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A Review of the Potts Model: 
 

Its Connection to the Tutte Polynomial  
and its Application to Complex Experiments 

 
 
 
 
 
 
 
 
 
 

Laura Beaudin 
Saint Michael’s College 

lbeaudin@smcvt.edu 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract:  This paper examines a mathematical modeling tool for 
complex systems with nearest neighbor interactions known as the Potts 
model.  We begin by explaining the structure of the model and defining its 
Hamiltonian, probability function, and partition function.  We then focus 
on the partition function, giving examples and showing the equivalence of 
two different formulations.  We then introduce the Tutte polynomial, a 
well known graph invariant.  We give details of the equivalence of the 
Tutte polynomial and the Potts model partition function.  Since the Tutte 
polynomial, and hence the Potts model partition function, is 
computationally intractable, we explore Monte Carlo simulations of the 
Potts model.  Finally, we discuss three applications illustrating how these 
simulations model real world situations. 
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1.  INTRODUCTION 
 
 The Potts model studies long term behavior of complex systems.  The model is 
able to investigate how the internal elements of the system react with one another based 
on certain characteristics that each element has.  As these reactions take place 
macroscopic properties of the system will evolve.  The Potts model has proven to be a 
very useful tool, with a wide variety of different applications in fields such as biology, 
sociology, physics, and chemistry.     
 The Potts model’s origins date back to the mid 1900s.  Two mathematicians, 
Julius Ashkin and Edward Teller [2], were among the first to experiment with a 
mathematical model which simulated behavior of various elements within a system.  
Intrigued by the model, Cyril Domb suggested the topic to his Ph.D. student, Renfrey B. 
Potts [11].  With the foundation set by Ashkin and Teller, Potts was able to construct a 
very useful model.  In 1952 he published his doctoral thesis in which he described this 
particular model [11].  The form which the model takes today is known as the q -state 
Potts model.  However, for the remainder of this paper we refer to the model as merely 
the Potts model for simplicity.       
 Scientists and mathematicians use the Potts model to study and predict stochastic 
outcomes of complex systems.  For this reason, the Potts model has many applications in 
the area of statistical mechanics.  Statistical mechanics combines the two subjects from 
which it gets its name.  Statistics is used to study the numerous variables and predict 
outcomes, while mechanics studies how the internal particles react to certain outside 
forces. The Potts model is mainly used to study internal reactions within a system to 
predict what long term outcomes are most likely.  [4] 
 This paper focuses on the mathematical structure and real world applications of 
the Potts model.  We begin by giving a review of basic graph theory terminology used 
within the Potts model.  Next we introduce the basic functions of the model by defining 
its Hamiltonian, probability distribution, and two different formulations of its partition 
function.  We eventually prove that these two formulations only differ by a constant 
factor. 

We then focus on the partition function.  We show that the partition function is 
equivalent to the Tutte polynomial.   Then we show how simulations can be used to 
approximate the partition function so that the model can be used to study real world 
phenomena.  We conclude by outlining three experiments which use the Potts model to 
predict long term results.  
 
2.  PRELIMINARY DEFINITION AND CONCEPTS  
 
 The field of graph theory provides fundamental concepts for defining and 
analyzing the Potts model.  A good introductory source for graph theory is [15].  We give 
the necessary concepts below. 
 
Definition 2.1:  A graph G  consists of a finite set V of vertices and a set E  of edges 
joining pairs of vertices.  A multigraph is a graph which may have multiple edges 
between two vertices or vertices with loops.   
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Vertices will represent internal elements of an object or system, while the edges 
represent potential interactions between pairs of elements.  An example of a generic 
graph is given in figure 2.1. 
 

 
Figure 2.1:  A generic graph.  

 
 For many applications it is expedient to assume that the graph has a regular 
structure, such as a lattice.  Some common lattices are pictured below. 
 

                                                                                                                 
  Square Lattice                                         Triangular Lattice                                       Honeycomb Lattice               
 

Figure 2.2:  Different types of lattices. 
 

Definition 2.2:  A complex is highly structured object which can be modeled by a graph.  
  
 Examples of complexes include organizations of atoms, humans, fluids, and cells.  
All of these objects have a regular internal structure which allows for graph theoretical 
analysis.   
 
Definition 2.3:  We call two vertices adjacent vertices or neighbors if there exists an 
edge connecting them. 
 
 This concept suggests that elements can react with or influence one another based 
on their location in the graph.  
 
Definition 2.4:  A connected component of a graph, G , is the maximal subset of vertices 
in the graph such that there exists a path of edges between any two of the vertices. 
 
 
 
 
 
 

Multiedge 

Loop 

Vertex 

Edge 
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3.  THE POTTS MODEL 
 
The Hamiltonian: 

 
The Potts model is a mathematical modeling tool which mathematicians use to 

study the behavior of complexes.  The structure of the Potts model allows researchers to 
investigate the internal elements of a complex and predict how they will interact with one 
another to determine the overall behavior of the complex.  In other words, the model 
studies the microscopic internal elements and relates their interactions to the macroscopic 
outcome which can be observed over time.  [4]   
 
Definition 3.1:  Let Q  be a set of properties, and G  be a graph.  A spin at a vertex v  is 
an assignment of an element of Q  to v . 
 
 Every vertex of the graph will be assigned a spin.  The combination of spin and 
adjacency determines which elements will interact with one another.  Some common 
spins are temperature (hot or cold), magnetism (positive or negative), direction (up, 
down, or sideways), health (healthy, sick, or necrotic), and color (blue, green, red, or 
purple).  In general we will denote the spins as 1..  where q q Q= .  When 2q =  the Potts 
model is known as the Ising model, after Ernst Ising who developed the model in the 
1920’s to study phase transitions.  The Ising model has many important applications such 
as determining the critical temperature at which a magnet loses its magnetism. [6] 
 
Definition 3.2:  A state of a graph is a choice of spin at each vertex. 
 

                               
 

Figure 3.1:  Two states of the a graph for { }black, whiteQ = . 

 
Since the elements are assigned different spins and react with one another 

depending on their position on the lattice and their specific spins, there will be some 
measure of overall energy of the system.  The function which measures the overall 
energy of a complex is the Hamiltonian.  The Hamiltonian measures the energy of a 
particular state of a graph by assigning a value to every edge within the complex.  This 
value will vary depending on the application.  In the literature on the Potts model there 
are two dominant definitions for the Hamiltonian of a system.  We will see in the next 
section that these definitions yield equivalent forms of the Potts model partition function. 
 Both definitions use the same notation, J is the interaction energy between 
adjacent elements of the system, and iσ  is the spin value assigned to vertex i  in the state 
ω . They also use the Kronecker delta function, 
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,

1    if     

0    if    i j

i j

i j
σ σ

σ σ
δ

σ σ

=⎧⎪= ⎨ ≠⎪⎩
. 

 
Definition 3.3:  The first Hamiltonian [5] is given by,   

1 ,
{ , } ( )

( )
i j

i j E G
h J σ σω δ

∈

= − ∑  

where ω  is a state of a graph G . 
 
Definition 3.4:  The other definition [17] for the Hamiltonian is, 

( )
{ }

2 ,
, ( )

( ) 1
i j

i j E G

h J σ σω δ
∈

= −∑ . 

 
 In definition 3.3 a 1 is placed on edges between neighbors with like spins and a 0 
on edges with elements which have different spins.  In the second definition of the 
Hamiltonian the opposite is true. 
 The following example calculates both Hamiltonians of a state ω  of a 4 4×  
square lattice with spins of either white or black for each vertex. 
 
Example 3.1: 

 

  
 
 

In computing 1h   we place a 1 on edges between neighbors with like spins, and a 0 on 

edges between neighbors which have different spins.  Thus 1( )h ω = 11J− . 
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In computing 2h  we place a 0 between adjacent neighbors with the same spin and a 1 

between adjacent neighbors with opposite spins getting 2 ( )h ω =  13J .   

 
The Potts Model Partition Function:  
 
 In Example 3.1 we calculated the Hamiltonian of one state of the 4 4×  lattice 
using both definitions.  Notice that if we change one of the black elements to white, we 
get a completely different state with a different Hamiltonian measurement.  In fact, there 
are nq  different states of a graph, where n  is the number of vertices.   
 
Definition 3.5:  The Potts model probability function is the function which calculates the 
probability of finding the lattice in a particular state.  This probability function depends 
on  the Boltzmann distribution from statistical mechanics (for a system following the 
Boltzmann distribution laws the number of particles in a given energy state are 
exponentially distributed.) 

all states
 

exp( ( ))
exp( ( ))

h
h

ϖ

β ω
β ϖ

∈Ω

−
−∑

 

 
In this equation ω  is the particular configuration and h  may be either 1 2 or h h . We allow 
Ω  to represent the set of all possible configurations of the lattice, therefore,  and ω ϖ  are 

elements of Ω .  Also, 1
T

β
κ

=  , where T represents the temperature of the system, and 
231.38 10κ −= ×  joules/Kelvin is the Boltzmann constant. 

 
Definition 3.6:  The Potts model partition function is the denominator of the Potts model 
probability function, 

all states
 

exp( ( ( )))i iP h
ϖ

β ϖ
∈Ω

= −∑ . 

[4] 
 
 The following example demonstrates how the probability function calculates the 
probability that a particular state ω  will actually occur. 
 
Example 3.2:   

Let G  be the graph in figure 3.2 and let { }black, whiteQ = .  Compute the 

probability of the state ω occurring as a function of and Jβ . 
 

G =     
Figure 3.2:  The graph G . 
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ω =        
Figure 3.3:  One particular state of G . 

 
 

The first step is to find all the possible states and calculate their Hamiltonians.  There are 
16 possible configurations since the number of vertices is 4 and the number of spins is 2. 

                

 
 
 

We can use these Hamiltonians in the Potts model probability function of definition 3.5 
to find the probability of the state ω occurring out of all the possible states. 
 

The  probability of the state ω  occurring  is   ( )
1

exp(2 )

12 exp(2 ) 2 exp(4 ) 2
P

J

J J
ω

β

β β
=

+ +
.   

 
The computation for the second Hamiltonian is similar.  The Hamiltonians for the sixteen 
states are given below. 
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This time when we calculate the Potts model probability function the result is, 

2

exp( 2 )
( )

12 exp( 2 ) 2 exp( 4 ) 2

J
P

J J

β
ω

β β

−
=

− + − +
. 

 
In Example 3.2 we were able to exactly compute the probability of the particular 

state.  In fact, we can always calculate the numerator exactly.  However computing the 
partition function is only tractable for small lattices and small values of q .  In general, 
this function is NP-hard to compute.   

Mathematicians explore properties of the Potts model partition function in a 
variety of ways.  One way is to interpret it as an evaluation of the Tutte polynomial [17].  
Another is to approximate the function using a simulation technique such as the 
Metropolis Algorithm [10].  This calculation is not exact, however, it allows researchers 
to use the Potts model to investigate complex applications.   
 
4. AN EVALUATION OF THE TUTTE POLYNOMIAL 
 
Basic Terminology: 
 
 The Tutte polynomial is a tool which mathematicians use to study properties of 
graphs. In this paper, we use the Tutte polynomial to calculate the Potts model partition 
function of graphical lattices in a number of special cases.  Allow G  to denote any 
general graph and e  to represent an edge of G .  Let, ( )E G  denote the number of edges 
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in G , ( )V G  the number of vertices, and ( )k G  the number of connected components in 
G . 
 Tutte polynomial analysis uses two graph operations.  These two operations are 
the deletion of an edge and the contraction of an edge.  Write G e−  for the graph which 
results from deleting the edge e  and /G e to for the graph which results from contracting 
edge e .   
 Figure 4.1 illustrates these two operations. 

 

 
 
 

Figure 4.1: Deletion and contraction of edge e of a graph G. 
 

Finally, we must define two important graphs.  Denote the graph with two 
vertices and a single edge (bridge) between them by B  and the graph with only one 
vertex and a single loop by L .   
 
 

                                                                             
           B       L   
 
                           Figure 4.2:  The graphs B and L 
 
Defining the Tutte Polynomial: 
 
Definition 4.1:  The Tutte polynomial T(G; x, y) is defined using the following three 
recursive formulas.   
 
 a.   ( ) ( ) ( ); , ; , / ; ,T G x y T G e x y T G e x y= − +  if e  is not a bridge or a loop. 

 b.   ( ); , i jT G x y x y=  if G  has only i  bridges and j  loops. 
[15] 
We give an example of computing the Tutte polynomial recursively in Example 4.1. 
 
 
Example 4.1: 

e 

Delete e

Contract eG 

G-e

G/e 
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 We use the  deletion/contraction reduction of edges to reduce the graph to 
simply bridges and loops.  The edge which we delete and contract in the following step is 
dotted to clarify the process.  We use the deletion/contraction reduction until we are left 
with only bridges and loops.  Bridges correspond to the variable x  and loops correspond 
to the variable y . 

 

+

+++

3x ++++++

3 2 2x x xy x+ + + + +
2xy y+

G =

 
Thus 3 2 2( , , ) 2 2T G x y x x x xy y y= + + + + +  

  
 The Tutte polynomial is well defined; that is, one can delete and contract the 
edges in any order and the resulting polynomial will be the same.  One proof that the 
Tutte polynomial is well defined involves showing by induction on the number of edges 
that  

( ) ( ) ( ) ( ) ( ) ( ) ( ); , 1 1k F k G F V G k F

F E
T G x y x y− − +

⊆
= − −∑ , 

where ( )k F  is the number of connected components of the spanning subgraph of G 
induced by the edges in F. A spanning subgraph is a, not necessarily, connected subgraph 
of G  that contains all the vertices of G .  [3] 

One fascinating property of the Tutte polynomial is its universality.  There is a 
well known theorem which states that any multiplicative graph invariant which has a 
deletion/contraction reduction must be an evaluation of the Tutte polynomial.   
 
Theorem 4.1 (see also [3]): 
 
       If ( )f G  is a function on graphs such that 
 

A. ( ) 1f G =  if G  consists of only one vertex and no edges, 
B. ( ) ( ) ( / )f G af G e bf G e= − +  whenever e is not a loop or a bridge, 
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C. ( ) ( ) ( )f GH f G f H=  where GH is either the disjoint union of G and H, 
denoted G H∪ ,  or where G and H share at most one vertex, denoted 
G H∗ , 

 
then f is an evaluation of the Tutte polynomial and takes the form 
 

 0 0( ) ; ,s t x yf G a b T G
b a

⎛ ⎞= ⎜ ⎟
⎝ ⎠

  

where 
 

( ) ( ) ( ),  ( ) ( )s E G V G k G t V G k G= − + = −   and  0 0( ) and ( )x f B y f L= = . 
 
The Potts Model as an Evaluation of the Tutte Polynomial: 
 
 Recall that the Potts model is only concerned with neighbors of a complex, and all 
complexes can be depicted as graphs.  In the first definition of the Hamiltonian an edge 
between two neighbors on a lattice receives a value of 0 if the incident vertices 
(elements) do not have the same spin.  Therefore, we can delete these edges.  Also, if the 
incident elements do have the same spin the edges receive a value of 1.  It makes sense, 
in this case, to contract these edges with some weighting factor.  This is the intuitive 
rational for the Potts model partition function having a deletion/contraction reduction and 
thus being an evaluation of the Tutte polynomial. 
 The proof for showing that the Potts model partition function is an evaluation of, 
and in fact equivalent to, the Tutte polynomial involves showing that conditions A, B, 
and C of Theorem 4.1 hold for the form of the function.  The next section outlines this 
proof. 
  
Theorem 4.2 (see also [3]): 
 

If         
  1

all states
( , , ) exp( ( ))P G q h

ϖ

β β ϖ= −∑  

then, 

  ( ) ( ) ( ) ( ) ( ); , ; , exp .V G k Gk G qP G q q T G Jνβ ν β
ν

− +⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
Proof  
  
  Recall that the Potts model partition function has the form, 

1
all states
     

( ; , ) exp( ( ( )))P G q h
ϖ

β β ϖ= −∑ . 

 In order to prove that the Potts model is an evaluation of the Tutte polynomial we 
must show that conditions A, B, and C of Theorem 4.1 hold.  We then apply the recursive 
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formulas from definition 4.1 to obtain the Tutte polynomial evaluation of the Potts model 
partition function.  
 First, consider two graphs G and H which are disjoint.  
           ( ) ( )( )1

states 
of 

; , exp
G H

P G H q h
ω

β β ω
∪

∪ = −∑  

                                     ( ) ( )( )( )1 1
states  of  and
states  of 

exp
G
H

G H
G
H

h h
ω
ω

β ω ω= − +∑         

                                     ( )( ) ( )( )1 1
states  of  states  of 

exp exp
G H

G H
G H

h h
ω ω

β ω β ω= − −∑ ∑  

                                     ( ) ( ); , ; ,P G q P H qβ β= . 
 If G and H share a single vertex, then we allow G H∗  to denote a graph in which 
a state of G and a state of H that have the same spin at the shared vertex r .  Thus, 

( ) ( )( )1
states 
of 

; , exp
G H

P G H q h
ω

β β ω
∗

∗ = −∑  

( )( ) ( )( )1 1
states  of  and
states  of , with
the same spin at the
shared vertex

exp exp
G
H

G H
G
H

h h
ω
ω

β ω β ω= − −∑ . 

 Now, write ( )s r  for the spin at a vertex r.  We know 

( )( )
( )

( )( )
( )

1 1
 states of  states of 

with with 

exp exp
G G

s r a s r b

h h
ω ω

β ω β ω
∈ ∈

= =

− = −∑ ∑ , 

since if ( )s r a= , simply changing all the vertices currently assigned value a  to instead 

have value b gives a state with ( )s r b=  and the same Hamiltonian.  So, 

( )( ) ( )( )
( )

1 1
 states of  states of 

with 

exp exp
G G

s v a

h q h
ω ω

β ω β ω
∈ ∈

=

− = −∑ ∑ , or 

( )( )
( )

( )( )1
1 1

 states of  states of 
with 

exp exp
G G

s v a

h q h
ω ω

β ω β ω−

∈ ∈
=

− = −∑ ∑ . 

 Thus we see that   
( )( ) ( )( )1 1

states  of  and
states  of , with
the same spin at the
shared vertex

exp exp
G
H

G H
G
H

h h
ω
ω

β ω β ω− −∑  
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( )( ) ( )( )
( )

( )

( )( ) ( )( )

( ) ( )

1 1
 states of  states of 

with  in 
equal to  in 

1
1 1

 states of  states of 

1

exp exp

exp exp

; , ; , .

G H
H

G

G H
G H

s v
s v

G H
G H

h h

q h h

q P G q P H q

ω ω
ω

ω

ω ω

β ω β ω

β ω β ω

β β

∈ ∈

−

∈ ∈

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= − −
⎜ ⎟
⎜ ⎟
⎝ ⎠

= − −

=

∑ ∑

∑ ∑  

 We note that G H∗  has one less component than G H∪  because of the shared 
vertex.  We define ( ) ( ) ( ); , ; ,k GP G q q P G qβ β−= ,  where ( )k G  is the number of 

connected components of G .  We can now verify that Theorem 4.1 holds for ( ); ,P G q β . 
 
Condition A: 
 Allow the graph G to be a single vertex.  There are q possible spins at that vertex, 
and hence q states of G.  The Hamiltonian of each state is zero since there are no edges.  
Thus ( ) ( )1 1

 state of 
; , exp 0 1

G
P G q q q q

ω

β β− −

∈

= − ⋅ = =∑ . 

  
Condition B: 
 Let { },e c d=  be an edge of G which is neither a loop nor a bridge, and write 

( )s c  and ( )s d  for the spins at c and d respectively.  Then 

( ) ( ) ( )
( ) ( )( )
( ) ( )( )

( ) ( )

( ) ( )( )
( ) ( )

1
 states of 

 states of  states of 
with with 

; , ; ,

exp

exp exp .

k G

k G

G

k G k G

G G
s c s d s c s d

P G q q P G q

q h

q h q h
ω

ω ω

β β

β ω

β ω β ω

−

−

∈

− −

∈ ∈
≠ =

=

= −

= − + −

∑

∑ ∑

 

This step is possible since the spins will either be the same or different; there are 
no other possibilities. 

Note that if ( ) ( )s c s d≠ , then ( ) ( )1 1G G eh hω ω −= ; and if ( ) ( )s c s d= , then 

( ) ( )1 1G G eh h Jω ω −= + , since there is no edge between c and d in G e− , but ( ) ( )s c s d≠  

means that there is a contribution of 0 in the Hamiltonian for G, and  ( ) ( )s c s d=  gives a 
contribution of 1.  Therefore, 

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

( ) ( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

1 1
 states of  states of 

with with 

1 1
 states of  states of 

with with 

exp exp

exp exp exp .

k G k G

G G
s c s d s c s d

k G k G

G e G e
s c s d s c s d

q h q h

q J h q h

ω ω

ω ω

β ω β ω

β β ω β ω

− −

∈ ∈
= ≠

− −

∈ − ∈ −
= ≠

− + −

= − + −

∑ ∑

∑ ∑
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We would like to see ( ); ,P G e q β− , and the right hand term almost gives it, since 

e neither a bridge nor a loop means that ( ) ( )k G k G e= − , but we are missing the states 

of G e−  where ( ) ( )s c s d= .  So we will simply add and subtract them, getting 
( ) ( ) ( )( )

( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )

1 1
 states of  states of 

with with 

1 1
 states of  states of 

with with 

1
 states of 

exp exp exp

exp exp

exp

k G e k G e

G e G e
s c s d s c s d

k G e k G e

G e G e
s c s d s c s d

k G e

q J h q h

q h q h

q h

ω ω

ω ω

ω

β β ω β ω

β ω β ω

β ω

− − − −

∈ − ∈ −
= =

− − − −

∈ − ∈ −
= ≠

− −

∈

− + −

− − + −

= −

∑ ∑

∑ ∑

( ) ( )( ) ( )( )
( ) ( )

1
 states of 

with 

exp 1 exp .k G e

G e G e
s c s d

q J h
ω

β β ω− −

− ∈ −
=

+ − −∑ ∑

 

 The first term is just ( ); ,P G e q β− .  For the second term, note that since e is 

neither a bridge nor a loop, ( ) ( )/k G e k G e− = .  Also, the states of G e−  with 

( ) ( )s c s d=  correspond exactly to the states of /G e , and furthermore a state of G e−  

with ( ) ( )s c s d=  has the same Hamiltonian as the corresponding state of /G e .  Thus, 
the second term becomes  

( ) ( )( ) ( )( ) ( )( ) ( )/
1

 states of /

exp 1 exp exp 1 / ; ,k G e

G e

q J h P G e q
ω

β β ω β β−

∈

− − = − −∑ . 

 This means that if e is neither a bridge nor a loop, 
( ) ( ) ( )( ) ( ); , ; , exp 1 / ; ,P G q P G e q J P G e qβ β β β= − + − , 

which satisfies Theorem 4.1, part b, with 1a =  and ( )exp 1b Jβ= − . 
 
Condition C: 
 For part c, we use the observations we made at the beginning of this proof, that 

( ) ( ) ( ); , ; , ; ,P G H q P G q P H qβ β β∪ = , and 

( ) ( ) ( )1; , ; , ; ,P G H q q P G q P H qβ β β−∗ = . 
Thus, 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

; , ; ,

; , ; , ; , ; , .

k G H

k G k H

P G H q q P G H q

q P G q P H q P G q P H q

β β

β β β β

− ∪

− −

∪ = ∪

= =
 

Similarly, recalling that ( ) ( ) ( ) 1k G H k G k H∗ = + − , we have that 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1

; , ; ,

; , ; , ; , ; , .

k G H

k G k H

P G H q q P G H q

q q P G q P H q P G q P H q

β β

β β β β

− ∗

− − + −

∗ = ∗

= =
 

 Now, ( ); ,P G q β  satisfies all the conditions of Theorem 4.1, so it only remains to 
find its value on a single bridge B, or loop L, in order to write it in terms of the Tutte 
polynomial.   

For a loop, note that there are q states, and since both end points of a loop 
necessarily have the same value, 1h  is always 1.  Thus, 
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( ) ( )( ) ( ) ( )1 1

 states

; , exp 1 exp exp
q

P L q q J q q J Jβ β β β− −= − − ⋅ = =∑ . 

 For a bridge, note that there are q states where the spins on the end points are 
equal, each giving a Hamiltonian of 1.  There are ( )1q q −  states where the spins on the 
end points are different, each giving a Hamiltonian of 0.  Thus, 

( ) ( ) ( ) ( )( ) ( )( )1; , 1 exp 0 exp exp 1P B q q q q q J J qβ β β β−= − − ⋅ + = + − . 

 We are now ready to apply Theorem 4.1 with 1a = , ( )( )exp 1b Jβ= − , 

( )0 expy Jβ= , and ( )( )0 exp 1x qβ= − + − .  If we let ( )exp 1Jν β= − . So, 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

; , exp 1 ; ,exp

; ,exp .

V G k G

V G k G

qP G q J T G J

qT G J

νβ β β
ν

νν β
ν

−

−

+⎛ ⎞= − ⎜ ⎟
⎝ ⎠

+⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 Thus, since ( ) ( ) ( ); , ; ,k GP G q q P G qβ β−= , it follows that  

( ) ( ) ( ) ( ) ( ); , ; , expV G k Gk G qP G q q T G Jνβ ν β
ν

− +⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

when we use 1h  for the Hamiltonian.  /// 
[3] 
 
Theorem 4.3:   
 If  
 
 ( ) ( )( )1 1

all states
  

; , expP G q h
ϖ

β β ϖ
∈Ω

= −∑   

 
 And 
 
 ( ) ( )( )2 2

all states
  

, , expP G q h
ϖ

β β ϖ
∈Ω

= −∑   

 
 then ( ) ( ) ( )2 1, , exp ( ) , ,P G q J E G P G qβ β β= − . 

 
Proof  

( ) ( )
{ }

1 1
all states all states , ( )

; , exp ( ) exp ij
i j E G

P G q h J
ϖ ϖ

β β ϖ β δ
∈

⎛ ⎞
= − = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

( )
{ }

2
all states , ( )

; , exp 1 ij
i j E G

P G q J
ϖ

β β δ
∈

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  
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{ } { }all states , ( ) , ( )

exp 1 ij
i j E G i j E G

J J
ϖ

β β δ
∈ ∈

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

( ) ( )1
all states

exp ( ) exp ( )J E G h
ϖ

β β ϖ= − ∑  

( ) ( )1exp ( ) ; , .J E G P G qβ β= −  
 

Thus,  

( ) ( ) ( )( ) ( ) ( ) ( )2 , , exp ; ,expV G k Gk G qP G q q J E G T G Jνβ β ν β
ν

− +⎛ ⎞= − ⎜ ⎟
⎝ ⎠

, 

when we use 2h . Notice that the two forms of the Hamiltonian only differ by a factor of 

( )( )exp J E Gβ− .  /// 

  
Examples of the Tutte Polynomial Evaluating the Partition Function: 
 
 The following examples show how the Tutte polynomial is used to calculate the 
Potts model partition function of a simple lattice.  We use an elementary lattice so that we 
can check our results using the actual definition of the Potts model partition function.  
Larger and more complicated lattices would not allow for this calculation for 2q > . 
 
Example 4.2: 
 

 Recall Example 2.2 in which we calculated the Potts model probability function 
of a given configuration of a square.  We found a partition function of  
12 exp(2 ) 2 exp(4 ) 2J Jβ β+ + .  In this example we will use the same square lattice 
with 2q = .  We will show that the Potts model partition function is exactly the same as 
that for the Tutte polynomial definition of the partition function. 
 First we must calculate the Tutte polynomial of the graph. 

 

 
Now we can substitute into equation (8) to get  

( )
3 2

( ) ( )( );  2,  2 1V G k Gk G q v q v q v
P G v v

v v v
β − + + +

= + + + +
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

.  This 

evaluates to 12 exp(2 ) 2 exp(4 ) 2J Jβ β+ + .   
 

= + = + +

+ + + =  

3x

3x  
2x  

 3 2x x x y+ + +  
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 We were able to obtain the same partition function using the definition involving 
the Tutte polynomial.    
 
The Complexity of the Tutte Polynomial: 
 
 The Tutte polynomial does have its limitations.  Evaluating the Tutte polynomial 
is NP-hard in general, meaning it is highly unlikely that someone will find an efficient 
way to compute the polynomial efficiently for all cases.  However, there is a polynomial 
time algorithm for the Ising model when 2q =  and for a small number of special points. 
[16] 

Because of the complexity of the Tutte polynomial, mathematicians were forced 
to come up with different ways of approximating the Potts model partition function to 
accommodate the numerous application of the model.  Although this approach is not 
exact, approximations are sufficient for many important experiments involving Potts 
model mathematics. 
 
 
5. MONTE CARLO SIMULATIONS 
 
 Potts model analysis relies heavily on probability.  Since complexes are often 
very large with many different spin choices for their elements, the probability of a single 
state appearing out of the exponential number of states is nearly zero.  Therefore, 
mathematicians are interested in what average characteristics the system is likely to 
exhibit in the long run.   
 With the aid of computer simulations mathematicians are able to predict what will 
happen to a complex over time depending on many different factors such as temperature, 
and other outside forces.  The computer is given an initial state.  Then it runs through the 
lattice to see if elements are stable in their spins or if their neighbors will influence them 
to change spins.  At this point the computer calculates the probabilities of long run 
outcomes by choosing probabilistically accurate paths through the exponential number of 
states, depending on the stability of the internal elements.  One of the most common 
types of simulations is known as a Metropolis Algorithm. [10] 
 
The Metropolis Algorithm: 
  
 This method assigns probabilities to certain states by looking at the Hamiltonians 
and energies, and determining which states are more stable.  The simulation begins with 
an initial state, labeled as A.  The energy of this state is given by ( )ih Aβ  and can be 
represented as AE .  Next, the algorithm changes state A slightly to a new state labeled B, 
and computes its energy, ( )ih Bβ , which will be denoted BE .  At this point there are two 
possibilities for the system.  If B AE E<  the probability of changing from state A to B is 1 
since B has lower energy.  However, if B AE E> ,  the probability that the lattice assumes 

the new state B is given by ( )exp ( ) /B Ap E E T= − −  where T is the temperature of the 
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system. This temperature can be a literal temperature but it can also be any measure of 
the volatility of the system. [10] 
 This probability is calculated using relative probabilities of the two possible 
states.  Recall the Potts model probability function.  When we want to see which state is 
more likely we simply look at the relative probabilities of the two states by dividing one 
by the other.  This calculation is given below.   

( )
( )

( )
( )

( )
( ) ( )all states 

all states 

exp ( )
exp ( ) exp ( )Pr( ) exp ( ) /

exp ( )Pr( ) exp ( )
exp ( )

i

i
i

B A
i i

i

h B
h h BB E E T

h AA h A
h

ϖ

ϖ

β
β ϖ β

β β
β ϖ

−
−

−
= = = − −

− −
−

∑

∑

 

As the temperature increases, this probability will also increase.  However, as the system 
cools or becomes less volatile the system will settle into lower energy states.  [10]  
 Once these probabilities are generated, the researcher is able to model a real world 
situation.  Recall Example 3.2 using 1h  we found the partition function for the square 
lattice with 2 possible spins for its elements to be, 12 exp(2 ) 2 exp(4 ) 2J Jβ β+ + .  The 
Metropolis Algorithm uses the temperature of the system to determine which states are 
more likely to occur over time.   
 
Example 5.1: 

 In this example we determine the probability of a state with all one color 
occurring depending on the temperature of the lattice, by setting J k= . 

 
Pr(all black, T=0.01) = .50 or 50% 
Pr(all black, T=2.29) = .19 or 19% 

          Pr(all black, T=100,000) = .0625 or 1/16 
 

Notice that when the temperature is very small the lattice will basically become all black 
or all white over time, since these are the states with the most stability and lowest 
energies.  But, when the temperature is extremely high all 16 states seem to have an 
equally likely chance of occurring. 
 
6.  APPLICATIONS 
 
Overview: 
  
 In this section we explore three unique applications of the Potts model.  The first 
is a physical application in which the Potts model is used to simulate the behavior of 
foams.  The second is a biological application which simulates the growth patterns of 
tumors.  The final example is a sociological example where the Potts model is used to 
study human interactions.   
 Before we can explore these applications we must appreciate the complexity of 
the experiments.  Recall the standard Hamiltonian 1 ,i j

ij

h J σ σδ= − ∑ .  In these three 

applications the Hamiltonian will become a little more complex to capture external 
factors.  These experiments use the following Hamiltonian. 
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  ,i j iij i
ij i

H J fσ σ σδ= − −∑ ∑    

In this case the strength of the interaction between neighboring elements J  varies 
depending on their location on the lattice.  The second sum is the addition of an outside 
force which also depends on the position within the lattice. 
 
Physical Application: 
 
 The first experiment is described by Sanyal et al [12] in their article titled, 
“Viscous instabilities in flowing foams:  A Cellular Potts Model.”  This experiment 
tracks a single large bubble as it flows through a foam.  At first glance, foam flow may 
not seem to have many applications.  However, “foams are of practical importance in 
applications as diverse as brewing, lubrication, oil recovery, and firefighting” [9].  Foams 
are present in many dangerous and challenging fields.   
 Sanyal et al [12] track the flow of foams to see what happens as their velocities 
increase.  The authors begin by examining a lattice much like the one in Figure 6.1. 
 

 
 

Figure 6.1:  The lattice used to examine foams. 
  
The elements in the experiment are not single lattice sites, but rather adjacent sites with 
the same spins represent a single bubble.  In this case the bubble with the label 3 would 
be the large bubble. 
 The Hamiltonian for the experiment takes into account the energy of this system 
as well as the area of the bubbles.   
                                      2

,(1 ) ( )
i j n n

ij n

H J a Aσ σδ λ= − + −∑ ∑                                                    

The variable λ  is the strength of the area constraint on the bubble.  The unattainable 
value nA  is the area the bubble would assume if there were no forces acting on it, and na  
is the current area of the same bubble.  The counter n  is the number of bubbles.   
  

“The system evolves using Monte-Carlo dynamics.  Our algorithm differs 
from the standard Metropolis Algorithm: we choose a spin at random but 
only reassign it if it is at a bubble wall and then only to one of its unlike 
neighbors.  The probability of accepting the trial reassignment follows the 
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Boltzmann distribution (which is the standard distribution for finding 
probabilities using the Metropolis Algorithm)” [12]. 
 

 The results of this experiment were very useful.  By tracking a single large bubble 
through the foam the researchers were able to show that larger bubbles flow faster than 
smaller bubbles.  They were also able to show that there is a critical velocity at which the 
foam starts flowing uncontrollably.  These results would caution handlers to be aware of 
these phenomena.  They may be more careful as to how much air is actually in the 
substance, to prevent large bubbles.  They may also try to keep the flow below a certain 
velocity so that it stays under control. 
 
Biological Application: 
 
 The second application involves studying a cancerous tumor.  Sun et al [14] 
describe their experiment in the article titled “A Discrete Simulation of Tumor Growth 
Concerning Nutrient Influence.”  The authors use the Potts model to determine whether 
the amount and location of nutrients affects the growth pattern of a tumor. 
 The procedure begins by examining a lattice much like the one pictured below. 
 

                                          

           Figure 6.2:  The lattice representing cells of human biology. 

Here adjacent lattice sites with the same spin make up a single cell.  For example, in 
figure 6.2 there are six individual cells, and two of the cells are of the same type indicated 
with the number 1.   
 The Hamiltonian used in this experiment is a bit more complicated than the 
previous application. 

        { }' ' ' '

2
( ) ( ) ,1 ( ) ( , )

ij i j ij i j T
ij ij

H J V Kp i jτ σ τ σ σ σ σ
σ

δ λ ν= − + − +∑∑ ∑   

In this experiment ( )ijτ σ  gives the cell type and J varies depending on the type of cell.  
“If one of the grid points is not occupied by any cell, the interaction can also be modeled 
using a coupling constant cell ECMJ − ,”  which measures the strength between the cell and 
its extracellular matrix [1] or its outer layer.  The term 2( )TVσλ ν −  is the energy that 
growth and deformation of the cell requires.  The unattainable variable TV  is the volume 

1 

1 

1 1

1

1 1

1

2

2 2

2

2

22 

2 2 2

33

33

3 3

4

4

44

4 4

5

55

5

5 5



The Potts Model Page 21 5/4/2007 

which the cell would attain without any external forces.  Finally, p(i,j) represents how 
much nutrient exists at the position ij. 
 There are three steps to this experiment.  The first step is an evolution of a 
realistic cell cycle.  The authors use the Metropolis Algorithm to get probabilistically 
accurate lattices with both healthy and malignant cells.  The second step in the 
experiment investigates cell division.  Cell division is a very intricate piece of cancer 
research.  The authors define cell division as a function of the time since the cell last 
divided and the strength of cell energy.  The final step is the control of the nutrient 
environment.  In this experiment the sole nutrient source is a vein carrying iron on the left 
side of the tumor. 
 Once all three of these pieces are defined, the experiment can be performed.  
Monte-Carlo simulations are run to capture all of the variables and simulate how the 
tumor might grow. 
 From this experiment Sun et al [14] came up with two very important results.   
The simulation is pictured in Figure 4.3.  
 

 
 

Figure 6.3:  The results of the Tumor Growth experiment. [14] 
 
The authors found that tumor growth is exponential in the beginning stages, but as 
additional malignant cells require more nutrients some begin to die and others can not 
multiply as quickly. The second result was that the tumor migrated toward the vein. If 
doctors can somehow use these results they may be able to make progress in the fight 
against cancer. 
 
Sociological Application: 
 
 The final application studies human behavior.  Although it does not use the Potts 
model directly, the model used in this experiment does have many of the same roots as 
the Potts model.  The article titled, “Dynamic Models of Segregation” written by T. C. 
Schelling, a 2005 Nobel prize winner in Economics, describes a model very similar to the 
Potts model. 
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“The paper examines some of the individual incentives, and perceptions 
of difference, that can lead collectively to segregation.   The paper also 
examines the extent to which inferences can be drawn, from the 
phenomenon of collective segregation, about the preferences of 
individuals, the strength of those preferences, and the facilities for 
exercising them.” [13] 

 
The experiment begins by looking at a lattice much like the one pictured below.   
 

 
 

Figure 6.4:  Schelling’s neighborhood 
 
The 'x s  represent one group of people, while the 'y s  represent a different group. 
 Once the lattice has been constructed Schelling experiments with many different 
variables including the number of individuals per group, the way an individual defines 
their neighborhood, and the preferences of ratios within the neighborhood that people 
have.  The experiment is conducted by looking at the overall lattice and finding all of the 
people who are unhappy.  These people will change their position with some type of 
probability.  Schelling defines different ways in which people can move around the 
lattice. 
 Schelling works through many different experiments to come up with some very 
compelling results on segregation.  From this model it seems that people do consciously 
or subconsciously segregate themselves from people who are different than they are. 
 With a few slight alterations Schelling’s experiment can be turned into a Potts 
model scenario.  [7] uses a Potts-like model for a similar experiment exploring the 
formation of Ghettos in inner cities.  This experiment is an extension of Schelling’s 
brilliant work.  
 We too can imagine a Potts model for simulating human behavior in the following 
way.  We will use a lattice to depict our neighborhood, city, business, or any other venue 
in which people interact with one another.  This time we can use a few more groups.   For 
example, we can have elderly people, college roommates, families with teenagers, and 
families with small children.  To start with, members of each of these groups of people 
are living together in a brand new development.  We label the elderly with a 1, the 
college roommates with a 2, the families with teenagers with a 3, and the families with 
small children with a 4.  The beginning lattice might look something like the following. 
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Figure 6.5:  Neighborhood with four different groups. 
 
 The members of these groups have preferences about who they live near.  For 
example, the elderly do not want to live next to the college roommates because of the 
large parties that they tend to throw.  The couples with small children might want to live 
next to one another so that their kids can play together without going far from home.  We 
can develop these preferences in any way that fits reality. 
 The Hamiltonian for this experiment would measure overall happiness as opposed 
to energy.  Outside forces might be the price of other houses in other neighborhoods, 
proximity to work, or how much people like their current house.  The Metropolis 
Algorithm could then be run to develop higher probabilities for lattice states with higher 
overall happiness.  Eventually, we would likely see preferences playing out in the form of 
segregation. 
 This is just a rough sketch of a Potts model scenario.  Hopefully it has given the 
reader an appreciation for the versatility of the Potts model when it comes to real world 
situations.   
 
7.  CONCLUSION 
 
 The Potts model has been used to study phenomena such as foam flow, tumor 
growth, and human interaction.  With models such as the Potts model we have been able 
to understand and predict long term outcomes of natural happenings.  However, 
mathematicians still do not fully understand how to calculate the Potts model partition 
function for arbitrary graphs, or if it is even possible.  As we develop higher and more 
complex mathematics, questions such as these will be answered and we will be able to 
better our lives with more knowledge of the world around us. 
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