Rose-Hulman Undergraduate Mathematics Journal

Volume 9 Issue 1

Article 5

Unique Properties of the Fibonacci and Lucas Sequences

Stephen Parry Elmira College, stephenaparry@gmail.com

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation

Parry, Stephen (2008) "Unique Properties of the Fibonacci and Lucas Sequences," *Rose-Hulman Undergraduate Mathematics Journal*: Vol. 9 : Iss. 1 , Article 5. Available at: https://scholar.rose-hulman.edu/rhumj/vol9/iss1/5

UNIQUE PROPERTIES OF THE FIBONACCI AND LUCAS SEQUENCES

STEPHEN A. PARRY

ABSTRACT. The algebraic structure of the set of all Fibonacci-like sequences, which includes the Fibonacci and Lucas sequences, is developed, utilizing an isomorphism between this set and a subset of the 2-by-2 integer matrices. We will then proceed to define the determinant of a sequence and Fibonacci-like matrices. The following results are then obtained: (1) the Fibonacci sequence is the only such sequence with determinant equal to 1; (2) the set of all Fibonacci-like sequences forms an integral domain; (3) even powers of Lucas matrices are multiples of a Fibonacci matrices.

1. INTRODUCTION

The Fibonacci and Lucas sequences are subsets of a family of recursive sequences. By establishing important algebraic concepts, we will be able to create a ring that includes these two sets. Yang [9] established an important isomorphism between $\mathbb{Z}[A]$ and $\mathbb{Z}[\phi]$. We will take this isomorphism in addition to the work of Horadam [5] into consideration. Although Dannan [1] studied the ring of all second-order recursive sequences under the rational numbers, we will only concern ourselves with a ring, $\Omega \in \mathscr{GL}(2,\mathbb{Z})$. Using the structure of the ring [3], we will prove specific relations among the Fibonacci sequence, the Lucas sequence, and other recursive sequences.

2. BACKGROUND

A recursive sequence is any sequence of numbers indexed by $n \in \mathbb{Z}$, which can be generated by solving the recurrence equation. The types of recursive sequences that we will discuss in this paper are in the form $A_n = \alpha A_{n-1} + \beta A_{n-2}$, where $\alpha =$ 1, $\beta = 1$. The Fibonacci sequence and the Lucas sequence are sequences that belong to this particular family of recursive sequences.

Definition 1. We will define the Fibonacci numbers as

$$F_n = F_{n-1} + F_{n-2}, \quad F_1 = 1, \quad F_2 = 1.$$
 (1)

Definition 2. We will define the Lucas numbers as

$$L_n = L_{n-1} + L_{n-2}, \quad L_1 = 1, \quad L_2 = 3.$$
 (2)

These two sequences have more in common then their recursive structure. There are many well-known and established relations between the Lucas and the Fibonacci sequences. We will find the following relations to be the most helpful [7].

$$L_n = F_{n+1} + F_{n-1} (3)$$

$$5F_n = L_{n-1} + L_{n+1} \tag{4}$$

3. FIBONACCI-LIKE SEQUENCES AND MATRICES

We will now define and discuss important properties of Fibonacci-like sequences in terms of recursive sequences and 2x2 matrices. This section will help us understand the commonalities between elements in the set of general Fibonacci-like sequences.

Definition 3. We will define a Fibonacci-like sequence as

$$A_n = A_{n-1} + A_{n+1}.$$

Theorem 1. Any Fibonacci-like sequence can be written as

$$A_n = A_1 F_n + (A_2 - A_1) F_{n-1}.$$

Proof. Let n=1

$$A_1 = A_1 F_1 + (A_2 - A_1) F_0.$$

Let n=2

$$A_2 = A_1 F_2 + (A_2 - A_1) F_1.$$

By adding the two expressions, we obtain

$$\begin{array}{rcrcr} A_1 = & A_1F_1 & +(A_2 - A_1)F_0 \\ A_2 = & A_1F_2 & +(A_2 - A_1)F_1 \\ \hline A_1 + A_2 = & A_1F_3 & +(A_2 - A_1)F_2 \end{array}$$

Since A_1 and A_2 are constants, we can use the recursive definition (1) to conclude the sum is equal to A_3 .

$$A_{k-1} = A_1 F_{k-1} + (A_2 - A_1) F_{k-2}$$

$$A_{k-2} = A_1 F_{k-2} + (A_2 - A_1) F_{k-3}$$

$$A_k = A_1 F_k + (A_2 - A_1) F_{k-1}$$

Example. If we have a sequence $B_n = \{..., 1, 9, 10, 19, ...\}$, where $B_1 = 1$, we can write B_n as $F_n + 8F_{n-1}$.

$$B_n = 1 \quad 9 \quad 10 \quad 19$$

$$-1F_n = -1 \quad -1 \quad -2 \quad -3$$

$$C_n = 0 \quad 8 \quad 8 \quad 16$$

Then,

Definition 4. We will define a Fibonacci-like matrix to be a matrix in the form

$$\left[\begin{array}{cc} A_n & A_{n-1} \\ A_{n-1} & A_{n-2} \end{array}\right].$$

Throughout this paper, we will think of Fibonacci-like matrices and Fibonacci-like sequences interchangeably. The set \mathbb{F} will represent all 2x2 Fibonacci-like matrices whose entries are integer multiples of Fibonacci numbers. We will define \mathbb{L} similarly for the Lucas numbers. The elements in \mathbb{F} are called Fibonacci matrices, while elements in \mathbb{L} are called Lucas matrices.

Definition 5. We define the set, Ω , which contains all 2x2 Fibonacci-like matrices.

$$\Omega = \left[\begin{array}{cc} a+b & b \\ b & a \end{array} \right] \subset \mathscr{GL}(2,\mathbb{Z}).$$

Definition 6. We will express the determinant of a Fibonacci-like matrix

$$\begin{vmatrix} A_n & A_{n-1} \\ A_{n-1} & A_{n-2} \end{vmatrix} = |A_n A_{n-2} - A_{n-1}^2|.$$

Remark 1. The determinant of a Fibonacci-like sequence is alternating. Therefore, if we neglected to include the absolute value of the determinant in our definition, then the values for the determinant would either be $-\lambda$ or λ ; in order to simplify this behavior, we include the absolute value.

After converting Fibonacci-like sequences into Fibonacci-like matrices, we take the determinant of each matrix, which provides us with a way to classify every Fibonacci-like sequence.

Theorem 2. The Fibonacci sequence is the only Fibonacci-like sequence with determinant equal to 1.

Proof. Given the characteristic polynomial of the Fibonacci sequence, $x^2 = x + 1$, we can write x as a continued fraction [6].

$$x = \frac{\frac{1}{1}}{\frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}}$$

We can also express any Fibonacci ratio as a continued fraction:

$$\frac{F_{n+1}}{F_n} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{\cdot}{1 + \frac{\cdot}{F_2}}}}}.$$

The determinant of $\begin{bmatrix} c+d & d \\ d & c \end{bmatrix}$ is $|c^2 + dc - d^2|$. For simplicity, we will let $c^2 + dc - d^2 = 1$. Then,

$$1 + \frac{d}{c} - \left(\frac{d}{c}\right)^2 = \frac{1}{c^2}$$
$$\vdots$$
$$\frac{d}{c} = 1 + \frac{1}{\frac{c}{\frac{c^2 - 1}{d}}}.$$

We know that $d - c = \frac{c^2 - 1}{d}$ since $c^2 + dc - d^2 = 1$, which implies $cd - d^2 = 1 - c^2$. Therefore, we can conclude the sequence of numbers, $\{..., d - c, c, d, ...\}$ is Fibonacci, since Fibonacci numbers can be expressed in that specific continued fraction form.

Remark 2. When we have any continued fraction whose numerators all equal 1, we can condense our notation by writing the number as a list of the denominators: $x = [d_1, d_2, ..., d_{n-2}, d_{n-1}, d_n].$

Definition 7. We will define the shift map, σ , to be equal to $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{F}$ [4].

Theorem 3. Let $B \in E \subset \Omega$, then $B\sigma^n \in E$ for all $n \in \mathbb{Z}$.

Proof.

$$B = \begin{bmatrix} B_n & B_{n-1} \\ B_{n-1} & B_{n-2} \end{bmatrix}.$$
$$B\sigma = \begin{bmatrix} B_{n+1} & B_n \\ B_n & B_{n-1} \end{bmatrix} \in E.$$
$$\sigma^n = \begin{bmatrix} F_k & F_{k-1} \\ F_{k-1} & F_{k-2} \end{bmatrix}.$$
$$B\sigma^n = \begin{bmatrix} B_{n+k-1} & B_{n+k-2} \\ B_{n+k-2} & B_{n+k-3} \end{bmatrix}.$$
$$B\sigma^n \in E.$$

Remark 3. By expressing three consecutive elements of a Fibonacci-like sequence in matrix form, we can obtain every element in the sequence by multiplying the matrix by powers of σ .

Theorem 4. The set Ω forms an integral domain.

Proof. We must first prove that Ω is an abelian group under addition. We will then show multiplication is associative and the left and right distributive laws hold. Then, we can prove that $I \in \Omega$ and $0 \in \Omega$. In order to have an integral domain, we must also prove Ω is commutative under multiplication, and there are no zero divisors.

Here we prove that there are no zero divisors, leaving the remainder of the proof to the reader.

$$\begin{bmatrix} a+b & b \\ b & a \end{bmatrix} \begin{bmatrix} c+d & d \\ d & c \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$
$$\begin{bmatrix} ac+ad+bc+2bd & ad+bd+bc \\ bc+db+ad & db+ac \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

By solving these four linear equations, we find the general solution is

$$a = 1/2(-b - \sqrt{5}b), \ c = 1/2(-d + \sqrt{5}d) \ \ \exists \ b, \ d \in \mathbb{Z}.$$

Since $b, a \in \mathbb{R}$, there exists no zero divisors in Ω . We leave the remainder of the proof to the reader.

4. POWERS OF LUCAS 2x2 MATRICES

The Fibonacci and Lucas sequences provide an interesting pattern when we multiply their respective recursive matrices together. When we multiply two elements in \mathbb{F} we obtain another element in \mathbb{F} , which happens because the Fibonacci matrices are the units in the ring Ω . When we multiply an element in \mathbb{L} by another element in \mathbb{L} , we obtain an element in \mathbb{F} . In this section, we will discuss this phenomenon.

For simplification, we will consider our primitive Lucas matrix to be $A = \begin{bmatrix} 4 & 3 \\ 3 & 1 \end{bmatrix}$. г ٦

Theorem 5. If
$$A = \begin{bmatrix} 4 & 3 \\ 3 & 1 \end{bmatrix}$$
, then

$$A^{2k} = 5^k \begin{bmatrix} F_{4k+1} & F_{4k} \\ F_{4k} & F_{4k-1} \end{bmatrix}$$
, and

$$A^{2k+1} = 5^k \begin{bmatrix} L_{4k+3} & L_{4k+2} \\ L_{4k+2} & L_{4k+1} \end{bmatrix}$$
.

Proof.

$$FL(k) = \left\{ \begin{array}{c} A^{2k+1} \\ A^{2k} \end{array} \right\} = \left\{ \begin{array}{c} 5^{k} \begin{bmatrix} L_{4k+3} & L_{4k+2} \\ L_{4k+2} & L_{4k+1} \\ F_{4k+1} & F_{4k} \\ F_{4k} & F_{4k-1} \end{bmatrix} \right\}.$$

$$FL(1) = \left\{ \begin{array}{c} A^{3} \\ A^{2} \end{array} \right\} = \left\{ \begin{array}{c} \begin{bmatrix} 145 & 90 \\ 90 & 55 \\ 25 & 15 \\ 15 & 10 \end{bmatrix} \right\} = \left\{ \begin{array}{c} 5 \begin{bmatrix} L_{7} & L_{6} \\ L_{6} & L_{5} \\ 5 \begin{bmatrix} F_{5} & F_{4} \\ F_{4} & F_{3} \end{bmatrix} \end{bmatrix} \right\}.$$

By letting k = n - 1, we obtain the following expression:

$$FL(n-1) = \left\{ \begin{array}{c} A^{2n-1} \\ A^{2n-2} \end{array} \right\} = \left\{ \begin{array}{c} 5^{n-1} \begin{bmatrix} L_{4n-1} & L_{4n-2} \\ L_{4n-2} & L_{4n-3} \\ F_{4n-3} & F_{4n-4} \\ F_{4n-4} & F_{4n-5} \end{array} \right\} \right\}.$$
$$A^{2n} = A^{2n-1}A$$
$$5^n \begin{bmatrix} F_{4n+1} & F_{4n} \\ F_{4n} & F_{4n-1} \end{bmatrix} = 5^{n-1} \begin{bmatrix} L_{4n-1} & L_{4n-2} \\ L_{4n-2} & L_{4n-3} \\ \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 3 & 1 \end{bmatrix}.$$
We will now solve the first relation from the above equation.

$$5F_{4n+1} = 4L_{4n-1} + 3L_{4n-2}.$$

= $3L_{4n-1} + 3L_{4n-2} + L_{4n-1}.$
= $3L_{4n} + L_{4n-1}.$
 \vdots
 $5F_{4n+1} = L_{4n+2} + L_{4n}.$

We know tions using a similar technique. We must also show that this equality holds true for A^{2n+1} . 0 1 1

$$A^{2n+1} = A^{2n}A.$$

$$\begin{bmatrix} L_{4n+3} & L_{4n+2} \\ L_{4n+2} & L_{4n+1} \end{bmatrix} = \begin{bmatrix} F_{4n+1} & F_{4n} \\ F_{4n} & F_{4n-1} \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 3 & 1 \end{bmatrix}.$$
simplify these relations using (2) and (4)

The reader can simplify these relations using (3) and (4).

Corollary. The multiplication of any two Lucas matrices will yield a Fibonacci matrix.

Proof. If we have $D, E \in \mathbb{L}$, then

$$D = A\sigma^{n}, E = A\sigma^{m}.$$

$$DE = A\sigma^{n}A\sigma^{m}.$$

$$= AA\sigma^{n}\sigma^{m}.$$

$$= 5\begin{bmatrix} 5 & 3\\ 3 & 2 \end{bmatrix}\sigma^{n+m}.$$

Theorem 6. Let $C \in \Omega$ and $C^2 = \begin{bmatrix} w + y & y \\ y & w \end{bmatrix} \in \mathbb{F}$. Then $C \in \mathbb{F}$ or $C \in \mathbb{L}$.

Proof. Let
$$C = \begin{bmatrix} a+b & b\\ b & a \end{bmatrix}$$
, then

$$C^2 = \begin{bmatrix} (a+b)^2 + b^2 & (a+b)^2 - a^2\\ b(a+b) + ab & a^2 + b^2 \end{bmatrix}.$$

Let

$$X = (a+b)^2 + b^2.$$
$$Y = (a+b)^2 - a^2.$$
$$Z = a^2 + b^2.$$

Our goal is to consider the possible values for each entry of C^2 in terms of a and b; we can then transfer this information to conclude the possibilities of matrix C. X and Z will always be positive since they are each a sum of squares. Since recursive sequences are bi-infinite, it is impossible to have a Fibonacci-like sequence containing all nonnegative numbers. At some point, every sequence will have an entry that is 0 or negative. Y is the only expression that can equal 0.

$$(a+b)^2 - a^2 = .$$

$$2ab + b^2 = .$$

$$b(2a+b) := 0.$$

If b = 0, then $C = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \in \mathbb{F}$. If b = -2a, then $C = \begin{bmatrix} -a & -2a \\ -2a & a \end{bmatrix} \in \mathbb{L}$. Therefore, C can only be a multiple of a Fibonacci matrix or a multiple of a Lucas matrix.

Remark 4. In [2] and [8], the authors are concerned about matrices that have Fibonacci numbers, and when raised to any power, produce a matrix with Fibonacci numbers. This result states that there exists matrices that are not Fibonacci matrices, but when raised to an even power, will produce a Fibonacci matrix.

5. CONCLUSIONS

This discovery of a square root of a matrix can lead in several different directions. We can attempt to generalize this phenomenon for $A_n = \alpha A_{n-1} + \beta A_{n-2}$. In addition, there may exist an isomorphism map from sequences and characteristic polynomials to their continued fractions. For example, we can express ratios of Fibonacci numbers as continued fractions; each of these ratios will be in the form [...,1,1,1]. Similarly, we can express ratios of Lucas numbers, and we obtain [...,1,1,3]. In addition, there may be a connection between determinants and continued fraction expansion.

6. ACKNOWLEDGMENT

I would like to give thanks to Dr. Charlie Jacobson and Elmira College for supporting this project.

References

- Fozi M. Dannan. Fibonacci Q-type Matrices and Properties of a Class of Numbers Related to the Fibonacci, Lucas, and Pell Numbers. *Communications in Applied Analysis*, 9(2):247–167, 2005.
- [2] Lin Dazheng. Fibonacci matrices. Fibonacci Quarterly, 37(1):14-20, 1999.
- [3] John B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, seventh edition, 2003.
- [4] Ross Honsberger. Mathematical Gems III. MAA, 1985.
- [5] A. F. Horadam. A Generalized Fibonacci Sequence. The American Mathematical Monthly, 68(5):455–459, 1961.
- [6] C. D. Olds. Continued Fractions. MAA, 1961.
- [7] N. N. Vorobyov. The Fibonacci Numbers. The University of Chicago, 1966.
- [8] Lawrence C. Washington. Some Remarks on Fibonacci Matrices. Fibonacci Quarterly, 37(4):333–341, 1999.
- [9] Kung-Wei Yang. Fibonacci With a Golden Ring. Mathematics Magazine, 70(2):131–135, April, 1997.