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Natural Families of Triangle I: Parametrizing Triangle Space

Adam Carr, Julia Fisher, Andrew Roberts, David Xu∗

October 10, 2007

Abstract

We group triangles into families based on three parameters: the distance between the circum-
center O and the centroid G , the circumradius, and the measure of angle ∠GOA where A is one
vertex. Using these parameters, we present triangle space, a subset of R

3 in which every triangle
is represented by exactly one point.

1 Introduction

Modern geometry software, e.g., Cabri, Cinderella, or Geometer’s Sketchpad, enables the user to inter-
act dynamically with geometric constructions. Given, for example, a triangle and some construction or
constructions dependent on it, say, one or more triangle centers, it is possible to vary the construction
continuously and observe the evolution of the dependent constructions. It is natural to conceive of
the resulting images as illustrating motion taking place in the space of all triangles and, then, even
more natural to wonder how one might parametrize the motion. In order to do so, one must first
parametrize “triangle space,” the collection of all triangles. Many, seemingly natural, parametriza-
tions present themselves. In this paper we describe one such parametrization that seems especially
felicitous; a triangle is described by its circumradius, r , the distance between its circumcenter and
centroid, g , and the minimal angle formed by the centroid, circumcenter, and one vertex, θ . This
choice, based as it is on the Euler line, seems more intrinsic and potentially interesting than say,
side-lengths. Similarity is especially nice in these coordinates; each flat slice r = c through triangle
space contains precisely one representative of each similarity class. The choice is also well adapted to
dynamic geometry software.

This paper describes this parametrization and the shape of the resulting triangle space. We also
introduce a metric that puts a natural topology on the space. Fixing two coordinates and varying
the third organizes the space into natural fibers (or families). We explore some of the uses of this
parametrization in ”Natural Families of Triangles II: A Locus of Symmedian Points” [Carr2].

2 Natural Families of Triangles

Let us begin by returning to the ideas of grouping triangles into natural families. Undoubtedly, there
are many ways to associate triangles with each other. However, in an effort to ensure that our triangles
share certain intrinsic features, let us base that grouping off of one special line of a triangle—its Euler
line.

∗We would like to thank our advisor Stephen Kennedy of the Carleton College Mathematics Department for all of his

help and support.
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Definition 1. The Euler line of a triangle is the line through its centroid and circumcenter.

The Euler line of a given triangle contains a great number of the triangle’s special points. For
example, the orthocenter, the nine-point center, and the DeLongchamps point all lie along it. Another
perhaps surprising feature is that the ratio of distances between certain points on the Euler line remains
constant. Three such points are the circumcenter, the centroid, and the orthocenter. If we call the
circumcenter O, the centroid G, and the orthocenter H, then, OH = 3OG [Kimberling].

We will use the above properties of the Euler line and to create our families of triangles. Specifically,
we will construct a triangle given its circumcenter, its centroid, and one vertex. These three pieces of
geometric information will be the basis of our groupings. Before we begin, however, we must state a
proposition we will use in the construction. We have not included a proof of it here, but the fact is
well-known.

Proposition 1. Given △ABC and its centroid G , let Ma, Mb, and Mc be the midpoints of

segments BC, AC, and AB, respectively. Then, AG = 2GMa , BG = 2GMb , and CG = 2GMc .

2.1 Triangle Construction

Let us now construct a triangle given its circumcenter, its centroid, and one vertex.

Let points O and G be given, and let l be the line connecting them. Choose a point A not
on l and create circle c centered at O with radius OA. O will be the circumcenter of our triangle
and A one of its vertices. Note that the other two vertices of our triangle will also lie on circle c.

Let M and N be the intersections of l with c. Now, choose a point G 6= O on l such that G lies

between M and N. G will be the centroid of our triangle. Construct point H on
−−→
OG such that

3OG = OH. By the observation above, H is the orthocenter of the triangle. Now, construct lines
AG and AH. Since H is the orthocenter of our triangle, AH will be the altitude from vertex A

and thus perpendicular to side BC . By Proposition 1, the midpoint Ma of BC will lie on
−→
AG such

that AMa = 3
2AG . Now, construct the line m through Ma such that m ⊥ AH. By construction,

m must be side BC of △ABC . Thus, B and C will be the intersections of m with circle c.

Therefore, we have constructed △ABC from a circumcenter, a centroid, and one vertex.

With further exploration into this construction, we find that when G lies on or past the point
one-third of the way from O to N, then certain angles ∠GOA will not produce a triangle. This arises
from the fact that in this case, the midpoint of the side opposite vertex A will lie on or outside the
disk enclosed by the given circumcircle. When this occurs, the construction of a triangle is impossible.
Keep this in mind, because we will return to this idea later in our discussion of triangle space.

Returning to our construction, we see that the three pieces of geometric information above corre-
spond to the distance between the circumcenter and the centroid (which we will call g ), the distance
between the circumcenter and a vertex, (which we will call r ), and the angle ∠GOA (which we will
call θ ). As we can see in the construction, by fixing any two of these parameters and keeping the
third constant, we create a family of triangles.

2.2 Special Cases of the Construction

At this point, it is natural to ask where special triangles such as isosceles and right triangles occur
in the construction. Perhaps not so surprisingly, they always fall at specific locations. For example,
isosceles triangles occur when one vertex of the triangle falls on the Euler line. Even more interestingly,
all of the right triangles occur when r = 3g . Before we can show this, we need the next proposition
which we will not prove here. The result follows from a proof by contradiction.
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Figure 1: The elements of the triangle construction.

Proposition 2. Let △ABC with orthocenter H be given. If H lies on the circumcircle of △ABC,

then H is coincident with one vertex of △ABC.

With Proposition 2, we can quite easily prove the following corollary:

Corollary 1. Let △ABC with orthocenter H be given. Then, H is coincident with vertex B if

and only if m∠ABC = π
2 .

Proof. (⇒) Assume that H is coincident with vertex B. Since the altitude from vertex A to BC

passes through H and intersects BC at a right angle, we see that m∠ABC = π
2 .

(⇐) Assume that m∠ABC = π
2 . Then, BC is the altitude from vertex C to AB, and AB is

the altitude from vertex A to BC. Since the altitudes of a triangle coincide at H, it follows that B

and H are coincident.

Now, we can finally show that all right triangles (up to scaling) occur in a single θ− family.

Proposition 3. Triangle △ABC is a right triangle if and only if g = r
3 .

Proof. (⇐ ) If g = r
3 , then OH = r. That is, H lies on the circumcircle of △ABC. Therefore, by

Proposition 2 and Corollary 1, △ABC is a right triangle.

(⇒ ) If △ABC is a right triangle, then by Corollary 1, H is coincident with one vertex. Without
loss of generality, let that vertex be vertex B. Thus, H is on the circumcircle. Consequently, OH = r.

Since G is one-third of the way from O to H, it follows that g = r
3 .

Now that we have seen some special cases of our construction, let us now turn to finding the bounds
of our parameters.
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3 Triangle Space

As mentioned in the introduction, one of our goals is to figure out what triangle space looks like. One
could argue that this can be done by considering triangles in the traditional sense: defining a triangle
by the lengths of its sides. In either case, you are given three numbers, and those three numbers
correspond to a point in R

3 . This point corresponds to the triangle defined by the three numbers.
The problem with considering triangles in the traditional sense is that every triangle is corresponds
to six different points (one for each permutation of the three sides). It is not a trivial problem to
define the space in such a way that every triangle is represented only once. We will show that every
triangle (by our definition) is represented by exactly one ordered triple; note that not every point in
R

3 represents a triangle. Now we shall set out on the quest of demonstrating exactly which values of
θ , g , and r give us legitimate triangles.

To help us reach our goal, let us first examine similar triangles.

3.1 Similar Triangles

Theorem 1. Two triangles △ABC defined by (θ, g, r) and △A′B′C ′ defined by (θ′, g′, r′) are

similar if and only if θ = θ′ , g = kg′ , and r = kr′ for k > 0 .

Proof. (⇐) Let △ABC be similar to △A′B′C ′ .

Let G and G′ be the centroids of and O and O′ the circumcenters of △ABC and △A′B′C ′ ,
respectively. Also, let Ma and Ma

′ be the midpoints of segments BC and B′C ′ , respectively. Let
Mb and Mb

′ be the midpoints of AC and A′C ′ , respectively. Since the two triangles are similar,
it follows that AB

A′B′ = BMa

B′Ma
′ = k . Therefore, △ABMa ∼ △A′B′Ma

′ . So, AMa

A′Ma
′ = k . Now, G

and G′ must lie on AMa and A′Ma
′ ,respectively. Moreover, GMa = 1

3AMa and G′Ma
′ = 1

3A′Ma
′ .

So, GMa

G′Ma
′ = AMa

A′Ma
′ . Also, BC

B′C′ = MbC
Mb

′C′
= k . So, △BCMb ∼ △B′C ′Mb

′ . So, BMb

B′Mb
′ = k . But,

GMb = 1
3BMb and G′Mb

′ = 1
3B′Mb

′ . Thus, GMb

G′Mb
′ = k . This implies that △BMbMa ∼ △G′Mb

′Ma
′

by SSS similarity. Thus, ∠GMbMa
∼= ∠G′Mb

′Ma
′ . Now,

m∠O′Mb
′G′ + m∠G′Mb

′Ma
′ + m∠Ma

′Mb
′C ′ = π

m∠GMbMa = m∠G′Mb
′Ma

′

m∠MaMbC = m∠BMbC − m∠GMbMa = m∠B′Mb
′C ′ − m∠G′Mb

′Ma
′ = m∠Ma

′Mb
′C ′

m∠OMbG = m∠O′Mb
′G′

Thus, by SAS similarity, △OMbG ∼= △O′Mb
′G′ . This implies that OG

O′G′ = GMb

G′Mb
′ = k . So,

OG = kO′G′ . But, O′G′ = g′ and OG = g . Thus, g = kg′ .

Now, we know that MbC
Mb

′C′
= MaC

Ma
′C′

= k . So, △MbMaC ∼ △Mb
′C ′Ma

′ by SAS similarity.

Therefore, ∠Mb
′Ma

′C ′ ∼= ∠MbMaC , ∠MaMbC ∼= ∠Ma
′Mb

′C ′ , and MMa

M ′Ma
′ . Thus, by subtraction,

∠OMaM ∼= ∠O′Ma
′Mb

′ and ∠OMbMa
∼= ∠O′Mb

′Ma
′ . This implies that △OMbMa ∼ △O′Mb

′Ma
′ .

So, OMb

O′Mb
′ = MbMa

Mb
′Ma

′ = k . Thus, △OMbC ∼ △O′Mb
′C ′ . Therefore, OC

O′C′ = k . But, OC = r and

O′C ′ = r′ . So we know r = kr′ .

Now, construct lines OG , O′G′ , and segments OC and O′C ′ . We have shown that the segments
connecting the centroids to the vertices are proportional by k , and OG = kO′G′ . Thus, △OGC ∼
△O′G′C ′ by SSS similarity. This implies that ∠GOC ∼= ∠G′O′C ′ . So, since ∠GOC = θ and
∠G′O′C ′ = θ′ , θ = θ′ .
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Figure 2: Angle θ is the same in both triangles.

(⇒) Let △ABC defined by (θ, g, r) and △A′B′C ′ defined by (θ′, g′, r′) be two triangles with
the property that r = kr′ , g = kg′ , and θ = θ′ .

First, let Ma be the midpoint of CB . Now, we can see that △AOG ∼ △A′O′G′ by SAS
similarity. Thus, AG

A′G′ = k . So,

AMa

A′M ′

a

=
3

2
AG

3

2
A′G′

= AG
A′G′ = k

Then, GMa

G′M ′

a

= k and GMa = kG′M ′
a . Also, ∠AGO ∼= ∠A′G′O′ and thus ∠OGMa

∼= ∠O′G′M ′
a .

Therefore, △OGMa ∼ △O′G′M ′
a by SAS similarity. So, OMa

O′M ′

a

= k and OMa = kO′M ′
a . Also,

∠OMaG ∼= ∠O′M ′
aG

′ . Because O and O′ lie on the perpendicular bisectors to sides BC and B′C ′

respectively, we know,

CM2
a = (kr)2 − OM2

a

(C ′M ′
a)

2 = r2 − (O′M ′
a)

2

CM2
a = (kr)2 − (kO′M ′

a)
2

CM2
a = k2(r2 − (O′M ′

a)
2)

CM2
a = k2(C ′M ′

a)
2

CMa = kC ′M ′
a

Also, BC = 2CMa = 2kC ′M ′
a = kB′C ′ . Thus, △ACMa ∼ △A′C ′Ma

′ by SAS similarity. Thus,
∠ACMa

∼= ∠A′C ′Ma
′ and △ABC ∼ △A′B′C ′ by SAS similarity.

3.2 Bounding the Parameters

Let us now begin looking at the bounds on θ , g , and r .

Proposition 4. If (θ, g, r) represents a triangle, then r > 0 .
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Proof. The only acceptable values of r are r > 0 because r = 0 would mean that the circumcircle is
only a point, which does not allow for any triangles. Moreover, r < 0 is absurd. Also, if r is bounded
above, then we restrict ourselves to triangles with side lengths less than 2r , so r can be any positive
number.

That being said, Theorem 1 implies that r is just a scaling variable. Therefore we can get a clear
picture of what triangle space looks like by examining cross-sections of R

3 parallel to the θg -plane.

Proposition 5. If (θ, g, r) represents a triangle, then 0 ≤ g < r
cos[12 (θ + sin−1(1

2 sin θ))]

cos[12 (θ − sin−1(1
2 sin θ))]

θθθθ

C'

B'
B

C

O
Gmin G'max

A

Figure 3: Note that vertices B′ and C ′ are coincident.

Proof. As motivation for this proof, imagine being given a triangle inscribed in a circle. Take the
centroid G of the triangle, which lies on the Euler line, and start moving it away from the circumcenter
toward the closest edge of the circle. Since G is the intersection of the lines connecting the vertices
of the triangle with the midpoints of the opposite sides, it follows that as G approaches the edge of
the circle, two vertices of the triangle (say B and C ) begin to come closer together. This is because
G is approaching one side of the triangle (say AB ), and as it gets closer and closer to that side, the
line connecting vertex A and the midpoint of BC , Ma moves closer and closer to the edge of the
circumcircle. Thus, when G reaches side AB , BC and consequently △ABC disappears. It seems
that this point is the limit for OG or g . Therefore, we first identify a way to calculate this limit.

Let Ma again be the midpoint of the side opposite vertex A. We want to find the value of g

so that Ma lies on the the circumcircle. Now, consider △OAMa . Let A be the vertex of △ABC

inscribed in the circle and Ma be the point on ray
−→
AG such that AG = 2GMa . Let y = GMa and

g = OG .

Then, since OMa and OA are both radii of the circle, it follows that △OAM is isosceles. Thus,
∠OAMa

∼= ∠OMaA . Let α = ∠MaOG and ∠GOA = θ . Now, by the Law of Sines, sin θ
2y

= sin∠OAMa

g

in △OAG . Also, sin α
y

= sinOMaA
g

= sin ∠OAMa

g
in △MaOG . Therefore, sin θ

2y
= sin α

y
, which implies

that sinα = sin θ
2 . This in turn implies that α = sin−1 1

2 sin θ . Now, π−(θ+α)
2 = β . If we define

γ = ∠OGA , then γ = π − θ − β = π − θ − π
2 + θ

2 + α
2 = π

2 − θ
2 + α

2 . Finally, again by the Law of

Sines,
sin π

2 − θ
2 − α

2

x
=

sin π
2 − θ

2 + α
2

r
. ∴ g = r

sin π
2 − θ

2 − α
2

sin π
2 − θ

2 + α
2

. Replacing α with sin−1 1
2 sin θ and
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realizing that sin(π
2 − φ) = cos φ provides the desired result,

g < r
cos[12(θ + sin−1(1

2 sin θ))]

cos[12(θ − sin−1(1
2 sin θ))]

.

Now that we have g bounded above, we consider the lower bound. Clearly we need to include
g = 0 because we need to include equilateral triangles. We have always looked at our triangles with G

on the right side of O . If we look at the triangles we get with G on the left side of O we realize they
are the same as the ones with G on the right side. They can be mapped to each other by reflecting
across the line perpendicular to the Euler line at O . Thus,

0 ≤ g < r
cos[12 (θ + sin−1(1

2 sin θ))]

cos[12 (θ − sin−1(1
2 sin θ))]

.

The bounds for θ are a lot harder to sort out because they come in cases which depend on g For
the following propositions, we will denote the θ value for an isosceles triangle with a vertex and G

lying on the Euler line on the same side of O as θR . Also, we will denote the θ value for an isosceles
triangle with a vertex and G lying on the Euler line on the opposite sides of O as θL .

Proposition 6. If g < r
3 , then cos−1(3g+r

2r
) ≤ θ ≤ cos−1(3g−r

2r
) .

θmax θmin

C'

A'

C

A

B' BHO G

Figure 4: The bounds are created by an isosceles triangle on either end.

Proof. Since g < r
3 , every triangle with a vertex on the Euler line is an isosceles triangle. Consider

the isosceles triangle with vertex B on the Euler line on the same side of O that G is on. So,
θR = m∠GOA . Let Mb be the midpoint of AC . Since this is an isosceles triangle, Mb lies on the
Euler line and m∠AMbO = π

2 . Also, r−g = BG = 2(GMb) . Therefore, OM = r−3g
2r

. We also know

m∠AOM = π − θR . So cos(π − θR) = − cos θR = r−3g
2r

. Therefore,

θR = cos−1(
3g − r

2r
) .

A consequence of this isosceles triangle case is that ∠GOA ∼= ∠AOB . Also, ∠GOA ∼= ∠GOC ,
and both measure θ , so we can think of ∠GOA as θ . By the law of cosines, we know that

∠AOB = cos−1(
2r2 − (AB)2

2r2
) .

7



In the appendix of “A New Way to Think About Triangles” ??, we prove that

AB =

√

3r2 − 3rg cos θ − 3rg sin θ

√

3r2 − 9g2 + 6rg cos θ
√

r2 + 9g2 − 6rg cos θ
.

When θ = cos−1(3g−r
2r

) , (after some simplification) we see

∂(θ − m∠AOB)

∂θ
= 1 −

3g

r
.

So, since g < r
3 ,

∂(θ − m∠AOB)

∂θ
> 0.

This means that as we increase m∠GOA , the difference m∠GOA − m∠BOA increases. So,

m∠GOA − m∠BOA > 0.

Therefore, A and B must be on the same side of the Euler line. This means that θ is made by
∠GOC , and

∠GOC < cos−1(
3g − r

2r
),

otherwise C and B would be on the same side of the Euler line (and B cannot be on both sides of
the Euler line). This proves that θR is the upper bound for θ when g < r

3 .

Likewise, the lower bound for θ is found in the other isosceles triangle case. That is, when we
have an isosceles triangle with a vertex (without loss of generality, C ) on the opposite side of O from
G . Let θL be made by ∠GOA . Again, let Mc be the midpoint of AB . Since this is an isosceles
triangle, Mc lies on the Euler line and m∠AMcO = π

2 . Also, g + r = CG = 2(GMc) . Therefore,

OMc = 3g+r
2r

. We also know m∠AOG = θL . So,

θL = cos−1(
3g + r

2r
) .

The consequence of this isosceles triangle case is that ∠GOA + ∠AOC = π . Also, ∠GOA ∼=
∠GOB , and both measure θ , so we can think of ∠GOA as θ . By the law of cosines, we know that

∠AOC = cos−1(
2r2 − (AC)2

2r2
.

In the appendix of the aforementioned paper ??, we also prove that

AC =

√

3r2 − 3rg cos θ + 3rg sin θ

√

3r2 − 9g2 + 6rg cos θ
√

r2 + 9g2 − 6rg cos θ
.

When θ = cos−1(3g+r
2r

) , (after some simplification) we see

−
∂(θ + m∠AOC − π)

∂θ
= −(1 +

3g

r
) .

So,

−
∂(θ + m∠AOC − π)

∂θ
< 0 .

8



This means that as we decrease m∠GOA , the m∠GOA + m∠BOA− π decreases. So,

m∠GOA + m∠COA < π.

Therefore, A and C must be on the same side of the Euler line. This means that θ is made by
∠GOB , and

∠GOB > cos−1(
3g + r

2r
),

otherwise C and B would be on the same side of the Euler line (and C cannot be on both sides of
the Euler line). This proves that θL is the lower bound for θ when g < r

3 .

Combining the upper and lower bounds we get,

cos−1(
3g + r

2r
) ≤ θ ≤ cos−1(

3g − r

2r
) .

Note that if we consider the g = 0 case, we have defined θ = π
2 which falls between the bounds.

Proposition 7. If g = r
3 , then 0 < θ ≤ π

2 .

Proof. To find the upper bound for θ when g = r
3 we again look at the isosceles triangle with vertex

B on the same side of O as G . We know that in this case, O and Mb are the same point, and
that m∠AOG = π

2 . We also know that A , O , and C are collinear, so if we increase ∠AOG we
necessarily decrease ∠GOC , and the two angles must sum to π . The right triangle case is the reason
we had to add the requirement that θ be the smaller of the two angles if we have two “one-vertex
sides.” In this case, the largest value that the smaller angle can take is π

2 . When we go to look at
the isosceles triangle with vertex C on the opposite side of O from G , we realize that we cannot
make this triangle because two vertices would have to fall on on the Euler line, which is impossible.
So if we keep B at the right angle, we can move vertex C arbitrarily close to the Euler line on the
opposite side of the circle from B . This means that we can make m∠GOC arbitrarily close to π ,
so m∠GOA can be made arbitrarily close to 0 . So when g = r

3 ,

0 < θ ≤
π

2
.

Proposition 8. If g > r
3 , then cos−1(3g−r

2r
) ≤ θ ≤ cos−1(3g2−r2

2rg
) .

Proof. Again we consider the isosceles triangle with vertex B on the Euler line on the same side of
O that G is on. So,

m∠GOA = θR = cos−1(
3g − r

2r
) .

As before we have ∠GOA ∼= ∠AOB . Also, ∠GOA ∼= ∠GOC , and both measure θ , so we can
think of ∠GOA as θ . Following the same procedure for the isosceles triangle with θ = θR (from the
g < r

3 case), we see,
∂(θ − m∠AOB)

∂θ
= 1 −

3g

r
.

But this time, since g > r
3 ,

∂(θ − m∠AOB)

∂θ
< 0.

9



θmax

θmin

B,C

C'

A'

B' HO G

A

Figure 5: The bounds are created by an isosceles triangle and a line.

This means that as we increase m∠GOA , the difference m∠GOA − m∠BOA decreases! So,

m∠GOA − m∠BOA < 0.

Therefore, A and B must be on opposite sides of the Euler line. This proves that θR is the lower
bound for θ when g > r

3 .

When g > r
3 there is no other isosceles triangle to look at. This is because BMb = 3

2(r + g) >
3
2(4r

3 ) = 2r , so the midpoint of the side opposite B and therefore the side itself is not contained in
the circumcircle. Even though this means that our usual means of finding the other bound is not
possible, it gives us another possibility. Now we set out to find where the triangle disappears. To do
this, we find the angle that forces Ma to land on the circumcircle (also forcing A, MA, and G to
be collinear. Therefore, we are interested in the case where OA = r = OMa . This means △AOMa

is an isosceles triangle, and ∠OAMa
∼= ∠AMaO . If we define l = AG , then AMa = 3l

2 . By the law

of cosines, r2 = r2 + 9l2

4 − 3rl cos ∠AMaO . After some simple algebra we discover,

2r(cos ∠AMO) =
3l

2
.

By the Law of Cosines in △AOG we know g2 = r2 + l2 − 2rl cos ∠OAMa . Substituting and
solving for l2 , we get l2 = 2(r2 − g2) . We again use the law of cosines in △AOG and get l2 =
r2 + g2 − 2rg cos θ . Substituting for l2 and solving for θ we get

θ = cos−1(
3g2 − r2

2rg
) .

Thus,

cos−1(
3g − r

2r
) ≤ θ ≤ cos−1(

3g2 − r2

2rg
) .

A cross-section of the space can be found in Figure 6. As you can see, we have a built in flipping
effect that happens when g crosses the r

3 line. This stems directly from our definition of θ as the

10



Figure 6: A cross-section of triangle space when r = 1 .

angle formed to the one-vertex side. It is a problem we can live with and will deal with shortly, but
we do so with the belief that our definition of θ is the most natural way to eliminate overcounting.
First, we must quickly return to the situation where we fix θ and allow g to vary. If we do this and
allow g to cross the r

3 threshold, it is not immediately clear what happens. Upon reflection of the
g = r

3 case, we realize that (θ, g, r) ∼= (π − θ, g, r) .

3.3 Metric

Now that we know where all of our triangles are and what triangle space looks like, it is natural to
define a metric to determine how close two triangles are to being congruent. We would like the metric
to have two additional properties:

i) Account for the fact that all triangles with g = 0 and the same r are congruent, and

ii) Account for the flipping effect when g crosses r
3 .

First, we will account for the flipping by defining a new function,

θ̄ =

{

θi gi≤
ri

3

π−θi gi>
ri

3

.

Let s and t be triangles such that s = (θ1, g1, r1) and t = (θ2, g2, r2) . Define

D(s, t) =
√

(g1θ̄1 − g2θ̄2)2 + (g1 − g2)2 + (r1 − r2)2 .

Attaching the g ’s onto the θ̄ terms accounts for how alike triangles with small g values are. It
also leads to two nice propositions dealing with similar triangles, but first we will show a result about
triangles who have the same r and g values.

Definition 2. A θ -family of triangles is a family of triangles in which θ varies while g and r remain
constant.
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Proposition 9. If triangles s and t are in the same θ -family, with s = (θ1, g, r) and t = (θ2, g, r) ,

then D(s, t) = g|θ̄1 − θ̄2| .

Proof.

D(s, t) =
√

(gθ̄1 − gθ̄2)2 + (g − g)2 + (r − r)2 =
√

g2(θ̄1 − θ̄2)2 = g|θ̄1 − θ̄2| .

Proposition 10. Let s and t be triangles such that s = (θ, g, r) and t = (θ, kg, kr) . Then

D(s, t) = |k − 1|
√

(gθ̄)2 + g2 + r2

Proof. Begin with the definition of

D(s, t) =
√

(kgθ̄ − gθ̄)2 + (kg − g)2 + (kr − r)2.

Then factor a (k − 1)2 from each term, and bring it outside the square root as a |k − 1| .

Proposition 11. Given triangles p = (θ1, g, r) , p′ = (θ1, kg, kr) , q = (θ2, g, r) , q′ = (θ2, kg, kr) ,

then

D(p′, q′) = kD(p, q).

Proof.

D(p′, q′) =
√

(kgθ̄1 − kgθ̄2)2 + (kg − kg)2 + (kr − kr)2 = kg|θ̄1 − θ̄2| = kD(p, q).

4 Conclusion

It is important to note that we did not actually show you a picture of the space, but rather a cross-
section of the space parallel to the θg -plane with r = 1 . If you were to take cross-sections for bigger
r values, the picture would stretch vertically (clearly, if r is bigger, then r

3 is bigger). The picture
would not stretch horizontally, because 0 < θ < 2π , for all values of g and r .

Using our construction and its parameters, we were able to derive a way to think about and
picture triangle space. By defining a metric on our space, we were able to come to an even better
understanding of what is actually happening. Even so, we feel that we have barely scraped the surface
of what our construction can actually do. It would be fascinating to see what how much more we
could learn about triangle space.
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