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ORIENTABILITY OF PHYLOGENETIC NETWORK GRAPHS

ETHAN CECCHETTI

Abstract. Traditionally, the genetic history of species has been modeled using phylo-
genetic trees. Recently, scientists have begun using phyolgenetic networks to model more
complex occurrences, such as hybridization, which cannot be displayed by trees. Phylo-
genetic networks are represented by network graphs which are trivalent directed graphs
without directed circuits. In this paper we discuss the mathematics of network graphs.
Given an unoriented trivalent graph, we determine a necessary and sufficient condition
for orienting the graph as a network graph.

1. Introduction

Evolution has traditionally been modeled using trees with each vertex representing a
different species. An edge connecting two vertices indicates that one species is directly
descended from the other. One species splitting into two or more species is represented by
multiple edges emanating from the vertex. Leaves (or terminal vertices) usually represent
either currently living species or extinct ones, but there can also be one leaf that repre-
sents the root, or common ancestor to all of the other species. These trees are known as
phylogenetic trees.

Phylogenetic trees, however, are constrained by a major restriction: they can only ac-
count for speciation, or the splitting of one species into two or more species. They cannot
account for hybridization, where two species come together to form a single new species.
Recently however, scientists have begun to use more complicated graphs known as “net-
work graphs” to account for these occurrences. Phylogenetic networks display the same
data as phylogenetic trees, but are represented by network graphs instead of trees. In a
network graph, circuits are allowed, edges are given directions, and every internal vertex
is trivalent (has three edges connected to it). Speciation is represented by a vertex with
one edge oriented inward and the other two out, whereas hybridization is represented by
a vertex with two edges in and one out [6]. A circuit occurs when a species splits into two
species and at some later time, two species descended from the original hybridize. Such a
circuit will always have both edges directed outward at the speciation node and both edges
directed inward at the hybridization node. The edges in a circuit will never be oriented to
form a continuously directed circle as this would make no sense biologically.

Recently, much work has been done concerning phylogenetic networks and several vari-
ations on the definition appear in the literature. Most of this work is related to developing
computer algorithms to construct networks from DNA data [1, 2, 3, 5]. These graphs are
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often highly restricted network graphs, such as galled-network graphs in which no single
edge can belong to more than one circuit [4, 7].

In this paper we discuss the mathematics of general network graphs. We look at when
undirected trivalent graphs can be given orientations to become valid network graphs. We
show that there exist certain trivalent graphs that cannot be oriented in this manner. We
call these “illegal” graphs and we prove that a trivalent graph can be oriented as a network
graph if and only if it has at least two leaves and contains no illegal subgraph.

In Section 2 we define terms necessary for use in this paper. Section 3 discusses an
obstruction to orienting a trivalent graph as a network graph. In Section 4 we prove the
main theorem.

2. Terminology

This section contains definitions and short explanations of the mathematical concepts
used in this paper. The first, and underlying definition, is that of a graph. A graph is a
finite set of points, or vertices and pairs of vertices known as edges. We often represent
edges as lines connecting the two vertices. Edges are called adjacent if they share a common
vertex. A circuit is a sequence of adjacent edges returning to the original vertex without
traversing the same edge twice. The length of a circuit is defined as the number of edges
forming that circuit. In our graphs, we do not allow circuits of length one where a single
edge is connected to the same vertex at both ends. These circuits are known as loops.
Graphs, however, can have longer circuits including digons, or circuits of length two. A
graph without any circuits is known as a tree.

In a graph, there are two types of vertices: leaves and nodes. The difference between
a leaf and a node is the valence of the vertex. The valence of a vertex is the number of
edges connected to it. A leaf, or external vertex, is a vertex with valence one, and a leaf
edge is any edge connected to a leaf. A node, or internal vertex, is a vertex with valence
more than one. That is, all nodes have at least two edges connected to them. A connected
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graph in which all nodes are valence three will be referred to in this paper as a trivalent
graph. Note that trivalent graphs can also have leaves.

Graphs can also be directed. A directed graph is a graph where each edge has an
orientation or direction associated with it. With directed graphs, there is a possibility of
a directed circuit, or a circuit where it is possible to reach the same vertex on the circuit
twice simply by following the orientation of the circuit’s edges. There is also a special type
of directed graph known as a network graph. In a network graph, the following conditions
must be satisfied:

(1) The graph must be trivalent.
(2) There cannot be any directed circuits.
(3) Every node must have either one edge directed inward and two out, or two edges

in and one out. There can never be three edges directed inward or three outward
at a single node.

Note that loops are not permitted because any directed loop would create a directed circuit.

3. Non-orientable graphs

In the section we will discuss the answer to the following question: Given an undirected
trivalent graph, can the graph always be oriented as a network graph?
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Theorem 3.1. A trivalent graph Γ with no leaves can never be oriented as a network
graph.

Proof. This will be a proof by contradiction, so we assume that there exists an orientation
on the edges of Γ such that Γ is a network graph. Because there are no nodes on Γ
with three edges directed inward, we can always move away from a node while following
the direction of an edge. Therefore, on Γ, starting at any node, we can continue moving
infinitely along the edges. Because there are only a finite number of edges on Γ, we must
eventually revisit a node. If we can revisit a node following directed edges, there must be
a directed circuit. This contradicts the assumption that a valid orientation of the graph Γ
exists. �

We will need the following lemma to prove that there are restrictions on orienting triva-
lent graphs with leaves.

Lemma 3.2. For any network graph, if the orientation of every edge is reversed, the graph
will still meet the conditions of a network graph.

Proof. If there are no directed circuits in a graph, reversing the orientation of every edge
cannot create any directed circuits. If there are no nodes with three edges pointing inward,
there will be no nodes with three edges pointing outward if all of the edges are reversed,
and vice versa. �

We define an inward pointing leaf edge to be a leaf edge directed away from the valence
one vertex and an outward pointing leaf edge is directed toward the valence one vertex.

Theorem 3.3. A network graph cannot have all leaf edges pointing inward or all leaf edges
pointing outward.

Proof. If all leaf edges are pointing inward, then, when starting at any node, it is impossible
to get to a leaf by following the direction of the edges. Therefore, if we begin at any vertex
and follow the orientation of the edges, we can always continue without getting stuck at a
leaf. By the same argument as Theorem 3.1, there must be a directed circuit and therefore
the graph cannot have a valid orientation. Also, by Lemma 3.2, we cannot create a network
graph with all leaf edges directed outward. This is because, if one existed, we could simply
reverse the orientation of every edge and create a valid orientation with every leaf edge
directed inward. �

This theorem is of particular importance when a graph has only one leaf.

Corollary 3.4. Any trivalent graph with only one leaf cannot be oriented as a network
graph.

For example, there is no way to orient the graph in Figure 4 as a network graph.

Theorem 3.5. There exist trivalent graphs with any number of leaves that cannot be
oriented as network graphs.
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Proof. To construct a graph with n leaves that cannot be oriented, we begin by constructing
a trivalent graph Γ with n leaves. We can then construct a trivalent graph with only one
leaf Γ′ and attach the leaf of Γ′ to Γ in the middle of any edge. The result is a trivalent
graph with n leaves. If we could orient the combined graph as a network graph, it would
give a valid orientation to the single-leaf subgraph Γ′. This is impossible due to Corollary
3.4. �

For example, in Figure 5 we see a graph with five leaves that cannot be oriented as a
network graph.

4. Orientable graphs

In this section we give necessary and sufficient conditions for orienting a trivalent graph
as a network graph. We remind the reader that all graphs are assumed to be connected
and do not contain single-edge loops. Given a trivalent graph Γ and any non-leaf edge E
in Γ, we can form a new graph Γ′ by removing E and both its vertices V and W . We
combine the other two edges meeting at V into a single edge and do the same for W . An
example is shown in Figure 6.
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Lemma 4.1. Suppose Γ′ is formed from Γ by removing any non-leaf edge E from Γ as
described above. If Γ′ can be oriented as a network graph, then Γ can also be oriented as a
network graph.

Proof. We begin by orienting Γ′ as a network graph. Now we can add the removed vertices,
V and W , back in, orienting the split edges in the same direction they were oriented before.
By doing this, we insure the neither V nor W will have three edges in or three edges out.

Now we must orient E either from V to W or from W to V . If orienting E from V to W
would create a directed circuit, then there must be a directed path from W to V in Γ′, and
if orienting E from W to V would create a directed circuit, then there must be a directed
path from V to W in Γ′. (Although V and W are not vertices in Γ′, we can view them as
points on an edge.) If there is a directed path both from V to W and from W to V , then
Γ′ already has a directed circuit. Because Γ′ was oriented as a network graph, this cannot
be the case. Therefore there is an orientation for E such that Γ is a network graph. �

Suppose Γ1 is a trivalent graph with exactly two leaves and Γ2 is any trivalent graph.
The operation Γ1#Γ2 denotes a combination of the two graphs. To combine the graphs,
we must add two vertices to Γ2 either by adding two vertices to one edge, or one vertex
to each of two edges. We then fuse the leaves of Γ1 with these new vertices, making them
trivalent nodes and creating a new graph. We will denote the resulting graph (regardless
of choices) as Γ1#Γ2. For example, see Figure 7.

Lemma 4.2. Suppose Γ1 and Γ2 are trivalent graphs and Γ1 has exactly two leaves. If
Γ1 and Γ2 can both be oriented as network graphs, then Γ1#Γ2 can also be oriented as a
network graph.

Proof. We begin by labeling the two vertices where we joined Γ1 and Γ2 as V and W .
Choose an orientation on Γ2. We now add V and W to Γ2 leaving the orientation of the
split edge(s) unchanged. This insures that neither of these vertices will have all edges
directed inward or all edges directed outward. We now orient Γ1 as a network graph, and
attach it to Γ2 as described above. If Γ2 has a directed path from V to W , we must insure
that Γ1 does not have a directed path from W to V . If it does, Γ1 cannot have a directed
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path from V to W since this would create a directed circuit. So by Lemma 3.2, we can
reverse the orientation of every edge in Γ1 and insure there is no longer a directed path
from W to V . The result is a valid orientation on Γ1#Γ2. �

For the purpose of the next theorem, we will define an illegal subgraph of Γ as a subgraph
which is trivalent subgraph with one leaf and is connected to the rest of Γ only at the leaf.
A separating edge of Γ is an edge which, if removed, will disconnect the graph. Note that
the leaf edge of an illegal subgraph is a separating edge. For example, Figure 5 contains
an illegal subgraph. It is clear from Corollary 3.4 that any graph containing an illegal
subgraph cannot be oriented as a network graph.

Theorem 4.3. Any trivalent graph with at least two leaves and no illegal subgraphs can be
oriented as a network graph.

Proof. We will prove this by induction on the number of edges. A graph with only one
edge (a simple straight line) has two leaves and no nodes. We can clearly orient this graph
as a network graph. Now let Γ be a trivalent graph with k edges for k ≥ 2 and assume by
induction that the theorem is true for all graphs with less than k edges. There are three
cases to consider.

Case 1: Suppose Γ is a tree. We can begin at one leaf V , orienting its leaf edge toward
the node. Now we can orient every other edge such that it points from the vertex closer
to V toward the vertex farther from V . Because there are no circuits, we cannot create a
directed circuit, and because there is a unique directed path from V to any vertex, at any
node, exactly one edge points inward, and the other two point outward.

Case 2: Suppose Γ contains at least one circuit of length two (a digon) or three (a triangle).
Let Γ′ be the graph obtained from removing an edge of this circuit and its two vertices
as described in Lemma 4.1. Because Γ is trivalent and has leaves, it is easy to see that
removing an edge from a triangle or digon cannot create a loop. We see in Figure 8 the
result of removing an edge in this manner. If any of the resulting edges are separating
edges, then one of the corresponding edges in the original graph was also a separating
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Figure 8

edge. Therefore, if Γ is a legal graph, so is Γ′. Since Γ′ is smaller than Γ, by induction, it
can always be oriented as a network graph. By Lemma 4.1, so can Γ.

Case 3: Suppose Γ is not a tree and contains no digons or triangles. Γ must therefore
contain a circuit with at least four edges. We can remove an edge E1 and its vertices from
the circuit in Γ to create a smaller graph. Because Γ contains no digons, this operation
cannot create a loop. By induction, if the resulting graph contains no illegal subgraphs, it
can be oriented as a network graph and, by Lemma 4.1, so can Γ.

If the above operation creates an illegal subgraph, with separating edge E2, then E1 and
E2 must form a pair of edges which, if both removed, would separate the graph. Also, one
of the resulting smaller graphs, Γill, has no leaves, while the other, Γ2, has all the leaves
from Γ. We can attach E1 and E2 to Γill in their original positions to create a new graph,
Γ1 with two leaves. It is now clear that Γ can be expressed as Γ1#Γ2.

Because Γ has no digons or triangles, removing the two vertices to form Γ2 cannot create
any loops. Neither Γ1 nor Γ2 can contain any illegal subgraphs because, if they did, so
would Γ. Therefore, Γ1 and Γ2 must both be legal so, by induction, they can both be
oriented as network graphs. By Lemma 4.2, Γ can also be oriented as a network graph. �

By combining the results of Section 3 and Theorem 4.3, we obtain the following theorem.

Theorem 4.4. A trivalent graph can be oriented as a network graph if and only if it has
at least two leaves and contains no illegal subgraph.
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