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Natural Families of Triangles II:

A Locus of Symmedian Points

Julia Fisher, Adam Carr, Andrew Roberts, David Xu∗

March 29, 2008

Abstract

We group triangles into families based on three parameters: the distance between the circum-
center O and the centroid G , the circumradius, and the measure of angle ∠GOA where A is
one vertex. We focus on the family of triangles which allows ∠GOA to vary and fixes the other
two parameters. By construction, this grouping produces triangles which share the same Euler line.
Perhaps unexpectedly, if we examine the family’s locus of a triangle center known as the symmedian
point, we find that it always forms an arc of a circle centered at a specified point on the Euler line.

1 Introduction

An interesting question in the field of Euclidean geometry is how one might create natural families of
triangles. Moreover, what are the properties of the triangle space produced by such a construction?

This abstract questioning becomes tangible and dynamic with the use of geometry software such
as the Geometer’s Sketchpad or GeoGebra. This type of software allows users to immediately observe
the effects of discrete or continuous changes in figures and to formulate hypotheses based on those
observations.

The results presented in this paper originate from the use of such software to address the above
questions and were inspired by [Mueller]. We will not discuss the properties of the triangle space
based on the families we describe below, however. Rather, we will examine an interesting and perhaps
unexpected property that a triangle center known as the symmedian point exhibits in one of the
families.

2 Natural Families of Triangles

Let us begin by returning to the previously posed question: how can we group triangles into natural
families? Clearly, there are many ways to associate triangles with each other. For example, we could
create families of similar triangles or of triangles with two side lengths related by a fixed ratio. However,
in an effort to ensure that the triangles in a single family share certain intrinsic features, let us base
that grouping on one special line of a triangle—its Euler line.

Definition 1. The Euler line of a triangle is the line that passes through its centroid and circumcenter.
∗We would like to thank our advisor Stephen Kennedy of the Carleton College Mathematics Department for all of his

help and support.
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The Euler line of a given triangle contains a great number of the triangle’s special points. For
example, the orthocenter, the nine-point center, and the DeLongchamps point all lie along it. Another
perhaps surprising feature is that the ratio of distances between certain points on the Euler line remains
constant. Three such points are the circumcenter, the centroid, and the orthocenter. If we call the
circumcenter O, the centroid G, and the orthocenter H, then, OH = 3OG [Kimberling].

We use the above property of the Euler line to create our families of triangles. Specifically, we con-
struct a triangle given its circumcenter O, its centroid G, and one vertex A. The relative positions of
these points are defined by three pieces of numeric information: the distance between the circumcenter
and the centroid ( g ), the distance between the circumcenter and a vertex ( r ), and m∠GOA ( θ ).
By fixing any two of these parameters and keeping the third constant, we create a family of triangles.
We will focus our attention on the family formed by fixing g and r and allow θ to vary. We call this
the θ− family.

q
g

r

B

C

G NHO

A

Figure 1: The basic triangle construction.

The curious reader can find a more in-depth discussion of this construction and its properties in
Natural Families of Triangles I [Carr]. For our purposes, it is enough to note one fact and prove another.
First, we find that when 3OG > ON, where N is one intersection of the triangle’s circumcircle and
the Euler line, then certain angles ∠GOA will not produce a triangle. We will not prove this here.
Second, all right triangles (up to scaling) occur in a single θ− family—the family in which g = r

3 . To
show this, we need Proposition 1 and its corollary, Corollary 1. However, we will only prove Corollary
1 and Proposition 2 here. Proposition 1 follows from a proof by contradiction.

Proposition 1. Let 4ABC with orthocenter H be given. If H lies on the circumcircle of 4ABC,
then H is coincident with one vertex of 4ABC.

Corollary 1. Let 4ABC with orthocenter H be given. Then, H is coincident with vertex B if
and only if m∠ABC = π

2 .

Proof. Assume that H is coincident with vertex B. Since the altitude from vertex A to BC passes
through H and intersects BC at a right angle, we see that m∠ABC = π

2 .

Assume that m∠ABC = π
2 . Then, BC is the altitude from vertex C to AB, and AB is the

altitude from vertex A to BC. Since the altitudes of a triangle coincide at H, it follows that B and
H are coincident.
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Now we can show that all right triangles (up to scaling) occur in a single θ− family.

Proposition 2. Triangle 4ABC is a right triangle if and only if g = r
3 .

Proof. Assume 4ABC is a right triangle. Then, by Corollary 1, H is coincident with one vertex.
Without loss of generality, let that vertex be vertex B. Thus, H is on the circumcircle. Consequently,
OH = r. Since G is one-third of the way from O to H, it follows that g = r

3 .

Assume g = r
3 . Then, OH = r, and consequently H lies on the circumcircle of 4ABC. By

Proposition 1 and Corollary 1, 4ABC is a right triangle.

Now that we have a basic understanding of our families of triangles, let us shift our focus to the
symmedian point and an interesting property the symmedian point exhibits in the θ− family.

3 The Symmedian Point

In the expansive collection of triangle centers, few could be considered well-known. Occasionally,
however, centers which should be a part of mathematicians’ base knowledge disappear from the con-
temporary consciousness. The symmedian point is one such center. Well-explored many years ago, the
symmedian or Lemoine point has a plethora of useful and fascinating properties. In his work Episodes
in 19th and 20th Century Euclidean Geometry, Ross Honsberger calls it “one of the jewels of modern
geometry” [Honsberger, 53]. In order to begin our brief study of this geometric gem, we first need
to understand some established definitions and theorems. Thus, let us define the concept of isogonal
conjugacy.

Definition 2. Let ∠A be given. The isogonal conjugate of AP, where P is any point in the plane,
is the reflection of AP over the angle bisector of ∠A. Line AP and its reflection are called isogonal
conjugate lines or simply isogonal conjugates.

A

P

Figure 2: Isogonal conjugate lines.

In Figure 2, the middle line is the angle bisector of ∠A, and the two thick black lines are isogonal
conjugates. One direct consequence of Definition 2 is that the angles formed by the isogonal conjugate
lines and the angle bisector (the gray angles) are congruent. Also, the angles formed by the isogonal
conjugate lines and the sides of the original angle (the black angles) are congruent.

Since isogonal conjugacy inherently involves angles, one question which arises is how isogonal
conjugates relate to triangles. As Theorem 1 below states, they have at least one fascinating property.
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Figure 3: Isogonal conjugate points.

Theorem 1. Let 4ABC and a point P in the plane of 4ABC be given. The lines isogonal to AP,
BP , and CP, meet at a point Q . Points P and Q are called isogonal conjugate points, or isogonal
conjugates [Honsberger].

Although we omit it here, a proof of Theorem 1 can be found in Ross Honsberger’s work, Episodes
in Nineteenth and Twentieth Century Euclidean Geometry. Now that we have a basic understanding
of isogonal conjugates and some of their properties, we are able to define the symmedian point.

Definition 3. The symmedian point K is the isogonal conjugate of the centroid G .

3.1 An Interesting Property of the Symmedian Point

As one might expect, the loci of certain special points in our θ− family of triangles form sections of
curves. The locus of symmedian points lie on a particularly nice curve—a circle. Let us formally state
this result.

Theorem 2. Let Ω be a θ− family of triangles. Let E ⊆ [0, 2π] such that for all θ ∈ E , there exists
a triangle 4ABCθ ∈ Ω with m∠GOA = θ. Let Kθ be the symmedian point of 4ABCθ. Let Kn be
the point on the ray

−−→
OG such that OKn = 2gr2

r2−g2 . Then, for all θ ∈ E, Kθ lies on the circle with

radius 2g2r
r2−g2 centered at Kn. We call this circle the Carleton circle and its center Kn the Knights’

point.
Moreover, if g < r

3 , every point on the Carleton circle is the symmedian point of a triangle in Ω.
If g = r

3 , then every point except the intersection of the Carleton circle with the circumcircle is the
symmedian point of a triangle in Ω. If g > r

3 , then every point P on the Carleton circle such that
P is strictly contained in the interior of the disc enclosed by the circumcircle of Ω is the symmedian
point of a triangle in Ω.

While in the specific case in which g = r
3 a geometric proof of Theorem 2 is readily apparent, a

synthetic argument for the general case is much more difficult. Thus, we will approach the general
situation from an analytic perspective. In order to more clearly understand precisely what Theorem 2
states, however, let us begin with the geometric proof of the case in which g = r

3 .
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Lemma 1. Let Ω be a θ− family of triangles in which g = r
3 . Then, for every 4ABCθ ∈ Ω , the

symmedian point of 4ABCθ lies on the Carleton circle. Moreover, every point except H on the
Carleton circle is the symmedian point of a triangle in Ω .

In order to prove Lemma 1, we will use the following commonly-known proposition. We omit a
proof of it here; the interested reader can find one in Honsberger.

Proposition 3. If 4ABC is a right triangle with the right angle at vertex B, then its symmedian
point K is the midpoint of the symmedian line, i.e., the isogonal conjugate of the median, from vertex
B [Honsberger].

Now, let us prove Lemma 1.

Proof. We need to show that for all θ ∈ E, Kθ lies on the circle with radius 2g2r
r2−g2 centered at the

point Kn which lies on the ray
−−→
OG such that OKn = 2gr2

r2−g2 . Substituting r
3 in for g, we see that the

radius of the circle simplifies to 1
4r and the distance between O and Kn simplifies to 3

4r . Moreover,
by Proposition 2 and Corollary 1, when g = r

3 , H coincides with one vertex of 4ABCθ , making
OH the radius of the circumcircle. Thus, OKn = 3

4OH. By similar logic, the radius of the Carleton
circle is 1

4OH.

Now, also by Proposition 2 and Corollary 1, 4ABCθ is a right triangle, and the vertex with which
H is coincident is the vertex at the right angle. Without loss of generality, let this vertex be vertex B.
Also of note, the circumcenter O of 4ABCθ will be the midpoint of AC. Construct the symmedian
line from B, and let Kb be the intersection of that symmedian line with AC. We will first show that
Kb lies on the circle centered at M, the midpoint of segment OH (or OB ).

KnM

KqKb

J

C

B/HO

A

Figure 4: Proof that the symmedian point lies on a circle when 4ABC is a right triangle.

Construct the angle bisector of ∠ABC and label it JB, where J is its intersection with AC.
Now, since the symmedian line is the isogonal conjugate of the median, ∠OBJ ∼= ∠JBKb and
∠KbBA ∼= ∠OBC. Since O is the circumcenter of 4ABC, it follows that 4OBC is isosceles with
OB ∼= OC. Thus, ∠ACB ∼= ∠OBC. Now, m∠ABC = π

2 . This implies that m∠ACB+m∠CAB = π
2

which in turn implies that m∠KbBA+m∠CAB = π
2 . Thus, m∠AKbB = π

2 , and Kb lies on the circle
centered at point M with radius MO. Note that this shows that the altitude and the symmedian
line from vertex B are coincident.
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Now, by Proposition 3, Kθ is the midpoint of KbB . Construct KθM. By SAS similarity,
4KθBM ∼ 4KbBO. Thus, m∠MKθB = m∠OKbB = π

2 . Therefore, Kθ lies on the circle cen-
tered at the midpoint Kn of MB, 3

4 of the way from O to H. The radius of the circle will be
1
2MB, which is 1

4OH.

To show that every point on the Carleton circle except H is a symmedian point of a triangle in
the given θ− family, let K be a point on the Carleton circle such that K is not coincident with H.
Since H is on the circumcircle, by Proposition 1, it must coincide with one vertex of every triangle
in the given θ− family. Without loss of generality, let B be that vertex. Construct BK . Then,
extend BK past K to a point Kb such that KKb

∼= BK. By the argument above, Kb is the
foot of the altitude from B. Construct the line perpendicular to KbB through Kb. This line will
intersect the circumcircle at points A and C. By construction, 4ABCθ has symmedian point K.
Thus, every point except H on the Carleton circle is the symmedian point of a triangle in the given
θ− family.1

To show the general case of Theorem 2, we will first place the θ− family of triangles in a coordinate
system. We will find the x - and y -coordinates of the Knights’ point Kn and of the symmedian point
Kθ of any triangle in that family. Then, we will use the distance formula to find the distance between
these two points. If that distance is not dependent on θ, then, since Kn is fixed in a θ− family, Kθ

will always lie on a circle centered at Kn. The following proof makes use of two propositions, both
of which are stated below. We will prove neither here. The interested reader will find a proof of the
second in [Honsberger].

Proposition 4. Let vectors ~a and ~b be given. Define vector ~c thus: ~c = |~b|~a+ |~a|~b . Vector ~c bisects
the angle created by vectors ~a and ~b [Stewart].

Proposition 5. Let triangle 4ABC with altitude AHa be given. The symmedian point K of 4ABC
lies on the line connecting the midpoint Mh of AHa to the midpoint Ma of BC [Honsberger].

Now, let us prove Theorem 2.

Proof. Let Ω be the θ− family of triangles. Choose the circumcenter O to be the origin of the
coordinate system and the Euler line OG to be the x -axis. We will first find expressions for the
coordinates of the vertices A, B, and C of any triangle in the θ− family. The method we will use
to find them algebraically mimics the geometric construction described earlier.

By construction, O has coordinates (0, 0), G has coordinates (g, 0), and H has coordinates
(3g, 0). Since A lies on the circle centered at the origin with radius r, and since angle θ is the
angle between

−→
OA and the x -axis, it follows that A has coordinates (r cos θ, r sin θ). Using this

information and the fact that the centroid of a triangle lies 2
3 of the way from any vertex to the

opposite side, we can find the equation of line AG, the coordinates of the midpoint Ma of side BC,
and the equation of line AH. Since AH is perpendicular to BC, we can use the coordinates of
Ma and the opposite reciprocal of the slope of AH to find the equation of BC. Finally, we can
easily intersect the equation of the circumcircle ( x2 + y2 = r2 ) with the equation of BC to find

1The reason that H cannot be a symmedian point is a result of the fact that the symmedian point K of a 4ABC
can never fall on the circumcircle of 4ABC. To see this, suppose that K does lie on the circumcircle. Then, either
K is coincident with one vertex, say vertex A, or K is not coincident with any vertex. Suppose K is coincident with
vertex A . Then, AB and AC are the symmedian lines from vertices B and C, respectively. Consequently, BC must
be the median from both vertices B and C. However, that would force C to be the midpoint of AC and B to be
the midpoint of AB. This cannot occur. Now, suppose that K is not coincident with any vertex of 4ABC. Then, K
lies outside 4ABC. However, that would force the median from at least one vertex to lie outside of 4ABC. This is a
contradiction. Thus, K must always be strictly inside the disk enclosed by the circumcircle of 4ABC.
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the coordinates of vertices B and C . Much of this computation was completed with the help of
Mathematica. Thus, we simply list the results below:

AG : y =
r sin θ(x− g)
r cos θ − g

Ma :
(

3g − r cos θ

2
,
−r sin θ

2

)

AH : y =
r sin θ(x− 3g)
r cos θ − 3g

BC : y =
3g − r cos θ

r sin θ
x +

−r2 sin2 θ − (3g − r cos θ)2

2r sin θ

B :
(

54g3 + 12gr2 − 2r(27g2 + r2) cos θ + 6gr2 cos 2θ

4(9g2 + r2 − 6gr cos θ)

+
r
√

3 csc θ(cos 2θ − 1)
√
−27g4 + r4 + 36g3r cos θ − 4gr3 cos θ − 6g2r2 cos 2θ

4(9g2 + r2 − 6gr cos θ)
,

− sin θ(
r

2
+
√

3 csc θ(3g − r cos θ)
√
−27g4 + r4 + 36g3r cos θ − 4gr3 cos θ − 6g2r2 cos 2θ

2(9g2 + r2 − 6gr cos θ)
)

)

C :
(

54g3 + 12gr2 − 2r(27g2 + r2) cos θ + 6gr2 cos 2θ

4(9g2 + r2 − 6gr cos θ)

− r
√

3 csc θ(cos 2θ − 1)
√
−27g4 + r4 + 36g3r cos θ − 4gr3 cos θ − 6g2r2 cos 2θ

4(9g2 + r2 − 6gr cos θ)
,

− sin θ(
r

2
−
√

3 csc θ(3g − r cos θ)
√
−27g4 + r4 + 36g3r cos θ − 4gr3 cos θ − 6g2r2 cos 2θ

2(9g2 + r2 − 6gr cos θ)
)

)

Knowing the coordinates of the vertices of a generic triangle in Ω, we can now find the coordinates
of the symmedian point. We will begin by finding the equation of the symmedian line from vertex A.
In order to do this, we need to bisect ∠BAC. Thus, we consider segments AB and AC to be vectors
with their heads at B and C, respectively. Using Proposition 4, we find the vector which bisects
them. This vector gives us the slope of the angle bisector. Since vertex A lies on the angle bisector,
we can find its equation. We will not list this equation or the steps leading to it as the process was
algebraically intensive and involved the use of Mathematica.

To find a point on the symmedian line from vertex A, we first find the equation of the line
through G perpendicular to the angle bisector of ∠BAC. Again, since the equation of this line is
quite complicated, we will not include it here. Next, we find the x -coordinate of the intersection J
of this new perpendicular line (which we will now refer to as GJ ) with the angle bisector. Finally,
we find the coordinates of the point L on GJ such that LJ = GJ. This point will be a point on the
symmedian line from vertex A by the following geometric argument:

7
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Figure 5: Constructing a point on the symmedian line from vertex A .

Let 4ABC with centroid G be given, and construct line GJ and point L as described above.
We have two cases:

Case 1. Suppose that AG is not the angle bisector of ∠BAC. Then, points G, J, and L are
not coincident. Since m∠LJA = m∠GJA = π

2 , and since segment AJ is common, it follows from
SAS congruence that 4AJG ∼= 4AJL. Thus, ∠GAJ ∼= ∠LAJ, which implies that L is a point on
the symmedian line from vertex A.

Case 2. Suppose that AG is the angle bisector of ∠BAC. Then, G will trivially be a point on
the symmedian line from vertex A.

Now, using the coordinates of point L and vertex A, we can find the equation of the symmedian
line from vertex A. Again using Mathematica, it simplifies nicely to the following:

y =
(−2gr2 + 3g2x + r2x− 2grx cos θ) sin θ

(3g2 + r2) cos θ − gr(3 + cos 2θ)
.

Shortly after setting out to apply the method above to find the equation of the symmedian line
from vertex B, one realizes that given the coordinates of vertices B and C, the algebra is practically
impossible to do by hand and takes a long time for even a program such as Mathematica to complete.
Thus, we use Proposition 5 and find the equation of the line connecting the midpoint Ma of side BC
to the midpoint Mh of segment AHa, where Ha is the intersection of the altitude from A with BC.
After a little algebra, we find that equation to be the following:

MaMh : y =
r(−18g3 − 2gr2 + 15g2x + r2x + 4gr(3g − 2x) cos θ) sin θ

−9g3 − 3gr2 + 15g2r cos θ + r3 cos θ − 4gr2 cos2 θ + 4gr2 sin2 θ
.

By Proposition 5, the symmedian point Kθ of 4ABCθ lies on the line MaHa. Since the symme-
dian point also lies on the symmedian line from vertex A, it follows that these two lines intersect at
Kθ. Solving the two equations simultaneously, we find the coordinates of Kθ to be as follows:
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(
2gr((9g3 + 6gr2) cos θ − r(9g2 + r2 + 6g2 cos 2θ − gr cos 3θ))

(g2 − r2)(9g2 + r2 − 6gr cos θ)
,

2g2r(9g2 + r2 − 12gr cos θ + 2r2 cos 2θ) sin θ

(g2 − r2)(9g2 + r2 − 6gr cos θ)

)
.

In order to prove that the symmedian point is always a fixed distance from the point Kn with
coordinates ( 2gr2

r2−g2 , 0), we use the distance formula to find the distance between these two points.
Using Mathematica, we arrive at the following:

[(
2gr((9g3 + 6gr2) cos θ − r(9g2 + r2 + 6g2 cos 2θ − gr cos 3θ))

(g2 − r2)(9g2 + r2 − 6gr cos θ)
− 2gr2

r2 − g2

)2

+
(

2g2r(9g2 + r2 − 12gr cos θ + 2r2 cos 2θ) sin θ

(g2 − r2)(9g2 + r2 − 6gr cos θ)
− 0

)2
] 1

2

=
2g2r

r2 − g2
.

As we see above, the distance between Kn and Kθ is not dependent on θ. This implies that Kθ

will always lie on the circle of radius 2g2r
r2−g2 centered at the Knights’ point Kn. Additionally, it is nice

to note that since r and g are distances, they are always strictly greater than zero. Moreover, since
r > g , it follows that 2g2r

r2−g2 > 0 and is always defined.2

Let us now turn our attention to the second half of Theorem 2. We must show that every point
on the arc of the Carleton circle strictly contained within the disk enclosed by the circumcircle is the
symmedian point of a triangle in Ω. We have three cases: g < r

3 , g = r
3 , and g > r

3 .

Case 1. Let g < r
3 . To show that every point on the Carleton circle is the symmedian point of a

triangle in Ω, we will consider the x - and y -coordinates of the symmedian point to be functions of θ.
Then, we will carefully construct a closed interval whose endpoints, when acted upon by our functions,
produce the intersections of the Carleton circle with the Euler line. Finally, we will use a connectedness
argument and symmetry to show that the entire Carleton circle is composed of symmedian points of
triangles in Ω.

To begin, let

A(θ) =
2gr((9g3 + 6gr2) cos θ − r(9g2 + r2 + 6g2 cos 2θ − gr cos 3θ))

(g2 − r2)(9g2 + r2 − 6gr cos θ)
,

and

B(θ) =
2g2r(9g2 + r2 − 12gr cos θ + 2r2 cos 2θ) sin θ

(g2 − r2)(9g2 + r2 − 6gr cos θ)
.

Thus, Kθ is a function of θ, and we write Kθ = K(θ) = (A(θ), B(θ)). We will show that K(θ) is
continuous. As stated above, g2−r2 6= 0 since g 6= r . Moreover, 9g2+r2−6gr cos θ ≥ 9g2+r2−6gr =
(3g − r)2 > 0 since g 6= r

3 . Thus, (g2 − r2)(9g2 + r2 − 6gr cos θ) 6= 0. Since the numerators of both
A(θ) and B(θ) are combinations of continuous functions, it follows that both A(θ) and B(θ) are
continuous, making K(θ) = (A(θ), B(θ)) continuous.

2If g were equal to r , then this would force all three of the vertices of a 4ABC to be coincident with G; a point
is not a triangle. If g were greater than r, then we would not be able to construct a triangle. Thus, r > g.
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Now, let us construct our closed interval. Consider the expressions 3g+r
2r and 3g−r

2r . We want the
arc cosines of these expressions to be the endpoints of our interval. However, before we can take their
arc cosines, we must be certain that it is valid to do so. Since 3g + r > 0 and g < r

3 , it follows that
0 < 3g+r

2r < 1. Also, 3g + r > 0 ⇐⇒ −1 < 3g−r
2r ; and g < r

3 implies that 3g−r
2r < 0. Combining

the last two inequalities, we see that −1 < 3g−r
2r < 0. Thus, we can legitimately examine the angles

cos−1(3g+r
2r ) and cos−1(3g−r

2r ).

We now observe that 0 < cos−1(3g+r
2r ) < π

2 since 0 < 3g+r
2r < 1, and π

2 < cos−1(3g−r
2r ) < π

since −1 < 3g−r
2r < 0. Thus, cos−1(3g+r

2r ) < cos−1(3g−r
2r ), and we can examine the closed interval

from cos−1(3g+r
2r ) to cos−1(3g−r

2r ). Since the interval [cos−1(3g+r
2r ), cos−1(3g−r

2r )] is a connected set
and K(θ) is continuous, it follows from the fact that continuous functions map connected sets to
connected sets that the set K([cos−1(3g+r

2r ), cos−1(3g−r
2r )]) is connected. Moreover, as we can see

below, the function K evaluated at the endpoints of the interval gives the two points of intersection
of the Carleton circle with the Euler line.

K(cos−1(
3g + r

2r
)) = (

2gr

r − g
, 0) .

K(cos−1(
3g − r

2r
)) = (

2gr

r + g
, 0) .

Since we showed that for all θ , K(θ) lies on the Carleton circle, it follows that the only way
K([cos−1(3g+r

2r ), cos−1(3g−r
2r )]) can be a connected set is if it minimally encompasses either the upper

or lower half of the Carleton circle (including the intersections of the Carleton circle with the Euler
line). In other words, K([cos−1(3g+r

2r ), cos−1(3g−r
2r )]) must be at least

{(x, y) | (x− 2gr2

r2 − g2
)2 + y2 =

4g4r2

(r2 − g2)2
∧ either y ≥ 0 or y ≤ 0 but not both} .

Now, in the discussion above, we saw that [cos−1(3g+r
2r ), cos−1(3g−r

2r )] ⊆ (0, π) . Note that by
symmetry, if 4ABCθ is a triangle produced by an angle θ , then 4ABC2π−θ produced by angle
2π−θ will simply be the reflection of 4ABCθ over the Euler line. This implies that no matter which
half of the Carleton circle is produced by [cos−1(3g+r

2r ), cos−1(3g−r
2r )], the other half will be produced

by [2π − cos−1(3g−r
2r ), 2π − cos−1(3g+r

2r )].
Therefore, when g < r

3 , every point on the Carleton circle is the symmedian point of a triangle in
Ω .

Case 2. Let g = r
3 . This case was covered in Lemma 1.

Case 3. Let g > r
3 . To show that for all (x, y) ∈ {(x, y) | (x− 2gr2

r2−g2 )2 +y2 = 4g4r2

(r2−g2)2
∧ x2 +y2 <

r2} there exists a triangle in Ω with symmedian point (x, y), we follow a method similar to that of
Case 1. Here, the angles we use are cos−1(3g−r

2r ) and cos−1(3g2−r2

2rg ). As in Case 1, we must verify

that we can always take the arc cosine of 3g−r
2r and 3g2−r2

2rg . Let us first examine 3g−r
2r . Since g > r

3 ,

0 = 3g−3g
2r < 3g−r

2r . Also, g < r ⇐⇒ 3g−r
2r < 1. Thus, 0 < 3g−r

2r < 1. Turning to the second expression,

we see that 3g2−r2

2rg >
3( r2

9
)−r2

2rg = −r
3g > −1 since g > r

3 . Moreover, 0 > (3g+r)(g−r) ⇐⇒ 1 > 3g2−r2

2rg .

Thus, −1 < 3g2−r2

2rg < 1, and we can always take the arc cosine of both 3g−r
2r and 3g2−r2

2rg .

Now, as in Case 1, we need to determine which of the two angles discussed above is larger within the
interval from 0 to π. We easily see, however, that g < r ⇐⇒ −g > −r ⇐⇒ 3g2 − rg > 3g2 − r2 ⇐⇒
3g−r
2r > 3g2−r2

2rg . Thus, cos−1(3g−r
2r ) < cos−1(3g2−r2

2rg ).
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The natural next step is to determine an interval upon which the function K can act. Before
we do this, however, we need to consider one issue. In Case 1, the Carleton circle was entirely
contained within the circumcircle of Ω since 2gr

r−g and 2gr
r+g are both less than r for g < r

3 . When
g > r

3 , 2gr
r+g remains less than r, but 2gr

r−g does not. We can see this by using Mathematica to

find the intersections of the circumcircle and the Carleton circle —
(

3g2+r2

4g , 1
4r

√
10− 9g2

r2 − r2

g2

)
and

(
3g2+r2

4g ,−1
4r

√
10− 9g2

r2 − r2

g2

)
. For all x ≥ 3g2+r2

4g , if (x, y) is a point on the Carleton circle, then
(x, y) will lie on or outside the circumcircle of Ω . As discussed in the footnote in the proof of Lemma 1,
the symmedian point must lie strictly inside the circumcircle. Thus, {x |x ∈ [3g2+r2

4g , 2gr
r−g ]} are not

valid x -values for symmedian points.

Keeping this in mind, let us examine K(cos−1(3g−r
2r )) and K(cos−1(3g2−r2

2rg )). As we saw earlier,
K(cos−1(3g−r

2r )) = ( 2gr
r+g , 0) . Using Mathematica, we find that

K(cos−1(
3g2 − r2

2rg
)) =

(
3g2 + r2

4g
,−1

4
r

√
10− 9g2

r2
− r2

g2

)
.

Thus, K(cos−1(3g−r
2r )) is a valid symmedian point, but K(cos−1(3g2−r2

2rg )) is not.

With this knowledge in hand, let us choose our interval to be [cos−1(3g−r
2r ), cos−1(3g2−r2

2rg )). By the

preservation of connectedness under continuous functions, since [cos−1(3g−r
2r ), cos−1(3g2−r2

2rg )) is con-

nected, K([cos−1(3g−r
2r ), cos−1(3g2−r2

2rg ))) is also connected. Since as shown above, K(cos−1(3g2−r2

2rg ))
is one of the intersections of the circumcircle of Ω with the Carleton circle, and since K(cos−1(3g−r

2r ))
is the intersection contained within the circumcircle of the Carleton circle with the x -axis, it follows
that K([cos−1(3g−r

2r ), cos−1(3g2−r2

2rg ))) contains at least

{(x, y) | (x− 2gr2

r2 − g2
)2 + y2 =

4g4r2

(r2 − g2)2
∧ x2 + y2 < r2 ∧ either y ≤ 0 or y ≥ 0}.

By the previous discussion, [cos−1(3g−r
2r ), cos−1(3g2−r2

2rg )) ⊆ (0, π) . Because of this, by the same
argument as in Case 1, the reflection across the Euler line of the above arc will also be composed of
symmedian points. Therefore, every point on the arc of the Carleton circle strictly contained within
the disk enclosed by the circumcircle of Ω is the symmedian point of a triangle in Ω.

4 Conclusion

We have seen that if we group triangles into families based on the distance between the circumcenter
O and the centroid G, the length of the circumradius, and the measure of the angle ∠GOA, where A
is one vertex, then the symmedian point has a fascinating property—it always lies on a circle centered
at a point on the Euler line. Moreover, the locus of symmedian points forms an arc of that circle.

After completing the work above, the authors became aware that the result which we see in Case
1 when g < r

3 is posed as a question in Nathan Altshiller Court’s well-known geometry text College
Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. The problem
states, “[a] variable triangle has a fixed circumcenter and a fixed centroid. Show that the locus of the
. . . [symmedian]. . . point is a circle” [Altshiller Court, 292]. As we have seen, there are two more
cases to consider. All symmedian points fall on a specified circle; however, the locus of all possible
symmedian points is not always a complete circle.
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The property of the symmedian point that we examined here is only one of many interesting
facts that arise while exploring the θgr− families of triangles. A more thorough treatment of this
subject can be found in the authors’ senior thesis, “A New Way to Think About Triangles” at
http://apps.carleton.edu/curricular/math/Math Comps/Math Comps 0607/ and in [Carr]. Even that
work, however, only begins to touch upon the properties of the triangle space created by these familial
groupings. It would be fascinating to continue the exploration of this topic to see if new or more
general results can be obtained.
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