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UNIQUE PROPERTIES OF THE FIBONACCI AND LUCAS
SEQUENCES

STEPHEN A. PARRY

ABSTRACT. The algebraic structure of the set of all Fibonacci-like sequences,
which includes the Fibonacci and Lucas sequences, is developed, utilizing an
isomorphism between this set and a subset of the 2-by-2 integer matrices.
We will then proceed to define the determinant of a sequence and Fibonacci-
like matrices. The following results are then obtained: (1) the Fibonacci se-
quence is the only such sequence with determinant equal to 1; (2) the set of all
Fibonacci-like sequences forms an integral domain; (3) even powers of Lucas
matrices are multiples of a Fibonacci matrix; and (4) only powers of multiples
of Fibonacci matrices or Lucas matrices are multiples of Fibonacci matrices.

1. INTRODUCTION

The Fibonacci and Lucas sequences are subsets of a family of recursive sequences.
By establishing important algebraic concepts, we will be able to create a ring that
includes these two sets. Yang [9] established an important isomorphism between
Z[A] and Z[¢]. We will take this isomorphism in addition to the work of Horadam
[5] into consideration. Although Dannan [1] studied the ring of all second-order
recursive sequences under the rational numbers, we will only concern ourselves
with a ring, Q € ¥.2(2,7Z). Using the structure of the ring [3], we will prove specific
relations among the Fibonacci sequence, the Lucas sequence, and other recursive
sequences.

2. BACKGROUND

A recursive sequence is any sequence of numbers indexed by n € Z, which can
be generated by solving the recurrence equation. The types of recursive sequences
that we will discuss in this paper are in the form A,, = aA,,_1 + A, _s, wherea =
1, 8 = 1. The Fibonacci sequence and the Lucas sequence are sequences that
belong to this particular family of recursive sequences.

Definition 1. We will define the Fibonacci numbers as

F,=F, 1+F, o =1 F=1 (1)
Definition 2. We will define the Lucas numbers as

L,=L, 1+L, o, Li=1 Ly=23. (2)

These two sequences have more in common then their recursive structure. There
are many well-known and established relations between the Lucas and the Fibonacci
sequences. We will find the following relations to be the most helpful [7].

Ln — I'n41 + Fn—l (3)
S5F, =Lp_1+ Ln+1 (4)
1
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3. FIBONACCI-LIKE SEQUENCES AND MATRICES

We will now define and discuss important properties of Fibonacci-like sequences
in terms of recursive sequences and 2x2 matrices. This section will help us un-
derstand the commonalities between elements in the set of general Fibonacci-like
sequences.

Definition 3. We will define a Fibonacci-like sequence as
An = An—l + An—i—l-

Theorem 1. Any Fibonacci-like sequence can be written as

Ap = A Fy + (A — Ay Fy

Proof. Let n=1
A=A+ (A — Ay Fo.
Let n=2
Ay = A1y + (Ay — Ay Fy.
By adding the two expressions, we obtain
A = AFy +(Ay — Ay Ey
Ay = A By +(Ay — A Fy
Ai+Ay = A3 (A —A)E

Since A; and Aj are constants, we can use the recursive definition (1) to conclude
the sum is equal to As.

A1 = AiFpo1 +(As — A)Fy—o
Ap_o= A1Fp_o9 +(As— A1)Fy_3
Ay = A F, +(Ay— A)Frq

O

Example. If we have a sequence B,, = {...,1,9,10,19, ...}, where B; = 1, we can
write B, as F,, + 8F,,_.

B, = 1 9 10 19
-1/, = -1 -1 -2 -3
Cn 0 8 8 16
Then,
c, = 0 8 8 16
—8F, 0 -8 -8 -—16
D, = 0 0 0 0

Definition 4. We will define a Fibonacci-like matrix to be a matrix in the form
An Anfl
Anfl An72 '
Throughout this paper, we will think of Fibonacci-like matrices and Fibonacci-
like sequences interchangeably. The set F will represent all 2x2 Fibonacci-like ma-
trices whose entries are integer multiples of Fibonacci numbers. We will define IL

similarly for the Lucas numbers. The elements in F are called Fibonacci matrices,
while elements in L are called Lucas matrices.



UNIQUE PROPERTIES OF THE FIBONACCI AND LUCAS SEQUENCES 3

Definition 5. We define the set, (2, which contains all 2x2 Fibonacci-like matrices.

Q- { atb b ] c9.2(2,7).
b a
Definition 6. We will express the determinant of a Fibonacci-like matrix
Ap An 2
" " = |A,A,_2 — A2 4|
An—l An—Q ‘ 2 " 1|

Remark 1. The determinant of a Fibonacci-like sequence is alternating. Therefore,
if we neglected to include the absolute value of the determinant in our definition,
then the values for the determinant would either be —A or A; in order to simplify
this behavior, we include the absolute value.

After converting Fibonacci-like sequences into Fibonacci-like matrices, we take
the determinant of each matrix, which provides us with a way to classify every
Fibonacci-like sequence.

Theorem 2. The Fibonacci sequence is the only Fibonacci-like sequence with de-
terminant equal to 1.

Proof. Given the characteristic polynomial of the Fibonacci sequence, 2 = = + 1,
we can write x as a continued fraction [6].

) 1

L+ I
1+ 1

We can also express any Fibonacci ratio as a continued fraction:
F n+1 1
P 1+ !
1+ !
4+ 23
c+d d

The determinant of [ d

dc — d?> = 1. Then,

c } is [c¢? + dc — d?|. For simplicity, we will let ¢* +
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We know that d — ¢ = {T_l since ¢ + dec — d?> = 1, which implies ed — d?> =
1 — 2. Therefore, we can conclude the sequence of numbers, {...,d — ¢, ¢, d, ...}
is Fibonacci, since Fibonacci numbers can be expressed in that specific continued
fraction form. ([

Remark 2. When we have any continued fraction whose numerators all equal 1,
we can condense our notation by writing the number as a list of the denominators:
T = [d17 d27 (X3} d’n727 dnfh dn]

s . . 1 1
Definition 7. We will define the shift map, o, to be equal to { 1 0 } e [4].

Theorem 3. Let B € E C , then Bo™ € E for all n € Z.

Proof.
_ Bn Bn—l
B= l: anl Bn72 :| '
_ Bn+1 Bn
Bo = [ B, B, ] e k.
o — Fp, Fp
Fpw Fro |’

n BnJrkfl Bn+k72
Bo" = .
? { Bnik—2 Bnik-3

Bo" € E.
O
Remark 3. By expressing three consecutive elements of a Fibonacci-like sequence

in matrix form, we can obtain every element in the sequence by multiplying the
matrix by powers of o.

Theorem 4. The set Q forms an integral domain.

Proof. We must first prove that € is an abelian group under addition. We will
then show multiplication is associative and the left and right distributive laws hold.
Then, we can prove that I € 2 and 0 € €. In order to have an integral domain,
we must also prove () is commutative under multiplication, and there are no zero
divisors.

Here we prove that there are no zero divisors, leaving the remainder of the proof

to the reader.
a+b b c+d d| |0 0
b a d cl| |0 0]
ac+ad+bc+2bd ad+bd+bc | | 0 0O
bec+ db+ ad db+ ac 10 0|

By solving these four linear equations, we find the general solution is
a=1/2(=b—/5b), c=1/2(—d++/5d) > b, d € Z.

Since b, a € R, there exists no zero divisors in 2. We leave the remainder of the
proof to the reader. O
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4. POWERS OF LUCAS 2x2 MATRICES

The Fibonacci and Lucas sequences provide an interesting pattern when we mul-
tiply their respective recursive matrices together. When we multiply two elements
in F we obtain another element in IF, which happens because the Fibonacci matrices
are the units in the ring 2. When we multiply an element in L. by another element
in I, we obtain an element in F. In this section, we will discuss this phenomenon.
For simplification, we will consider our primitive Lucas matrix to be A = { ;1 i’ } .

Theorem 5. If A = { ;1 i’ } , then
Fyy, F,
A2k — gk | Tk | and
Fy  Fy_i |0

A2E+T _ gk Lyk+3  Lag4o .
Lykto  Lagyr

Proof. i
- 5k Lapys Lapqo
A2kt Lykt+2  Lagt
FL k = = -

(k) { A } sk | Faeer Fak

| Fur Far—
145 90 | 5 Ly Lg
A3 90 55 L¢ L
FL(U:{AQ}: 25 15 ) F§ Fi
15 10 F, F3

By letting £k = n — 1, we obtain the following expression:

, 5n—1 Lyp—1 Lan—2
An—l Lyn—> Lgn_s3
FLn—1)= =
(n ) { AQW—Q } 5n71 F4n73 F4n74
Fin_y Fyps
A2n _ A2n71A )
5n Finpr Fan | _ 5n-1 Lin—1 Lypn—o 4 3
Fi,  Fina Liyn—2 Lin-3 3 1|

We will now solve the first relation from the above equation.
5Fyp+1 = 4L4yp—1 + 3L4n—o.
=3L4n—1+3L4n—2+ Lap—1.

=3L4n + Lap—1.

5Fin+1 = Lant2 + Lan.
We know this is true by (4). The reader can prove the other three relations using
a similar technique. We must also show that this equality holds true for 427!,
A2n+1 — AQnA
L4n+3 L4n+2 :| _ |: F4n+1 F4n :| |: 4 3 :|
Lan+2  Lant1 Fup,  Fin— 3 17
The reader can simplify these relations using (3) and (4). O
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Corollary. The multiplication of any two Lucas matrices will yield a Fibonacci
matrix.

Proof. If we have D, E € L, then

D =Ac", E = Ac™.

DE = Ao Ac™.
= AAc™c™.

— 5 3 n+m
—5{32}0 .

Theorem 6. LetCeQandCQ:[w;_y Z}EF Then C € F or C € L.

Proof. Let C' = { a—g—b b }, then
o2 (a+b)2+b> (a+0b)?—a?
T | bla+b)+ab a® + b? '

Let
X =(a+b)?+b%

Y = (a+b)? - d>
Z =a®+b°.

Our goal is to consider the possible values for each entry of C? in terms of a and
b; we can then transfer this information to conclude the possibilities of matrix
C. X and Z will always be positive since they are each a sum of squares. Since
recursive sequences are bi-infinite, it is impossible to have a Fibonacci-like sequence
containing all nonnegative numbers. At some point, every sequence will have an
entry that is 0 or negative. Y is the only expression that can equal 0.

(a+b)?—a®=.
2ab+ b% = .
b(2a +b) := 0.

a 0 —a —2a
If b =0, then C = e F. If b = —2a, then C = e L.

0 —2a a
Therefore, C' can only be a multiple of a Fibonacci matrix or a multiple of a Lucas
matrix. ([l

Remark 4. In [2] and [8], the authors are concerned about matrices that have Fi-
bonacci numbers, and when raised to any power, produce a matrix with Fibonacci
numbers. This result states that there exists matrices that are not Fibonacci ma-
trices, but when raised to an even power, will produce a Fibonacci matrix.
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5. CONCLUSIONS

This discovery of a square root of a matrix can lead in several different direc-
tions. We can attempt to generalize this phenomenon for A, = aA, 1 + SA,_2.
In addition, there may exist an isomorphism map from sequences and character-
istic polynomials to their continued fractions. For example, we can express ratios
of Fibonacci numbers as continued fractions; each of these ratios will be in the
form [...,1,1,1]. Similarly, we can express ratios of Lucas numbers, and we ob-
tain [...1,1,3]. In addition, there may be a connection between determinants and
continued fraction expansion.
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