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Eigenvalues of Non-backtracking Walks in a
Cycle with Random Loops

Ana Pop ∗

August 21, 2007

Abstract

In this paper we take a very special model of a random non-regular
graph and study its non-backtracking spectrum. We study graphs
consisting of a cycle with some random loops added; the graphs are
not regular and their non-backtracking spectrum does not seem to be
confined to some one-dimensional set in the complex plane. The non-
backtracking spectrum is required in some applications, and has no
straightforward connection to the usual adjacency matrix spectrum
for general graphs, unlike the situation for regular graphs. Experi-
mentally, the random graphs’ spectrum appears similar in shape to
its deterministic counterpart, but differs because the eigenvalues are
visibly clustered, especially with a mysterious gap around Re(λ) = 1.
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1 Introduction

Consider a graph, G = (V, E). A graph can be traversed from a node to any
other node through a walk of varied lengths. A non-backtracking walk in a
graph G is one in which no step is the reverse step along the same edge as
the previous step. Let A be G’s n × n adjacency matrix. Let B = B(G)
be the 2n × 2n matrix indexed on the directed edges of G (each edge of
G gives rise to two directed edges) such that there is a 1 or a 0 in Be,e′

according to whether or not e, e′ forms a non-backtracking walk of length
2. For finite graphs, the eigenvalues of B are essentially the solutions to
det(Iλ2 − Aλ + (Q)) = 0 [KS00], where D is the diagonal n × n matrix of
vertex degrees and Q = D − I.

Non-backtracking walks arise in numerous situations. For example, the
trace method of Broder and Shamir for estimating the second eigenvalue of
random regular graphs [BS87, Fri91, Fri] applies to non-backtracking closed
walks. In the regular case, the non-backtracking spectrum is easy to de-
termine, but for non-regular graphs the spectrum is difficult to formulate.
Thus we seek to understand the non-backtracking matrix B better. Number
theorists are also interested in non-backtracking walks because of their rela-
tions to Zeta functions [ST96, ST00, ST]. Also, using non-backtracking walks
is natural in certain applications such as congestion in computer networks.
In data transmissions, error correcting codes called low density parity check
(LDPC) codes exist to determine whether information was sent correctly.
LDPC codes rely on solutions to a system of linear equations with unknown
variables. The system can be iteratively solved by replacing variables one
at a time into the equations. Since loops are undesirable on variables, non-
backtracking walks should be used [HLW, HG].

In this paper, we will analyze the eigenvalues of the non-bactracking ma-
trix for two families of graphs. Both are formed by adding loops to the cycle
on n vertices. The first family is formed by adding the loops at evenly-spaced
intervals, the second by adding the loops at randomly-spaced intervals. In
this paper, we will use the term evenly spaced k-graph to refer to graphs that
have loops every k vertices and the term evenly spaced k-graph plot to refer
to the eigenvalue plot of the non-backtracking edge matrix derived from the
evenly spaced k-graph. Similar terms will be used for the randomly spaced
case. Special cases for these terms are when there are loops at no vertices
and loops at all vertices, which will be expressed with k = 0 and k = n,
respectively.
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2 Tests Performed

Eigenvalues of the non-backtracking matrix B were plotted in Matlab in the
complex plane and the resulting clusters were examined. The results are
presented in this section and are discussed in the next section.

Evenly spaced k-graphs plots are shown in Figures 1 to 3. We show the
position of the eigenvalues of the non-backtracking matrix in the complex
plane for k = 2, 4, 20.

In addition to computing the eigenvalues from the non-backtracking ma-
trix, a polynomial formula for the eigenvalues can also be derived using
Fourier analysis. The case for an evenly spaced 2-graph is outlined as follows.

We first convert the adjacency matrix to the non-backtracking matrix by
forming (

0 I
−Q A

)
So we know that

(Iλ2 − Aλ + Q)f = 0 (1)

We assume that f : {0, 1, ..., n− 1} → C satisfies f(i + 2) = ζf(i) with
ζn/2 = 1 (we write f(n), f(n + 1) for f(0), f(1)); these assumptions are
justified by Fourier analysis. Figure 4 shows the generalization of the graph
that was used to determine the equation.

Then equation (1) is equivalent to the two equations for f1 = f(1) and
f2 = f(2)

λ2f1 − λ(ζ−1f2 + 2f1 + f2) + 3f1 = 0 and λ2f2 − λ(ζf1 + f1) + f2 = 0

Using these equations, the final result is the polynomial in λ of degree 4
that, when plotted, yields the same result as in Figure 1.

λ4 − 2λ3 + λ2(2− ζ−1 − ζ)− 2λ + 3 = 0

Similar algebraic equations can be derived for an evenly spaced k-graph
for any positive integer k.

Several graphs were studied with the following total number of random
loops: n/2, n/4, n/20, as well as loops at every prime number. Figures 5 to 7
show randomly spaced k-graph plots depicting the position of the eigenvalues
of the non-backtracking matrix in the complex plane.
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Figure 1: n = 1000, loops at every 2nd
vertex

Figure 2: n = 1000, loops at every 4th
vertex

Figure 3: n = 1000, loops at every
20th vertex

Figure 4: Generalization of graph with loops at every 2nd vertex
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Figure 5: n = 1000, n/2 loops posi-
tioned randomly

Figure 6: n = 1000, n/4 loops posi-
tioned randomly

Figure 7: n = 1000, n/20 loops posi-
tioned randomly

Figure 8: n = 1000, loops at every
prime number
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3 Analysis of Test Results

The figures presented in the previous section show that for a fixed k, the
evenly spaced k-graph spectrum is confined to a one-dimensional set in the
complex plane while the randomly spaced k-graph plots do not seem to be
confined as such.

Referring to Figures 5 to 7, the non-backtracking spectra of graphs with
randomly spaced loops yield eigenvalue clusters in the shape of the evenly
spaced k-graph plot. They also approach the unit circle as the total number
of loops decreases. In Figure 8 we plot the non-backtracking graph with
loops at every prime number (in hopes that this will mimic randomness).
Our analysis of Figures 1 to 7 leads us to a conjecture and a theorem.

Conjecture 3.1. Let k be fixed and let Yn be the non-backtracking spectrum
of the n-cycle plus n/k evenly spaced loops graph in the complex plane with
multiplicities. Similarly, let Zn be the non-backtracking spectrum of the n-
cycle plus n/k randomly spaced loops graph. As measures on the complex
plane (meaning the measure of region, R, is the number of points in R divided
by the total number of points), we expect Yn to have a weak limit L, and Zn

to weakly converge in probability to L.

In Conjecture 3.1, by convergence weakly in probability we mean that for
any R and any ε > 0, Prob(|Zn(R)− L(R)| ≥ ε) ≤ ε.

The following theorem was developed joint with Shlomo Hoory.

Theorem 3.2. The non-backtracking eigenvalues of a cycle plus some loops
are always to the right of λ = −1.

Proof. We replace A, Q in equation (1) by real numbers a, b as follows. Let
Q be the non-negative diagonal matrix and A = C + Q where C is the
adjacency matrix of a cycle. The smallest possible eigenvalue of a cycle is -2,
so 〈Cf,f〉

〈f,f〉 ≥ −2. Then,

a =
〈Af, f〉
〈f, f〉

≥ −2

b =
〈Qf, f〉
〈f, f〉

≥ 0

And we can write
λ2 − aλ + b = 0
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Since a ≥ −2 and b ≥ 0 then for sure |a| ≤ 1 so |a| ≤ b + 1. By Kotani
and Sunada [KS00] (our a is their λ and our b is their µ), if the eigenvalues
are real,

λ ≥
a−

√
a2 − 4(|a| − 1)

2
≥ a− ||a| − 2|

2
≥ −1 if a ∈ [−2,∞)

If the eigenvalues are imaginary,

Re(λ) =
a

2
≥ −1 ♦

If we compare the evenly spaced 2, 4, 20-graph plots with randomly spaced
2, 4, 20-graph plots, we notice some interesting characteristics.

We observe that the evenly spaced k-graph plot points are organized in
a T-shape on the right side and a number of wings, which can also be seen
to a certain degree in its corresponding non-deterministic plot with the same
number of total loops. This behaviour is noted on the n/2, n/4, and n/20
plots. Further, we see that the gaps evident in the randomly spaced k-graph
plot mimic the evenly spaced k-graph plot, almost as if to complete the plot.

We expect the plot in the complex plane to have the point density, at a
certain location, being a random variable with some “small” variation. For
any n, k, let Zn,k be a random variable of the non-backtracking spectrum
distribution of the n-cycle plus n/k randomly spaced loops graph. For any
closed region R, Zn,k(R) = (number of points in R) / (number of total points)
and takes a value between 0 and 1.

Question. We want to know what is
∫

(Zn,k(R)− Zn,k(R))2dP where P is
the region of probability. That is, what is the variance V ar(Zn,k(R))?

If R is a closed region and we expect that Zn,k weakly converges in prob-
ability to L as postulated in Conjecture 3.1 then we expect a 50% variance
above and below L. Determining this variance would give us a better idea of
the clusters formed in the randomly spaced k-graph plots in relation to the
evenly spaced k-graph plots.
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