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COARSE FUNCTION VALUE THEOREMS

CHUL-WOO LEE AND JARED DUKE

Abstract. Coarse functions are functions whose graphs appear to be contin-

uous at a distance, but in fact may not be continuous. In this paper we explore

examples and properties of coarse functions. We then generalize several basic
theorems of continuous functions which apply to coarse functions.

1. Introduction

In this paper we will explore several properties of coarse functions. In particular,
we will establish the conditions necessary to generalize several basic theorems of
calculus for use with such functions. Unlike continuous functions, where attention
is placed on the small scale structure defined by a given metric, coarse functions
focus instead on the large scale structure of a function. This large scale focus is
the defining aspect of coarse geometry, where the coarse equivalence of two metric
spaces is established by their similarity when viewed from a great distance [1].

In the stock market, prices are updated at discrete intervals, namely every sec-
ond. Such sampling gives us a discrete set of data rather than some continuous func-
tions. However, because we are more concerned with the long-term price trends of
such stocks, whether that be hourly, daily, weekly or monthly, we need not concern
ourselves with the small gaps in our data set. Though there exists discontinuity
between the stock prices on our second to second intervals, we can ”take a step
back” and find coarse continuity as we look at the prices on larger and larger inter-
vals. This gives us the information we need, as we can use the principles of coarse
geometry to analyze and interpret such data. The graphs in Figure 1 represent Dow
Jones Industrial Average closings taken from two time periods, one short term and
the other long term. The short term data on the left appears rough and unrelated,
while the long term data on the right appears smooth and can be approximated by
a continuous function over R2.

Figure 1. Stock Prices
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In engineering, these are the cases where functions are defined over a discrete
domain but viewed in large scale. The material properties of a specific model’s mi-
crostructure, for example, are defined only at certain points on the given structure,
a ”grain space” [2]. The application of coarse geometric principles to this discrete
set of data allows us to make useful observations and conclusions about the model’s
behavior and properties, as the data can be treated more like a continuous function.

The appearance of perfect, continuous functions in real world situations is rare.
More common is the appearance of discrete data sets. This data contains much use-
ful information. However, making sense of that information proves a more difficult
task. Take, for example, the terrain elevation samplings shown in Figure 2. The
vertices of the piecewise linear surface on the left represent a small scale sampling
from the terrain data. Note the relative jaggedness of the graph. The image on the
right, however, is a much larger sampling from the same terrain data. Though still
discrete, the graph appears smoother and significantly less jagged.

Figure 2. Terrain Model

The purpose of this paper is to create a broader mathematical basis for inter-
preting such discrete sets of data. The figures on the following pages are indicative
of the types of data sets for which such analysis would prove useful.

Coarse functions and geometry, in the context of geometric group theory, have
been extensively studied by John Roe of Penn State University. Please refer to [3]
for more information on the subject. This paper relies on several fundamental ideas
behind coarse-geometry, primarily the characterization of functions as large-scale
Lipschitz, bornologous and weak-bornologous as found in [3]. By establishing the
equivalence of these conditions under certain conditions, we created a framework for
adapting fundamental theorems for continuous functions, as found in most calculus
textbooks, such as Stewart’s Calculus [4]. We then prove these adapted theorems
for coarse functions.

2. Preliminaries

The following definition, as found in [3], provides the basis for our work with
coarse functions.

Definition 2.1. Let X and Y be metric spaces, and let f : X → Y be a map.
Then for x, x′ ∈ X we define the following:

(1) The map is large-scale Lipschitz if there exist positive constants c and A
such that

d(f(x), f(x′)) ≤ cd(x, x′) +A
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Note that if A = 0, we have that the function satisfies the Lipschitz condi-
tion, which in turn implies that f is continuous. However, since our focus
will be on discrete functions, then in general we will find that A 6= 0. An
example of such a map can be found in Figure 3. Let f be defined as
follows:

f(x) =

{√
x2 − 3 for |x| > 2
− |x|+ 2 for |x| ≤ 2

Then we find that f satisfies the large-scale Lipschitz condition with c = 2
and A = 2.

Figure 3. Large-Scale Lipschitz Mapping

(2) The map f is bornologous if for every R > 0 there exists an S > 0 such
that

d(x, x′) < R⇒ d(f(x), f(x′)) < S.

Consider the function f(x) = x2 on the set A = {1/n | n ∈ Z+}. Now, let
R > 0 be given and let S = R. So for any x, x′ ∈ A ⊂ (0, 1), we have by
the definition of f(x) that d(f(x), f(x′)) < d(x, x′) < R = S. Clearly then,
we have that f is a bornologous function on the discrete set A.

(3) The map is weak bornologous if there exist R,S > 0 such that

d(x, x′) < R⇒ d(f(x), f(x′)) < S

A weak bornologous mapping can be found in Figure 4. Let f be defined
as follows:

f(n) =

{
2 for x = ± 1

2

n2 for n ∈ Z
For R = 1 and S = 3 we find that f satisfies the weak bornologous condi-
tion. Note, however, that f is not bornologous.
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Figure 4. Weak Bornologous Mapping

It will be shown that these conditions are in fact equivalent under certain restric-
tions. Such equivalence allows us to expand several conclusions about continuous
functions to those that are coarse and discrete. Before doing so, however, we provide
the definitions of those terms we created as tools for expanding these conclusions.

Definition 2.2. A δ-coarse path P from points a, b ∈ X with δ > 0 is an ordered
set P = {a = x0, x1, . . . , xn−1, xn = b} such that d(xi−1, xi) < δ for 1 ≤ i ≤ n.
Now, let a = (0, 0) and b = (4, 2) be points in R2. Clearly, there are many δ-coarse
paths between a and b. Figure 5 shows such a path with δ = 2.

Figure 5. δ Coarse Path

Definition 2.3. A δ-γ coarse path P from a to b is a δ-coarse path from a to b
given by P = {a = x0, x1, . . . , xn−1, xn = b} such that δ − 2γ ≤ d(xi−1, xi) < δ for
1 ≤ i ≤ n. A δ-γ coarse path is dependent on the chosen values of both delta and
gamma. For example, the two previous paths shown in Figure 5 are not δ-γ coarse
paths for δ = 2 and γ = .5. However, if we reduce our constraints and let δ = 1.5
and γ = .3, then the paths satisfy the necessary conditions for a δ-γ coarse path.
Figure 6 illustrates a δ-γ coarse path with δ = 1 and γ = .3.

Definition 2.4. Let f : X → R be defined on a metric space X. We define a coarse
derivative function f ′δ(x) on X as follows. Suppose P = {a = x0, x1, . . . , xi =
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Figure 6. δ-γ Coarse Path

x, xi+1, . . . , xn−1, xn = b} is a δ-coarse path from a to b in X. Then

f ′δ(xi) =
f(xi+1)− f(xi)

δ

Note that this definition better mimics the standard definition of a derivative if P
is a δ-γ course path for δ very small and γ << δ.

Definition 2.5. A set X in a metric space is bounded if there exists an R < ∞
such that d(x, x′) ≤ R for all x, x′ ∈ S.

3. The Large Scale Lipschitz Function Theorem for Coarse
Functions

We begin by establishing the restrictions under which the weak bornologous con-
dition implies large-scale Lipschitz behavior for discrete functions. In generalizing
this relationship for use in a discrete environment, we gain the ability to apply
additional properties of coarse geometry already established in [3] .

Theorem 3.1. Let X and Y be metric spaces and f : X → Y a function such that:
(1) f is weak bornologous where R and S are the constants so that d(x, x′) < R

implies that d(f(x), f(x′)) < S.
(2) There exists an ε > 0 such that if x, y ∈ X, d(x, y) > R, and n is an the

integer so that
d(x, y)
n

< R − 2ε and
d(x, y)
n− 1

≥ R − 2ε, then there is a

δ-course path P = {x = x0, x1, . . . , xn = y} with δ = R.
Then f is large-scale lipschitz.

Proof. Let x, y ∈ X. Let R,S and ε be given as in (1) and (2). Choose n so that

d(x, y)
n

< R− 2ε and
d(x, y)
n− 1

≥ R− 2ε.
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Thus we have that n ≤ d(x,y)
(R−2ε) + 1. Now let x0 = x, x1, . . . , xn−1, xn = y be given

from (2). Then

d(f(x), f(y)) ≤
n−1∑
i=0

d(f(xi), f(xi+1))

< nS

≤
(
d(x, y)
R− 2ε

+ 1
)
S

=
(

S

R− 2ε

)
d(x, y) + S

Thus d(f(x), f(y)) <
(

S
R−2ε

)
d(x, y) + S. Therefore, f is large scale Lipschitz.

�

Corollary 3.2. Let X and Y be metric spaces and let f : X → Y satisfy the
restrictions set forth in Theorem 3.1. Then the following statements are equivalent:

(1) f is large-scale Lipschitz
(2) f is bornologous
(3) f is weak bornologous

Proof. We begin by showing that (1) ⇒ (2). Suppose f is large-scale Lipschitz.
Then there exist positive constants c and A such that

d(f(x), f(y))) ≤ cd(x, y) +A

for all x, y ∈ X. Now let R > 0 be given, and choose S = cR + A. Thus, if
d(x, y) < R we have that

d(f(x), f(y)) ≤ cd(x, y) +A

< cR+A = S

Now for (2)⇒ (3). Suppose f is bornologous. Thus for every R > 0 there exists
an S > 0 such that

d(x, x′) < R⇒ d(f(x), f(x′)) < S.

Clearly, there must then exist some R > 0 and S > 0 such that the same condition
holds. Thus we have that f is weak bornologous.

Finally, (3)⇒ (1) is proved in Theorem 3.1.
�

4. The Intermediate Value Theorem for Coarse Functions

Theorem 4.1. Let X be a metric space and f : X → R be weak bornologous. Let
P = {a = x0, x1, . . . , xn = b} be a δ-coarse path from a to b in X with δ = R.
Then, if y is a value strictly between f(a) and f(b), there exists c ∈ P such that
d(f(c), y) < S.

Proof. Without loss of generality, suppose that f(a) ≤ f(b) and let A = {xi ∈
P |f(xi) ≤ y}. Note that A 6= ∅ because x0 = a ∈ A. Also A 6= P because
xn = b /∈ A. Now, since P is a set of ordered points, so too will A be a set
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of ordered points. Let k be the maximum index of the xi’s in A. Then, clearly,
f(xk) ≤ y < f(xk+1). Thus

d(f(xk), y) ≤ d(f(xk), f(xk+1)) < S

d(f(xk), y) < S

Therefore, c = xk is the desired point. �

5. The Boundedness Theorem for Coarse Functions

The following theorem is the coarse analog for the Extreme Value Theorem.

Theorem 5.1. Let f : X → R be real valued function defined on a bounded set P
such that f is large scale Lipschitz. Then the image of P under f is also bounded.

Proof. Let P be a bounded subset of X. So for any x, y ∈ P , d(x, y) < R, where
R <∞. Now, since f is large-scale Lipschitz, there exists positive constants c and
A such that

d(f(x), f(y)) ≤ cd(x, y) +A

< cR+A

So by definition, the image of P is also bounded. �

6. The Mean Value Theorem for Coarse Functions

Theorem 6.1. Let f : X → R be defined such that f ′δ is large scale lipschitz with
constants c and A. Also, let P be a well-defined δ coarse path from x to y for
x, y ∈ X. Then there exists some xi ∈ P such that, for β = 1

2 (cδ +A):∣∣∣∣f(y)− f(x)
d(y, x)

− f ′δ(xi)
∣∣∣∣ ≤ β

Proof. Let x, y ∈ X, and let f and P be given as in the hypothesis. Now, assume
to the contrary that, for all xi ∈ P for which f ′δ exists, the following holds:∣∣∣∣f(y)− f(x)

d(y, x)
− f ′δ(xi)

∣∣∣∣ > β

So we have, for all appropriate xi, that either

(1) f ′δ(xi) >
f(y)− f(x)
d(y, x)

+ β

or

(2) f ′δ(xi) <
f(y)− f(x)
d(y, x)

− β

Now, assume without loss of generality that equation (1) holds for x1. It follows
that the same equation must hold for all remaining xi ∈ P . Otherwise, there would
exist some xi, xi−1 ∈ P such that

f ′δ(xi−1) >
f(y)− f(x)

nδ
+ β

and

f ′δ(xi) <
f(y)− f(x)

nδ
− β

This would imply that
f ′δ(xi−1)− f ′δ(xi) > 2β



8 CHUL-WOO LEE AND JARED DUKE

However, since f ′δ is large scale lipschitz, then for any xi, xi−1 ∈ P ,

|f ′δ(xi)− f ′δ(xi−1)| ≤ cd(xi, xi−1) +A < cδ +A = 2β

This contradiction implies that equation (1) must hold for all xi ∈ P if it holds for
x1. Now, note that d(y, x) ≤ nδ. It follows from equation (1) that

n−1∑
i=0

f ′δ(xi) > (n)
(
f(y)− f(x)
d(y, x)

+ β

)
(3)

≥ (n)
(
f(y)− f(x)

nδ
+ β

)
=
f(y)− f(x)

δ
+ nβ

By our definition of f ′δ(xi), however, we know that
n−1∑
i=0

f ′δ(xi) =
f(xn)− f(xn−1) + f(xn−1)− . . .− f(x1) + f(x1)− f(x0)

δ

=
f(xn)− f(x0)

δ

=
f(y)− f(x)

δ
(4)

Substituting (4) into the left hand side of equation (3) gives us the following:
f(y)− f(x)

δ
>
f(y)− f(x)

δ
+ nβ

and therefore
0 > nβ =

(n
2

)
(cδ +A)

This is a contradiction, however, as n, c, δ and A are all nonnegative constants.
Thus, it must be the case that there exists some xi ∈ P such that:∣∣∣∣f(y)− f(x)

d(y, x)
− f ′δ(xi)

∣∣∣∣ ≤ β
�
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