ...}
is Fibonacci, since Fibonacci numbers can be expressed in that specific continued
fraction form. �

Remark 2. When we have any continued fraction whose numerators all equal 1,
we can condense our notation by writing the number as a list of the denominators:
x = [d1, d2, ..., dn−2, dn−1, dn].

Definition 7. We will define the shift map, σ, to be equal to
[

1 1
1 0

]
∈ F [4].

Theorem 3. Let B ∈ E ⊂ Ω, then Bσn ∈ E for all n ∈ Z.

Proof.

B =
[

Bn Bn−1

Bn−1 Bn−2

]
.

Bσ =
[
Bn+1 Bn

Bn Bn−1

]
∈ E.

σn =
[

Fk Fk−1

Fk−1 Fk−2

]
.

Bσn =
[
Bn+k−1 Bn+k−2

Bn+k−2 Bn+k−3

]
.

Bσn ∈ E.
�

Remark 3. By expressing three consecutive elements of a Fibonacci-like sequence
in matrix form, we can obtain every element in the sequence by multiplying the
matrix by powers of σ.

Theorem 4. The set Ω forms an integral domain.

Proof. We must first prove that Ω is an abelian group under addition. We will
then show multiplication is associative and the left and right distributive laws hold.
Then, we can prove that I ∈ Ω and 0 ∈ Ω. In order to have an integral domain,
we must also prove Ω is commutative under multiplication, and there are no zero
divisors.

Here we prove that there are no zero divisors, leaving the remainder of the proof
to the reader. [

a+ b b
b a

] [
c+ d d
d c

]
=
[

0 0
0 0

]
.[

ac+ ad+ bc+ 2bd ad+ bd+ bc
bc+ db+ ad db+ ac

]
=
[

0 0
0 0

]
.

By solving these four linear equations, we find the general solution is

a = 1/2(−b−
√

5b), c = 1/2(−d+
√

5d) � b, d ∈ Z.

Since b, a ∈ R, there exists no zero divisors in Ω. We leave the remainder of the
proof to the reader. �
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4. POWERS OF LUCAS 2x2 MATRICES

The Fibonacci and Lucas sequences provide an interesting pattern when we mul-
tiply their respective recursive matrices together. When we multiply two elements
in F we obtain another element in F, which happens because the Fibonacci matrices
are the units in the ring Ω. When we multiply an element in L by another element
in L, we obtain an element in F. In this section, we will discuss this phenomenon.

For simplification, we will consider our primitive Lucas matrix to be A =
[

4 3
3 1

]
.

Theorem 5. If A =
[

4 3
3 1

]
, then

A2k = 5k

[
F4k+1 F4k

F4k F4k−1

]
, and

A2k+1 = 5k

[
L4k+3 L4k+2

L4k+2 L4k+1

]
.

Proof.

FL(k) =
{
A2k+1

A2k

}
=


5k

[
L4k+3 L4k+2

L4k+2 L4k+1

]
5k

[
F4k+1 F4k

F4k F4k−1

]
 .

FL(1) =
{
A3

A2

}
=


[

145 90
90 55

]
[

25 15
15 10

]
 =


5
[
L7 L6

L6 L5

]
5
[
F5 F4

F4 F3

]
 .

By letting k = n− 1, we obtain the following expression:

FL(n− 1) =
{
A2n−1

A2n−2

}
=


5n−1

[
L4n−1 L4n−2

L4n−2 L4n−3

]
5n−1

[
F4n−3 F4n−4

F4n−4 F4n−5

]
 .

A2n = A2n−1A

5n

[
F4n+1 F4n

F4n F4n−1

]
= 5n−1

[
L4n−1 L4n−2

L4n−2 L4n−3

] [
4 3
3 1

]
.

We will now solve the first relation from the above equation.

5F4n+1 = 4L4n−1 + 3L4n−2.

= 3L4n−1 + 3L4n−2 + L4n−1.

= 3L4n + L4n−1.
...

5F4n+1 = L4n+2 + L4n.

We know this is true by (4). The reader can prove the other three relations using
a similar technique. We must also show that this equality holds true for A2n+1.

A2n+1 = A2nA.[
L4n+3 L4n+2

L4n+2 L4n+1

]
=
[
F4n+1 F4n

F4n F4n−1

] [
4 3
3 1

]
.

The reader can simplify these relations using (3) and (4). �
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Corollary. The multiplication of any two Lucas matrices will yield a Fibonacci
matrix.

Proof. If we have D, E ∈ L, then

D = Aσn, E = Aσm.

DE = AσnAσm.
= AAσnσm.

= 5
[

5 3
3 2

]
σn+m.

�

Theorem 6. Let C ∈ Ω and C2 =
[
w + y y
y w

]
∈ F. Then C ∈ F or C ∈ L.

Proof. Let C =
[
a+ b b
b a

]
, then

C2 =
[

(a+ b)2 + b2 (a+ b)2 − a2

b(a+ b) + ab a2 + b2

]
.

Let

X = (a+ b)2 + b2.

Y = (a+ b)2 − a2.

Z = a2 + b2.

Our goal is to consider the possible values for each entry of C2 in terms of a and
b; we can then transfer this information to conclude the possibilities of matrix
C. X and Z will always be positive since they are each a sum of squares. Since
recursive sequences are bi-infinite, it is impossible to have a Fibonacci-like sequence
containing all nonnegative numbers. At some point, every sequence will have an
entry that is 0 or negative. Y is the only expression that can equal 0.

(a+ b)2 − a2 = .

2ab+ b2 = .

b(2a+ b) := 0.

If b = 0, then C =
[
a 0
0 a

]
∈ F. If b = −2a, then C =

[
−a −2a
−2a a

]
∈ L.

Therefore, C can only be a multiple of a Fibonacci matrix or a multiple of a Lucas
matrix. �

Remark 4. In [2] and [8], the authors are concerned about matrices that have Fi-
bonacci numbers, and when raised to any power, produce a matrix with Fibonacci
numbers. This result states that there exists matrices that are not Fibonacci ma-
trices, but when raised to an even power, will produce a Fibonacci matrix.
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5. CONCLUSIONS

This discovery of a square root of a matrix can lead in several different direc-
tions. We can attempt to generalize this phenomenon for An = αAn−1 + βAn−2.
In addition, there may exist an isomorphism map from sequences and character-
istic polynomials to their continued fractions. For example, we can express ratios
of Fibonacci numbers as continued fractions; each of these ratios will be in the
form [..., 1, 1, 1]. Similarly, we can express ratios of Lucas numbers, and we ob-
tain [...1, 1, 3]. In addition, there may be a connection between determinants and
continued fraction expansion.
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