Rose-Hulman Undergraduate Mathematics Journal

Volume 9
Issue 1

Unique Properties of the Fibonacci and Lucas Sequences

Stephen Parry
Elmira College, stephenaparry@gmail.com

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation

Parry, Stephen (2008) "Unique Properties of the Fibonacci and Lucas Sequences," Rose-Hulman
Undergraduate Mathematics Journal: Vol. 9 : Iss. 1 , Article 5.
Available at: https://scholar.rose-hulman.edu/rhumj/vol9/iss1/5

UNIQUE PROPERTIES OF THE FIBONACCI AND LUCAS SEQUENCES

STEPHEN A. PARRY

Abstract

The algebraic structure of the set of all Fibonacci-like sequences, which includes the Fibonacci and Lucas sequences, is developed, utilizing an isomorphism between this set and a subset of the 2-by-2 integer matrices. We will then proceed to define the determinant of a sequence and Fibonaccilike matrices. The following results are then obtained: (1) the Fibonacci sequence is the only such sequence with determinant equal to 1 ; (2) the set of all Fibonacci-like sequences forms an integral domain; (3) even powers of Lucas matrices are multiples of a Fibonacci matrix; and (4) only powers of multiples of Fibonacci matrices or Lucas matrices are multiples of Fibonacci matrices.

1. INTRODUCTION

The Fibonacci and Lucas sequences are subsets of a family of recursive sequences. By establishing important algebraic concepts, we will be able to create a ring that includes these two sets. Yang [9] established an important isomorphism between $\mathbb{Z}[A]$ and $\mathbb{Z}[\phi]$. We will take this isomorphism in addition to the work of Horadam [5] into consideration. Although Dannan [1] studied the ring of all second-order recursive sequences under the rational numbers, we will only concern ourselves with a ring, $\Omega \in \mathscr{G} \mathscr{L}(2, \mathbb{Z})$. Using the structure of the ring [3], we will prove specific relations among the Fibonacci sequence, the Lucas sequence, and other recursive sequences.

2. BACKGROUND

A recursive sequence is any sequence of numbers indexed by $n \in \mathbb{Z}$, which can be generated by solving the recurrence equation. The types of recursive sequences that we will discuss in this paper are in the form $A_{n}=\alpha A_{n-1}+\beta A_{n-2}$, where $\alpha=$ $1, \beta=1$. The Fibonacci sequence and the Lucas sequence are sequences that belong to this particular family of recursive sequences.

Definition 1. We will define the Fibonacci numbers as

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2}, \quad F_{1}=1, \quad F_{2}=1 \tag{1}
\end{equation*}
$$

Definition 2. We will define the Lucas numbers as

$$
\begin{equation*}
L_{n}=L_{n-1}+L_{n-2}, \quad L_{1}=1, \quad L_{2}=3 \tag{2}
\end{equation*}
$$

These two sequences have more in common then their recursive structure. There are many well-known and established relations between the Lucas and the Fibonacci sequences. We will find the following relations to be the most helpful [7].

$$
\begin{align*}
& L_{n}=F_{n+1}+F_{n-1} \tag{3}\\
& 5 F_{n}=L_{n-1}+L_{n+1} \tag{4}
\end{align*}
$$

3. FIBONACCI-LIKE SEQUENCES AND MATRICES

We will now define and discuss important properties of Fibonacci-like sequences in terms of recursive sequences and 2×2 matrices. This section will help us understand the commonalities between elements in the set of general Fibonacci-like sequences.
Definition 3. We will define a Fibonacci-like sequence as

$$
A_{n}=A_{n-1}+A_{n+1}
$$

Theorem 1. Any Fibonacci-like sequence can be written as

$$
A_{n}=A_{1} F_{n}+\left(A_{2}-A_{1}\right) F_{n-1}
$$

Proof. Let $\mathrm{n}=1$

$$
A_{1}=A_{1} F_{1}+\left(A_{2}-A_{1}\right) F_{0}
$$

Let $\mathrm{n}=2$

$$
A_{2}=A_{1} F_{2}+\left(A_{2}-A_{1}\right) F_{1}
$$

By adding the two expressions, we obtain

$$
\begin{array}{ccc}
A_{1}= & A_{1} F_{1} & +\left(A_{2}-A_{1}\right) F_{0} \\
A_{2}= & A_{1} F_{2}+\left(A_{2}-A_{1}\right) F_{1} \\
\hline A_{1}+A_{2}= & A_{1} F_{3} & +\left(A_{2}-A_{1}\right) F_{2}
\end{array}
$$

Since A_{1} and A_{2} are constants, we can use the recursive definition (1) to conclude the sum is equal to A_{3}.

$$
\begin{array}{ccc}
A_{k-1}= & A_{1} F_{k-1} & +\left(A_{2}-A_{1}\right) F_{k-2} \\
A_{k-2}= & A_{1} F_{k-2} & +\left(A_{2}-A_{1}\right) F_{k-3} \\
\hline A_{k}= & A_{1} F_{k} & +\left(A_{2}-A_{1}\right) F_{k-1}
\end{array}
$$

Example. If we have a sequence $B_{n}=\{\ldots, 1,9,10,19, \ldots\}$, where $B_{1}=1$, we can write B_{n} as $F_{n}+8 F_{n-1}$.

$$
\begin{array}{cccccc}
B_{n} & = & 1 & 9 & 10 & 19 \\
-1 F_{n} & = & -1 & -1 & -2 & -3 \\
\hline C_{n} & = & 0 & 8 & 8 & 16
\end{array}
$$

Then,

$$
\begin{array}{cccccc}
C_{n} & = & 0 & 8 & 8 & 16 \\
-8 F_{n} & = & 0 & -8 & -8 & -16 \\
\hline D_{n} & = & 0 & 0 & 0 & 0
\end{array}
$$

Definition 4. We will define a Fibonacci-like matrix to be a matrix in the form

$$
\left[\begin{array}{cc}
A_{n} & A_{n-1} \\
A_{n-1} & A_{n-2}
\end{array}\right]
$$

Throughout this paper, we will think of Fibonacci-like matrices and Fibonaccilike sequences interchangeably. The set \mathbb{F} will represent all $2 x 2$ Fibonacci-like matrices whose entries are integer multiples of Fibonacci numbers. We will define \mathbb{L} similarly for the Lucas numbers. The elements in \mathbb{F} are called Fibonacci matrices, while elements in \mathbb{L} are called Lucas matrices.

Definition 5. We define the set, Ω, which contains all 2 x 2 Fibonacci-like matrices.

$$
\Omega=\left[\begin{array}{cc}
a+b & b \\
b & a
\end{array}\right] \subset \mathscr{G} \mathscr{L}(2, \mathbb{Z})
$$

Definition 6. We will express the determinant of a Fibonacci-like matrix

$$
\left|\begin{array}{cc}
A_{n} & A_{n-1} \\
A_{n-1} & A_{n-2}
\end{array}\right|=\left|A_{n} A_{n-2}-A_{n-1}^{2}\right|
$$

Remark 1. The determinant of a Fibonacci-like sequence is alternating. Therefore, if we neglected to include the absolute value of the determinant in our definition, then the values for the determinant would either be $-\lambda$ or λ; in order to simplify this behavior, we include the absolute value.

After converting Fibonacci-like sequences into Fibonacci-like matrices, we take the determinant of each matrix, which provides us with a way to classify every Fibonacci-like sequence.

Theorem 2. The Fibonacci sequence is the only Fibonacci-like sequence with determinant equal to 1 .

Proof. Given the characteristic polynomial of the Fibonacci sequence, $x^{2}=x+1$, we can write x as a continued fraction [6].

$$
x=\frac{\ddots}{\ddots+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}}
$$

We can also express any Fibonacci ratio as a continued fraction:

$$
\frac{F_{n+1}}{F_{n}}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{F_{2}}{F_{1}}}}} .
$$

The determinant of $\left[\begin{array}{cc}c+d & d \\ d & c\end{array}\right]$ is $\left|c^{2}+d c-d^{2}\right|$. For simplicity, we will let $c^{2}+$ $d c-d^{2}=1$. Then,

$$
\begin{gathered}
1+\frac{d}{c}-\left(\frac{d}{c}\right)^{2}=\frac{1}{c^{2}} \\
\frac{d}{c}=1+\frac{\frac{1}{c}}{\frac{\frac{c^{2}-1}{d}}{d}}
\end{gathered}
$$

We know that $d-c=\frac{c^{2}-1}{d}$ since $c^{2}+d c-d^{2}=1$, which implies $c d-d^{2}=$ $1-c^{2}$. Therefore, we can conclude the sequence of numbers, $\{\ldots, d-c, c, d, \ldots\}$ is Fibonacci, since Fibonacci numbers can be expressed in that specific continued fraction form.

Remark 2. When we have any continued fraction whose numerators all equal 1 , we can condense our notation by writing the number as a list of the denominators: $x=\left[d_{1}, d_{2}, \ldots, d_{n-2}, d_{n-1}, d_{n}\right]$.

Definition 7. We will define the shift map, σ, to be equal to $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] \in \mathbb{F}[4]$.
Theorem 3. Let $B \in E \subset \Omega$, then $B \sigma^{n} \in E$ for all $n \in \mathbb{Z}$.
Proof.

$$
\begin{gathered}
B=\left[\begin{array}{cc}
B_{n} & B_{n-1} \\
B_{n-1} & B_{n-2}
\end{array}\right] . \\
B \sigma=\left[\begin{array}{cc}
B_{n+1} & B_{n} \\
B_{n} & B_{n-1}
\end{array}\right] \in E . \\
\sigma^{n}=\left[\begin{array}{cc}
F_{k} & F_{k-1} \\
F_{k-1} & F_{k-2}
\end{array}\right] \\
B \sigma^{n}=\left[\begin{array}{cc}
B_{n+k-1} & B_{n+k-2} \\
B_{n+k-2} & B_{n+k-3}
\end{array}\right] . \\
B \sigma^{n} \in E
\end{gathered}
$$

Remark 3. By expressing three consecutive elements of a Fibonacci-like sequence in matrix form, we can obtain every element in the sequence by multiplying the matrix by powers of σ.

Theorem 4. The set Ω forms an integral domain.
Proof. We must first prove that Ω is an abelian group under addition. We will then show multiplication is associative and the left and right distributive laws hold. Then, we can prove that $I \in \Omega$ and $0 \in \Omega$. In order to have an integral domain, we must also prove Ω is commutative under multiplication, and there are no zero divisors.

Here we prove that there are no zero divisors, leaving the remainder of the proof to the reader.

$$
\begin{gathered}
{\left[\begin{array}{cc}
a+b & b \\
b & a
\end{array}\right]\left[\begin{array}{cc}
c+d & d \\
d & c
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .} \\
{\left[\begin{array}{cc}
a c+a d+b c+2 b d & a d+b d+b c \\
b c+d b+a d & d b+a c
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .}
\end{gathered}
$$

By solving these four linear equations, we find the general solution is

$$
a=1 / 2(-b-\sqrt{5} b), c=1 / 2(-d+\sqrt{5} d) \quad \ni b, d \in \mathbb{Z}
$$

Since $b, a \in \mathbb{R}$, there exists no zero divisors in Ω. We leave the remainder of the proof to the reader.

4. POWERS OF LUCAS 2×2 MATRICES

The Fibonacci and Lucas sequences provide an interesting pattern when we multiply their respective recursive matrices together. When we multiply two elements in \mathbb{F} we obtain another element in \mathbb{F}, which happens because the Fibonacci matrices are the units in the ring Ω. When we multiply an element in \mathbb{L} by another element in \mathbb{L}, we obtain an element in \mathbb{F}. In this section, we will discuss this phenomenon. For simplification, we will consider our primitive Lucas matrix to be $A=\left[\begin{array}{ll}4 & 3 \\ 3 & 1\end{array}\right]$. Theorem 5. If $A=\left[\begin{array}{ll}4 & 3 \\ 3 & 1\end{array}\right]$, then

$$
\begin{gathered}
A^{2 k}=5^{k}\left[\begin{array}{cc}
F_{4 k+1} & F_{4 k} \\
F_{4 k} & F_{4 k-1}
\end{array}\right], \text { and } \\
A^{2 k+1}=5^{k}\left[\begin{array}{ll}
L_{4 k+3} & L_{4 k+2} \\
L_{4 k+2} & L_{4 k+1}
\end{array}\right] .
\end{gathered}
$$

Proof.

$$
\begin{aligned}
& F L(k)=\left\{\begin{array}{c}
A^{2 k+1} \\
A^{2 k}
\end{array}\right\}=\left\{\begin{array}{c}
5^{k}\left[\begin{array}{cc}
L_{4 k+3} & L_{4 k+2} \\
L_{4 k+2} & L_{4 k+1} \\
\left.5^{k}\left[\begin{array}{cc}
\\
F_{4 k+1} & F_{4 k} \\
F_{4 k} & F_{4 k-1}
\end{array}\right]\right\} . ~ . ~ . ~ . ~
\end{array} \text {. } 10 .\right.
\end{array}\right. \\
& F L(1)=\left\{\begin{array}{l}
A^{3} \\
A^{2}
\end{array}\right\}=\left\{\begin{array}{c}
{\left[\begin{array}{cc}
145 & 90 \\
90 & 55
\end{array}\right]} \\
{\left[\begin{array}{cc}
25 & 15 \\
15 & 10
\end{array}\right]}
\end{array}\right\}=\left\{\begin{array}{c}
5\left[\begin{array}{ll}
L_{7} & L_{6} \\
L_{6} & L_{5} \\
\left.5\left[\begin{array}{ll}
F_{5} & F_{4} \\
F_{4} & F_{3}
\end{array}\right]\right\} . ~ . ~ . ~ . ~
\end{array} \text {. } 10 .\right.
\end{array}\right.
\end{aligned}
$$

By letting $k=n-1$, we obtain the following expression:

$$
\begin{gathered}
F L(n-1)=\left\{\begin{array}{l}
A^{2 n-1} \\
A^{2 n-2}
\end{array}\right\}=\left\{\begin{array}{cc}
5^{n-1}\left[\begin{array}{ll}
L_{4 n-1} & L_{4 n-2} \\
L_{4 n-2} & L_{4 n-3} \\
5^{n-1} & \left.\begin{array}{ll}
F_{4 n-3} & F_{4 n-4} \\
F_{4 n-4} & F_{4 n-5}
\end{array}\right]
\end{array}\right\} . \\
5^{n}\left[\begin{array}{cc}
F_{4 n+1} & F_{4 n} \\
F_{4 n} & F_{4 n-1}
\end{array}\right]=5^{n-1}\left[\begin{array}{ll}
L_{4 n-1} & L_{4 n-2} \\
L_{4 n-2} & L_{4 n-3}
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
3 & 1
\end{array}\right] .
\end{array} . . \begin{array}{l}
A^{2 n-1} A
\end{array} . . \begin{array}{l}
\end{array}\right] .
\end{gathered}
$$

We will now solve the first relation from the above equation.

$$
\begin{gathered}
5 F_{4 n+1}=4 L_{4 n-1}+3 L_{4 n-2} . \\
=3 L_{4 n-1}+3 L_{4 n-2}+L_{4 n-1} . \\
=3 L_{4 n}+L_{4 n-1} \\
\vdots \\
5 F_{4 n+1}=L_{4 n+2}+L_{4 n} .
\end{gathered}
$$

We know this is true by (4). The reader can prove the other three relations using a similar technique. We must also show that this equality holds true for $A^{2 n+1}$.

$$
\begin{gathered}
A^{2 n+1}=A^{2 n} A . \\
{\left[\begin{array}{cc}
L_{4 n+3} & L_{4 n+2} \\
L_{4 n+2} & L_{4 n+1}
\end{array}\right]=\left[\begin{array}{cc}
F_{4 n+1} & F_{4 n} \\
F_{4 n} & F_{4 n-1}
\end{array}\right]\left[\begin{array}{cc}
4 & 3 \\
3 & 1
\end{array}\right] .}
\end{gathered}
$$

The reader can simplify these relations using (3) and (4).

Corollary. The multiplication of any two Lucas matrices will yield a Fibonacci matrix.

Proof. If we have $D, E \in \mathbb{L}$, then

$$
\begin{array}{rlc}
D & =A \sigma^{n}, E=A \sigma^{m} . \\
D E & = & A \sigma^{n} A \sigma^{m} \\
& = & A A \sigma^{n} \sigma^{m} . \\
& = & 5\left[\begin{array}{cc}
5 & 3 \\
3 & 2
\end{array}\right] \sigma^{n+m} .
\end{array}
$$

Theorem 6. Let $C \in \Omega$ and $C^{2}=\left[\begin{array}{cc}w+y & y \\ y & w\end{array}\right] \in \mathbb{F}$. Then $C \in \mathbb{F}$ or $C \in \mathbb{L}$.
Proof. Let $C=\left[\begin{array}{cc}a+b & b \\ b & a\end{array}\right]$, then

$$
C^{2}=\left[\begin{array}{cc}
(a+b)^{2}+b^{2} & (a+b)^{2}-a^{2} \\
b(a+b)+a b & a^{2}+b^{2}
\end{array}\right]
$$

Let

$$
\begin{gathered}
X=(a+b)^{2}+b^{2} \\
Y=(a+b)^{2}-a^{2} . \\
Z=a^{2}+b^{2} .
\end{gathered}
$$

Our goal is to consider the possible values for each entry of C^{2} in terms of a and b; we can then transfer this information to conclude the possibilities of matrix C. X and Z will always be positive since they are each a sum of squares. Since recursive sequences are bi-infinite, it is impossible to have a Fibonacci-like sequence containing all nonnegative numbers. At some point, every sequence will have an entry that is 0 or negative. Y is the only expression that can equal 0 .

$$
\begin{gathered}
(a+b)^{2}-a^{2}= \\
2 a b+b^{2}= \\
b(2 a+b):=0
\end{gathered}
$$

If $b=0$, then $C=\left[\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right] \in \mathbb{F}$. If $b=-2 a$, then $C=\left[\begin{array}{cc}-a & -2 a \\ -2 a & a\end{array}\right] \in \mathbb{L}$. Therefore, C can only be a multiple of a Fibonacci matrix or a multiple of a Lucas matrix.

Remark 4. In [2] and [8], the authors are concerned about matrices that have Fibonacci numbers, and when raised to any power, produce a matrix with Fibonacci numbers. This result states that there exists matrices that are not Fibonacci matrices, but when raised to an even power, will produce a Fibonacci matrix.

5. CONCLUSIONS

This discovery of a square root of a matrix can lead in several different directions. We can attempt to generalize this phenomenon for $A_{n}=\alpha A_{n-1}+\beta A_{n-2}$. In addition, there may exist an isomorphism map from sequences and characteristic polynomials to their continued fractions. For example, we can express ratios of Fibonacci numbers as continued fractions; each of these ratios will be in the form $[\ldots, 1,1,1]$. Similarly, we can express ratios of Lucas numbers, and we obtain $[\ldots 1,1,3]$. In addition, there may be a connection between determinants and continued fraction expansion.

6. ACKNOWLEDGMENT

I would like to give thanks to Dr. Charlie Jacobson and Elmira College for supporting this project.

References

[1] Fozi M. Dannan. Fibonacci Q-type Matrices and Properties of a Class of Numbers Related to the Fibonacci, Lucas, and Pell Numbers. Communications in Applied Analysis, 9(2):247-167, 2005.
[2] Lin Dazheng. Fibonacci matrices. Fibonacci Quarterly, 37(1):14-20, 1999.
[3] John B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, seventh edition, 2003.
[4] Ross Honsberger. Mathematical Gems III. MAA, 1985.
[5] A. F. Horadam. A Generalized Fibonacci Sequence. The American Mathematical Monthly, 68(5):455-459, 1961.
[6] C. D. Olds. Continued Fractions. MAA, 1961.
[7] N. N. Vorobyov. The Fibonacci Numbers. The University of Chicago, 1966.
[8] Lawrence C. Washington. Some Remarks on Fibonacci Matrices. Fibonacci Quarterly, 37(4):333-341, 1999.
[9] Kung-Wei Yang. Fibonacci With a Golden Ring. Mathematics Magazine, 70(2):131-135, April, 1997.

