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Abstract 

 This paper examines several polynomials related to the field of graph theory 
including the circuit partition polynomial, Tutte polynomial, and the interlace polynomial. 
We begin by explaining terminology and concepts that will be needed to understand the 
major results of the paper. Next, we focus on the circuit partition polynomial and its 
equivalent, the Martin polynomial. We examine the results of these polynomials and their 
application to the reconstruction of DNA sequences. Then we introduce the Tutte 
polynomial and its relation to the circuit partition polynomial. Finally, we discuss the 
interlace polynomial and its relationship to the Tutte and circuit partition polynomials.  
 
 
 
I. Introduction 
 The circuit partition polynomial (CPP) is a generating function for the number of 
Eulerian partitions of an Eulerian graph or digraph G into n components. It first appeared 
in [EM98] and was so named in [Bol02]. The CPP is useful for several reasons: it 
determines the number of Eulerian components of a graph or, in conjunction with other 
polynomials such as the Tutte and interlace polynomials, makes evident further 
characteristics of a graph.  
 The CPP is a shift of the Martin polynomial [Mar77], which was first introduced 
in 1977 by Pierre Martin in his thesis. Martin defined his polynomial recursively; it 
encodes information about the families of circuits in 4-regular Eulerian graphs and 
digraphs [Mar77]. A more general form of the polynomial was developed by Las Vergnas 
in 1983 in Le Polynome de Martin d’un Graphe Eulerien [LV83]. In this paper, he found 
a closed form of the polynomial and extended its properties to general Eulerian graphs, as 
we apply it today. 
 The CPP, along with the Martin polynomial, is applicable to many areas, 
including non-mathematical fields. These include, although are not limited to, string 
reconstruction, infrastructure networks, and knot theory. 

Perhaps the most interesting and useful current application of Eulerian graphs 
occurs within the area of DNA sequencing. The CPP enables us to estimate the 
probability of a correct reconstruction of a DNA sequence through its ability to 
enumerate Eulerian circuits. Possible reconstructions of a strand of DNA are represented 
by Eulerian circuits in the de Bruijn graph constructed using fragments of DNA. This de 
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Bruijn graph is an Eulerian graph, and we are thus able to calculate the CPP and like 
polynomials to determine its characteristics. One example of this is seen after computing 
the CPP; when we do this, we determine the number of Eulerian circuits and thus 
determine the probability that a given reconstruction is the correct one. 
 This paper will focus on describing the CPP and how it is applied. We begin by 
reviewing some basic terminology of graph theory and how it pertains to our discussion 
of the CPP. Then we will review the CPP and its basic applications. Finally, we will 
discuss the interrelation between both the CPP and the Tutte polynomial and the CPP and 
the interlace polynomial. 
 
II. Background 
 There are several key concepts we must know before we can proceed with our 
work in graph theory and the CPP.  Our definitions follow those of Tucker [Tuc07] and 
Bollobas [Bol98].   
 
Definition 1: A graph G consists of finite sets of vertices V and edges E, which are pairs 
of vertices. 
 

 
Figure 1: A graph G 

 
Vertices will represent elements of an object or system represented by the graph G. Edges 
represent interactions between pairs of elements (vertices). The degree, or valency, of a 
vertex is the number of edges incident with it. 
 
Definition 2: A digraph is a graph in which the edges are directed, that is, the pair of 
vertices comprising an edge are ordered. 
 

 
Figure 2: A directed graph 

 

vertex 

edge 
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The direction designates an initial vertex and a terminal vertex. Here we will use digraphs 
to represent a DNA strand reconstruction problem. The DNA reconstruction problem is 
modeled using Eulerian digraphs, in which the in degree (number of arrows oriented 
towards a vertex) and the out degree (number of arrows oriented away from a vertex) are 
equal for each respective vertex. The digraph essentially represents all the possible ways 
a set of DNA fragments can fit together. Note this means that each vertex is of even 
degree (although each vertex may be of a different even degree).  

The arrows dictate the correct sequence of the nucleotide fragments. In general, 
the direction applied to the edges in a digraph represents some specific, unilateral, 
interaction between the two elements corresponding to by the vertices of the graph.  

 
Definition 3: A multigraph is a graph that may have multiple edges (2 or more edges 
between a set of vertices) or loops (a loop is an edge with the same vertex as both 
endpoints). We count a loop edge twice in determining the degree of a vertex. 
 
Definition 4: A circuit is a sequence of linked edges whose starting vertex and ending 
vertex are the same and in which no edge can appear more than once. Note that a vertex 
may be visited more than once. 
 

 
Figure 3: A circuit of G is ACBADCA 

 
Note that for an undirected graph, such as figure 3, a circuit exists in both directions from 
the initial vertex (ADCBA and ABCDA). However, in reference to digraphs, the circuit 
must follow the orientation of the edges of the graph.  
 
Definition 5: An even graph is one where every vertex has even degree (the number of 
edges adjacent to each vertex is even). 
 

C

B

D

A
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Figure 4: A (disconnected) even graph whose vertices have either degree 0 or 2. 

 
Definition 6: An Eulerian circuit is a circuit that visits every edge in the graph exactly 
once and visits each vertex at least once. 
 
 Eulerian circuits can only exist in Eulerian graphs, that is connected (graphs with 
1 component), even graphs. 

 
Figure 5: Graph with Eulerian circuit ABDCBDA 

 
Eulerian circuits are particularly important to research involving DNA sequencing. 

DNA fragments can be represented by an oriented Eulerian graph and thus analyzed 
using such methods as the CPP. 
 
Definition 7: A de Bruijn graph is a directed graph representing overlaps between 
sequences of symbols in string reconstruction. 
 
 Consider the sequence “ababbaa”. We construct a de Bruijn graph by examining 
the triples present in the sequence. These are aba, bab, abb, bba, and baa; we note that all 
of the triples of the sequence are unique. The following figure shows the de Bruijn graph 
corresponding to the sequence, with the dotted edge added to complete the graph to an 
Eulerian graph. 
 

A 

C B 

D 
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Figure 6:  A de Bruijn Graph  

 
The vertices consist of a pair within each of the triples, and the directed edge between 
two vertices represent the respective triple.    

 While the de Bruijn graph represents all possible combinations of the 
symbols, we are merely concerned with only a subset of these which arise from the data. 
When presented with a string, or in this case, a strand of DNA, we are able to represent it 
as a graph by constructing its de Bruijn graph. The first step to constructing the graph is 
to break the strand into fragments. In a real laboratory situation, this is accomplished 
through the collection of the raw data. Because scientists cannot read entire strands, they 
read many smaller pieces and then try to figure out what the original looked like. When 
scientists get the data, they receive the fragments back in a random order, not the order in 
which they were read/constructed. Using these, we create a digraph. We also insert an 
edge between the last and first vertex representing the DNA strand. Thus, we have 
created the de Bruijn (di)graph, and can continue with further calculations about the 
reconstruction of such a strand of DNA. It is important to note that while every Eulerian 
circuit in the de Bruijn graph represents one possible reconstruction for the DNA, only 
one of the circuits, and thus reconstructions, is the correct one. Therefore, it is evident 
where the next formula mentioned comes from. 

Since the Euler circuits in the de Bruijn graph produces all possible 
reconstructions of a string, we can determine the probability that any given reconstruction 
is the correct one by the formula: 

circuitsEulerianof#
1 . 

We assume the de Bruijn graph resulting from a set of DNA fragments is a 2-in 2-
out digraph, that is, every vertex has two incoming and two outgoing edges. We would 
like to determine the number of Eulerian circuits present. While typically the BEST 
theorem [ST41] can be applied to the de Bruijn graphs, we will calculate the CPP, as its 
flexibility will allow us for greater variation. The BEST theorem is only applicable to 
digraphs while the CPP can be applied to unoriented graphs as well. Also, as we will see 
later, computing the CPP allows us to compute other polynomials, which gives us more 
information about de Bruijn graphs. 

ab 

ba 

abb 

bba bab aba 

aa 

bb 

baa 
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Definition 8: A medial graph of a planar graph G (a graph that can be drawn in a plane 
without edges intersecting) is constructed by putting a vertex on each edge of the graph, 
and drawing edges around the faces of G. The resulting medial graph Gm of any planar 
graph G is always a 4-regular graph (every vertex is of degree 4). The directed medial 
graph, mG , results from directing the edges so that the arrows point counterclockwise on 
the edges of the medial graph which enclosed vertices from the original graph G (see 
figure 7). 
 

 
      A planar graph G   G with Gm superimposed              The directed medial graph mG  

Figure 7: Constructing medial graphs allows us to examine one class of 4-regular graphs. 
 
We will be using medial graphs later in our analysis of the relations between the CPP and 
other polynomials. 
 
Definition 9: A bridge in a graph G is an edge whose removal results in a graph with 
more components than G. 
 
Definition 10: A loop is an edge than connects a vertex to itself. 
 
Definition 11: A cut vertex in a graph G is a vertex whose removal results in a graph 
with more components than G. 

 
Figure 8 

 

Bridge 

Loop 

Cut vertex 
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Definition 12: An Eulerian graph state of a graph, G, is the result of replacing all 2n-
valent vertices, v, of G, with n 2-valent vertices joining pairs of edges originally adjacent 
to v (see figures 10-12). 
 
III. The Circuit Partition Polynomial 
 The circuit partition polynomial is a polynomial that encodes the number of 
Eulerian graph states in a digraph.  
 
Definition 13: The CPP is defined by: ∑

≥

=
0

)();(
k

k
k xGfxGj  where )(Gfk  is the number 

of Eulerian graph states of G  with k components [EM98, Bol02]. 
 
 To better understand the CPP, we will illustrate it with an example. Consider the 
following graph G: 
 

                            
              
             G      mG                                 The two consistent splits at a vertex. 

 
Figure 9 

 
The CPP of the graph mG in figure 9 is: 

xxxxGj m 34);( 23 ++= . 
To make sense of the formula given by the CPP, we can look at the resulting graph states 
of the medial graph. Consider the x3 term in the equation above. Such a term, with 
coefficient 1, means that there exists one Eulerian state of the medial graph with 3 
components. This graph state is: 

 
Figure 10 
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Similarly, the four 2-component states are: 

                                    
               (Each of 3 possibilities 
          by rotating split to each vertex)  

Figure 11 
 
Finally, the three 1-components states are:    
 

 
(Here again the three 1-components are constructed by rotating the split along the 3 vertices.) 

Figure 12 
 
 Now that we have defined the CPP and demonstrated its results, the next logical 
question is how is it applicable? Note that the coefficient of the x1 term counts the 
number of Euler circuits in the graph. Thus, an obvious use for the CPP is string 
reconstruction. The quintessential example of this is the reconstruction of strands of DNA. 
 Once we have constructed the directed de Bruijn graphs as previously described 
or have any graph representing a string, we next apply the CPP as described above. Thus 
we calculated the number of reconstructions of the sequence represented by the graph. 
The need to accurately reconstruct DNA is necessary in many aspects of scientific 
research including forensics and medical research.  
 One final advantage to the CPP is its close relation to several other polynomials. 
Because of these relationships, its applicability increases even further. We will further 
describe some of the applications of the CPP when we discuss its relation to other 
polynomials and how these applications arise because of the interrelation.  
 
IV. The Tutte Polynomial and its Relation to the Circuit Partition Polynomial 
 In [Mar77, Mar78], Martin found another interesting property of the Martin 
polynomial. He found that the Martin polynomial of the medial graph mG  of a connected 
planar graph G, is equal to the dichromatic, or Tutte, polynomial of the graph G. 
 First, we provide some of the notions needed to understand the definition of the 
Tutte polynomial. The Tutte polynomial is defined recursively and uses two graph 
operations. These are the deletion and contraction of an edge e. We will denote the 
deletion of an edge by G – e. Similarly, we denote the contraction of an edge with G / e. 
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Note for each of these operations, e will not be a bridge or a loop. To better understand 
these graph operations consider: 

 
Figure 13 

  
Definition 14: [Bol98] The Tutte polynomial of a graph G is given recursively by: 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−

−

−+

=

edgesnohasGif

loopaiseifyxeGyT

bridgeaiseifyxeGxT

loopnorbridgeaneitheriseifyxeGTyxeGT

yxGT

1

),;(

),;(

),;(),;/(

),;(  

 
 An important property of the Tutte polynomial is the following: 
 
Proposition 1: )()()*( HTGTHGT = if HG *  is the disjoint union or one point join of 
G and H. A one point join of two graphs G and H is formed by identifying  vertex u of G 
and a vertex w of H into a single vertex v  of G * H, which is necessarily a cut vertex.  
 
Proof: The above statement is true, because we are able to compute the Tutte polynomial 
of one side of the graph independently of the other, and then by multiplying each of the 
outcomes together, we achieve the Tutte polynomial for the entire graph G*H.  
 In particular, if He∈ then: 

)(*)*( eHGeHG −=−  
)/(*/)*( eHGeHG =  

 The equivalent is true if Ge∈ . Therefore, we can see that calculating the Tutte 
polynomial on the two separate parts of the graph described in proposition 1 and then 
multiplying the results is equivalent to calculating it for the entire graph.  
  □ 

 
Now that we have defined the Tutte polynomial, we can define its relation to the 

CPP. We will accomplish this by first proving the Tutte polynomial’s relationship to the 
Martin polynomial. First, we’ll need the following two facts about the Martin polynomial. 

Contract e 

Delete e 

G – e  

G / e  
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Proposition 2: Let );( xGm represent the Martin polynomial of a graph G. The 
relationship between the CPP and the Martin polynomial of a digraph mG  is given 

by: )1;();( +⋅= xGmxxGj [EM98] . 
 

We will be using this relationship in our proof later of the relationship between the CPP 
and the Tutte polynomial. 
 
Proposition 3: If v is a cut vertex in a 2-in 2-out digraph, then 

);();();( 21 xHmxHmxxGm ⋅= ,   where H1 and H2 are the two component you get by 
removing v and joining up the 4 resulting half edges into one edge in H1 and one edge in 
H2. If v is not a cut vertex, then );();();( 21 xHmxHmxGm +=  where H1 and H2 are the 
two consistent ways of splitting at the vertex  as in figure 9[Jae87]. 
 
Theorem 1: The relationship between the Tutte and Martin polynomials, for a planar 
graph G, is given by );(),;( xGmxxGT m= . 
 
 Next, we can go through the proof of the result. The reason we are using the 
Martin polynomial as opposed to the CPP is that it is easier to prove; as we have 
previously seen the equivalence relationship between CPP and Martin, it is not 
imperative to use the CPP in our proof.        
 
Proof: The proof proceeds by induction on n, the number of edges of a planar graph G. 
The first case we will consider is when the edge e is neither a bridge nor a loop. The 
second case will concern what happens when e is a bridge. And finally, the third case will 
be if e is a loop.  
 First, we must prove the base case. Let 1=n . We will construct all possible 
graphs with one edge. First, consider the graph G1: 
 

 
Figure 14: 1G  

 
Then we construct its oriented medial graph, and note its Eulerian graph states: 
 

 
Figure 15: mG )1( and its Eulerian graph states 

 

mG)(
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Since the original consists of one bridge, by our definition of the Tutte polynomial, we 
know: 

xxxGT =),;( 1 . 
Following this, we compute the Martin polynomial, using definition 13 and proposition 2, 
on the oriented medial graph to find: 

xxxGj m += 2
1 );)((     so,    xxGm m =);)(( 1 . 

Again, let us consider the second graph 2G  that consists of one edge, namely a 
loop: 

                                                          
 
 

 
Figure 16: 2G and mG )2( and the two Eulerian graph states 

 
When we compute the Tutte and Martin polynomials of G2 and mG )( 2 , respectively, we 
get: 

xxxGT =),;( 2 , since yyxGT =),;( 2 , 
and again 

xxxGj m += 2
2 );)((    so,   xxGm m =);)(( 2 . 

Thus, we have proven the base case when 1=n . Now, we can proceed with the 
remainder of our argument, assuming that whenever has less than n edges, the statement 
is true. 
 
Case 1: We assume G has n edges, and e is neither a bridge nor a loop. 

);(

);)/(();)((

),;/(),;(),;(

xGm

xeGmxeGm

xxeGTxxeGTxxGT

m

mm

=

+−=

+−=

. 

  
         
 
 
 
 
 

mG )
2

(
2

G
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This follows from proposition 3, and can be illustrated by considering how the 

deletion and contraction of e in G corresponds to the two consistent ways of splitting at v 
in mG : 

 
Figure 17: G, pictured in red and mG , in black 

 
Case 2: Suppose G has n edges and e is a bridge. Then the vertex in mG  corresponding to 
e is a cut vertex. From definition 14, the induction hypothesis, and proposition 3 we know: 

);(

);)(();)((

),;(),;(

),;/(),;(

21

21

xGm

xGmxGxm

xxGTxxGxT

xxeGxTxxGT

m

mm

=

=

=

=

. 

  
 Again, as in case one, we can illustrate to clarify: 
 

 
Figure 18 

 
Thus, we are able to multiply the Tutte polynomial for each part of the graph ( 1G and 2G ) 
on either side of the cut vertex, and obtain our correct answer. 
 
Case 3: Finally, we can consider the third and final case, when G has n edges and e is a 
loop. From our definition, we know that the Tutte polynomial for G where e is a loop is: 

),;(),;( xxeGxTxxGT −= , 
 
 
 
 
 
 

                 G-e                                      G/e

e

e G2 G1 G2 G1 contract e 
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illustrated by:  
 

 
 

Figure 19 
 
Next, we consider mG : 

 
Figure 20 

 
We can calculate the Martin polynomial of the medial graph, which again has a cut vertex 
corresponding to the edge e: 

);();();( 21 xHmxHmxxGm m ⋅=  

where H1 is all of  mG  except the loop and H2 is the loop. In particular meGH )(1 −= . 
Based on definition 13 and proposition 2 , we find that 1)( 2 =Hm . Therefore, from 
proposition 3, we get: 

)();( 1HxmxGm m =  

Thus, by noting that ),;();( 1 xxeGTxHm −= , we see that the equation is true.  
 
We have proven that all the relationship holds for all types of edges. Therefore, we can 
conclude it is always true. 
  □ 

 
Following from the above proof, we can see the veracity of the following 

corollary, which follows from proposition 2. 
 
Corollary 1: The relationship between the CPP and the Tutte polynomial is: 

)1,1;();( )( ++= xxGTxxGj Gc
m  

where c(G) is the number components of the original graph G.  
Finally, we illustrate this with an example. Recall mG  (from figures 9 and 21) and 

its CPP: 
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Figure 21 

 
xxxxGj m 34);( 23 ++= . 

 
Now consider the graph G, and compute its Tutte polynomial: 

 
          delete e          contract e 
 
 

          
Figure 22 

 
We thus produce the Tutte polynomial: 

yxxyxGT ++= 2),;( ,  so 
xxxxGT 2),;( 2 += . 

From here we can use the relation of corollary 1 to ensure the equation is correct: 
xxxxxxxxGTxxGj Gc

m 34)]1(2)1[()1,1;();( 2321)( ++=+++=++= . 
Therefore, we have shown that the relationship between the two polynomials is indeed 
valid for this example. 
 The Tutte polynomial has many interesting applications, and because of the 
relationship between it and the CPP, the CPP shares these applications as well. Now we 
can examine yet another polynomial, the interlace polynomial, to see even more 
fascinating attributes of the CPP. 
 
 
 

e

f 

delete f                      contract f 
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V. The Interlace Polynomial and Relation to the Circuit Partition Polynomial 
 The interlace polynomial was first introduced in [ABS04] by Arratia, Bollobás, 
and Sorkin in relation to DNA sequencing by hybridization. The interlace polynomial is a 
technique to encode for any k, the number of k-component circuit partitions that is, 
Eulerian graph states with k components. Directly from the statement of its applicability, 
we are able to show that the interlace polynomial is related to the circuit partition 
polynomial. 
 Again, before we can properly present the interlace polynomial formula, it is 
imperative to first understand some of the notation involved in the definition. One graph 
operator used in defining the interlace polynomial of a graph G, which was also seen in 
our analysis of the Tutte polynomial, is G – v. A new concept is Gvw, called pivoting on 
the edge vw. 
 
Definition 15: Gvw denotes the graph derived from a graph G by “toggling” the edges and 
non-edges among three sets of vertices: those adjacent to w only, those adjacent to v  only, 
and those adjacent to both w and v. “Toggling” means that any edge between two of these 
sets is removed, and any non-edge is replaced by an edge. We can also note that if 
vertices in G are not adjacent to v or w (or both) then we simply leave them, and their 
adjacent edges, as they were in the original graph.   
 
For example: 

 
 

                     G                                               Gvw                                                            Gvw-w 
Figure 23: The dotted and heavy lines represent an interchange of edges and non-edges among the set of 
vertices adjacent to v only, w only, or both (the gray squares). Vertices adjacent to neither were omitted. 

The thin solid lines represent all edges present. 
 

Now that we have gone through the notational intricacies of the interlace 
polynomial, we can present the definition.  
 
Definition 16: [ABS04] The interlace polynomial (much the same as our other 
polynomials thus far) is defined recursively by: 

⎪⎩

⎪
⎨
⎧

∈+
=

−− ).()()(

,
)(

)( GEuvifxqxq

edgesnoandverticesnhasGifx
xq

vGuG

n

G
uv

 

 

w v vw v 
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 To better understand the interlace polynomial, it is beneficial to see its relation to 
the CPP. We first recall circle graphs and chord diagrams. A chord diagram is a circle 
with n symbols, each appearing twice around the perimeter, with like symbols joined by a 
chord. In our application, we will construct a chord diagram from an Euler circuit in a 2-
in 2-out graph by listing the vertices along the perimeter of the circle in the order they are 
visited in the Euler circuit. The chord diagram is used to construct a circle graph, making 
a vertex for each symbol and making adjacent those whose chords intersected in the 
chord diagram. To better understand the concept, consider the following example. 
 

 
 

Figure 24: A chord diagram and its corresponding circle graph. 
 
Proposition 4: [Bol02] If G  is a 2-in 2-out Eulerian digraph, C is any Eulerian circuit of 
G , and H is the circle graph of the chord diagram determined by C, then 

)1;();( )( += xHqxxGf N
Gc , where c(G) is defined the same as for the Tutte polynomial. 

  
 From definition 16, the relationship between the Tutte and interlace polynomials 
naturally arises. 
 
Proposition 5: The relationship between the Tutte and interlace polynomials is given by: 

);(),;( xHqxxGT N= [EMS]. 
 

Although we will not prove proposition 4, we will illustrate the relationship 
among the three polynomials through an example. Consider G:  

 
 
 
 
 

 
 

Figure 25 
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c 
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and then mG :  

 
Figure 26 

We can compute the Tutte polynomial and the CPP of the respective graphs via the 
formulas we saw before, thus obtaining the formula previously seen in sections III and IV: 

xxxxGT 2);;( 2 +=  
xxxxGj m 34);( 23 ++= . 

 
 Next, we can compare this to the interlace polynomial of the circle graph of the 
chord diagram of mG . First, we must choose one Eulerian circuit in mG . For instance: 

          
Figure 27 

 
Then we can construct the chord diagram following the circuit above: 

 
Figure 28 

 
 
 
 

b 
a 

c 

c 

a 
b 

a 

b 

c 

ba 

c



18 

Finally, we make the circle graph H corresponding to the chord diagram: 

 
Figure 29 

 
We compute the interlace polynomial of H as );();();( xbHqxaHqxHq ab

NNN −+−= . 
Note that xxxcaHqxbaHqxaHq bc

NNN +=−−+−−=− );)(();();(  since both 
aH −  and baH −−  and caH bc −− )(  are single vertices. Also, HH ab = , so 

bH ab − is just two isolated vertices, and thus 2);( xxbHq ab
N =− . Thus, 

xxxHqN 2);( 2 += . 
Accordingly, 

);(2),;( 2 xHqxxxxGT N=+=  
and 

)1;()]1()1[(34);( )(2123 +=+++=++= xHqxxxxxxxxGf N
Gc

m , 
 

as given by propositions 4 and 5. As we have seen, the interlace polynomial exhibits 
some interesting properties, including a relationship to the CPP and Tutte polynomial.  
 
VI. Conclusions 
 Graph polynomials such as the Martin, CPP, Tutte, and interlace are a unique and 
dynamic aspect of the world of graph theory. Their applicability is tremendous, yet it is 
widely believed its full potential has not yet been realized. We examined only a small 
portion of the amount of remarkable research that has been accomplished on the CPP. 
 Even though leaps and bounds have been made in the area of graph theory 
especially in regard to the CPP, there are still many open questions. One such question is 
especially important in analyzing strands of DNA. That is, work is being done to try to 
classify all graphs with m Eulerian circuits. As was so eloquently stated by Balister et al., 
“although…a fair amount is proved about the interlace polynomial, it is still a rather 
mysterious graph invariant” [BBCP02]. While I have highlighted some of the interesting 
aspects of various polynomials, there is much more available and even yet to be 
discovered. 
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