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Self-quasi-regularity in Certain Rings

Allen K. Hoffmeyer

Abstract

Let R be an associative ring, not necessarily commutative and not
necessarily having unity. Recall an element x ∈ R is called quasi-regular

if and only if solutions y and z exist for the equations x + y − x ∗ y = 0
and x + z − z ∗ x = 0. In this case y = z, and the unique element x̂ = y is
called the quasi-inverse for x. It is well known that J(R), the Jacobson
radical of R, is the unique largest ideal in R consisting entirely of quasi-
regular elements. In this paper, we explore the implications of the case
x = x̂, that is, when a ring element is its own quasi-inverse. We call such
elements self-quasi-regular. We determine some properties of sq(R), the
set of all self-quasi-regular elements, for a general ring, and also compare
this set to J(R). Then, we completely characterize the set sq(R) for
all homomorphic images of Z, the integers, including the cardinality and
membership of the set sq(Zn) for each choice of n.

1 Introduction

In the radical theory of rings, the most common, most useful, and
most studied radical is the Jacobson radical. Many characteriza-
tions of the Jacobson radical are well known, including that which
defines it as the unique largest ideal in a ring consisting entirely of
quasi-regular elements. By ring, we mean an associative ring R, not
necessarily commutative and not necessarily having unity (although
many of the concrete examples of this paper are indeed commuta-
tive and with 1). By radical, we mean an Amitsur-Kurosh radical,
as defined in Szász [3], and we denote the Jacobson radical by J(R).
Recall that x ∈ R is quasi-regular if and only if there exists x̂ ∈ R

such that x+x̂−x∗x̂ = x+x̂−x̂∗x = 0. It is well known that if such
an x̂ exists, then it is unique. The primary focus of this paper is the
study of a certain subset of the collection of quasi-regular elements
in a ring R. Thus, we introduce the following

Definition An element x ∈ R is self-quasi-regular if and only if
x = x̂.
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2 Self-quasi-regularity in Certain Rings

Thus, an element is self-quasi-regular precisely when it is its own
quasi-inverse. We denote the set of all the self-quasi-regular elements
of R by sq(R). It is obvious that sq(R) is contained in the set of
quasi-regular elements for any ring R, and it easily seen that in many
cases this containment is proper. It is of interest to compare sq(R)
to J(R) for a given ring R, although it’s easy to see that neither
sq(R) ⊆ J(R) nor J(R) ⊆ sq(R) holds in general.

Note, the simple substitution of x̂ = x reduces the definition of
self-quasi-regularity to the following: an element x ∈ R is self-quasi-
regular if and only if 2x − x2 = 0 if and only if x2 = 2x. This
fact will be useful in many of our proofs, and hence the equation
x2 = 2x will often directly follow the assumption x ∈ sq(R). Next,
observe that 0 + 0 − 0 ∗ 0 = 0. Hence 0 is self-quasi-regular in any
ring. Similarly, if R has unity, say 1R, then 2 ∗ 1R ∈ sq(R) because
2 ∗ 1R + 2 ∗ 1R − (2 ∗ 1R)(2 ∗ 1R) = 4 ∗ 1R − 4 ∗ 1R = 0. Since these
elements are self-quasi-regular in any ring (if R has unity), we say
that 0 and 2∗1R are the trivial self-quasi-regular elements of R. For
emphasis, what we have just proved is the following

Lemma 1.1. In any ring R, 0 is self-quasi-regular. If R has unity,
then 2 ∗ 1R is also self-quasi-regular.

Some notation will be used frequently throughout the paper. For
an element a in a ring R we denote by 〈a〉 the principal ideal gener-
ated by a. Let N denote the set of natural numbers and let Z denote
the set of integers. Let Zn be the proper homomorphic image of Z,
such that for n ∈ Z the homomorphism has as its kernel the ideal
〈n〉. For k ∈ Z, we denote by k̄ the equivalence class of k in some
Zn, and we thus distinguish between elements of Z and their images
under a homomorphism. We denote the greatest common divisor of
two natural numbers a and b by (a, b).

Next, we now look at some results for self-quasi-regularity in
general rings.

2 Self-quasi-regularity in General Rings

In some sense, as far as self-quasi-regularity is concerned, the most
trivial kind of ring that we may consider is a field F or a division ring
D (also known as a skew field), in which case the non-zero elements
elements form a multiplicative group. Let 1D be the unity of D. We
claim that the only two self-quasi-regular elements of D are 0 and
2 ∗ 1D.

Lemma 2.1. If D is a division ring and 1D is the unity of D, then
sq(D) = {0, 2 ∗ 1D}.

Proof. We already know that 0, 2 ∗ 1D ∈ sq(D) from Lemma 1.1.
Next, let 0 6= x ∈ sq(D). Since x is self-quasi-regular, we know that
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x2 = 2x. Also, we know that 0 6= x is invertible, that is there exists
an x−1 ∈ D such that x ∗ x−1 = x−1 ∗ x = 1D. So, we have

x2 = 2x

⇔ x2(x−1) = 2x(x−1)

⇔ x = 2 ∗ 1D.

So there really is no mystery or intrigue when considering the
self-quasi-regular elements of a division ring. It is of interest to note,
however, that nearly all elements in a division ring are quasi-regular.
Indeed, it is readily shown (using the defining equation for ”quasi-
regular”) that only the unity element 1D fails to be quasi-regular in
a division ring. Thus, although such examples have ”many” quasi-
regular elements, they have very ”few” self-quasi-regular elements.
Now, if we relax our restrictions on the ring and consider an arbitrary
commutative ring R, then we get much more interesting results. We
might ask when the set sq(R) is closed under addition or multipli-
cation.

Lemma 2.2. Let R be commutative and let a, b ∈ sq(R). Then
a + b ∈ sq(R) if and only if 2ab = 0 and ab ∈ sq(R) if and only if
2ab = 0.

Proof. Suppose a, b ∈ sq(R). Then a2 = 2a and b2 = 2b. Observe,
this gives a + b ∈ sq(R) if and only if

(a + b)2 = 2(a + b)

⇔ a2 + 2ab + b2 = 2a + 2b

⇔ 2a + 2ab + 2b = 2a + 2b

⇔ 2ab = 0.

Similarly, we have ab ∈ sq(R) if and only if

(ab)2 = 2(ab)

⇔ a2b2 = 2ab

⇔ (2a)(2b) = 2ab

⇔ 4ab = 2ab

⇔ 2ab = 0.

It is interesting to note (especially in the proofs) how self-quasi-
regularity allows one to treat multiplication of the elements of sq(R)
by using addition. Actually, for any a ∈ sq(R), we can treat powers
of a by considering multiples of a.



4 Self-quasi-regularity in Certain Rings

Lemma 2.3. Let R be a ring (not necessarily commutative). Let
a ∈ sq(R). Then, we have am = 2m−1a for all m > 1.

Proof. We prove by induction. Let a ∈ sq(R). Observe, since a2 =
2a, the inductive hypothesis holds for m = 2. Now, suppose that
ak = 2k−1a for some k > 2. So, we have

ak+1 = aka

= (2k−1a)a

= 2k−1a2

= 2k−1(2a)

= 2ka.

So, by the Principle of Mathematical Induction, we obtain the result
am = 2m−1a for all m > 1.

Lemma 2.4. Let R be a commutative ring with unity and let x ∈
sq(R). Then the following are equivalent:

a) x + 2 ∗ 1R ∈ sq(R)

b) 4x = 0

c) x3 = 0.

Proof. We first prove a) if and only if b). Since x ∈ sq(R), we know
that x2 = 2x. So, observe x + 2 ∗ 1R ∈ sq(R) if and only if

(x + 2 ∗ 1R)2 = 2(x + 2 ∗ 1R)

⇔ x2 + 4x + 4 ∗ 1R = 2x + 4 ∗ 1R

⇔ x2 + 2x = 0

⇔ 2x + 2x = 0

⇔ 4x = 0.

Lastly, observe that x3 = 4x by Lemma 2.3, and hence 4x = 0 if and
only if x3 = 0.

After looking at the closure of sq(R) under the two binary ring
operations (i.e. multiplication and addition), it natural to ask what
properties would sq(R) have if it were a subring of R.

Corollary 2.5. Let R be a commutative ring with unity. If sq(R)
is a subring of R, then sq(R) has characteristic 4 and is nilpotent
of index 3. In particular, if J(R) = sq(R), then 4J(R) = 0 and
J(R)3 = 0.

Proof. Let x ∈ sq(R). Since sq(R) is closed with respect to addition
and 2 ∗ 1R ∈ sq(R) in any ring with unity, then x + 2 ∗ 1R ∈ sq(R).
Thus 4x = 0 and x3 = 0 by Lemma 2.4, and it is immediate that R

has characteristic 4 and is nilpotent of index 3. The last assertion
follows because any ideal, including J(R), must be a subring.
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This corollary illustrates some of the limitations on sq(R) being a
subring or ideal in any commutative ring with unity. If we ask when
it is possible that sq(R) = J(R), it is clear that the characteristic
and nilpotency play a very strong role for the radical. For example,
no commutative domain will have J(R) = sq(R), even though, in
general in a domain, the Jacobson radical can be ”large” inside the
ring.

We have looked at some general properties of self-quasi-regularity
in certain rings with and without unity. We now consider the prop-
erty of self-quasi-regularity in a certain class of rings, namely those
of the form Zn.

3 Self-quasi-regularity in Zn

Our goal in the next two sections is to characterize all of the self-
quasi-regular elements of each of the rings Zn, n ∈ N. We start with
some basic properties of self-quasi-regular elements in Zn. Recall
that we use (a, b) for the greatest common divisor of a, b ∈ N. Ob-
serve x̄ ∈ sq(Zn) if and only if 2x − x2 = 0 if and only if x2−2x ≡ 0
(mod n) if and only if x2 ≡ 2x (mod n). However, before we con-
tinue it is imperative that we know some cancellation properties for
equations of the form ax ≡ b (mod m) where m ∈ N and m > 1.
Note the following lemmas (proofs can be found in Dudley [2]):

Lemma 3.1. If (a,m) ∤ b, then ax ≡ b (mod m) has no solutions.

Lemma 3.2. If (a,m) = 1, then ax ≡ b (mod m) has exactly one
solution.

Lemma 3.3. If ac ≡ bc (mod m) and (c,m) = 1, then a ≡ b

(mod m).

Lemma 3.4. If ac ≡ bc (mod mc), then a ≡ b (mod m).

The preceeding four lemmas are vital to the understanding of the
following material. We start with some simple observations about
self-quasi-regularity in Zn.

Lemma 3.5. If x ∈ sq(Zn) with (x, n) = 1, then x = 2.

Proof. Let x ∈ sq(Zn) with (x, n) = 1. Since (x, n) = 1, we know
x 6= 0 from which we cancel the x in the equation x2 ≡ 2x (mod n)
using Lemma 3.3 to get x ≡ 2 (mod n) (or rather, x = 2).

Observe that the previous lemma implies that if x ∈ sq(Zn),
x 6= 0 and x 6= 2, then (x, n) > 1. This fact will be important in
many of the following results.

Lemma 3.6. If x ∈ sq(Z2m) where m ∈ N, then x = 2k for some
k ∈ Z.
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Proof. Let x̄ ∈ sq(Z2m) and suppose x = 2k + 1 for some k ∈ Z. So,
we have

(2k + 1)2 ≡ 2(2k + 1) (mod 2n)

⇔ 4k2 + 4k + 1 ≡ 4k + 2 (mod 2n)

⇔ 4k2 + 1 ≡ 2 (mod 2n)

⇔ 4k2 ≡ 1 (mod 2n).

Observe that (4k2, 2n) ≥ 2 and so (4k2, 2n) ∤ 1 by Lemma 3.1. This
contradicts the assumption that x was odd. Therefore, we must have
x = 2k for some k ∈ Z.

Proposition 3.7. The set sq(Zn) is a subring of Zn if and only if
n ∈ {1, 2, 4, 8}.

Proof. Suppose that sq(Zn) is a subring of Zn, for some n ∈ N.
If n = 1 (i.e. the trivial, one element ring), we know that {0} =
sq(Z1) = Z1, and hence sq(Z1) is a subring of Z1. Likewise, if n = 2
(i.e. the two element field), then it is easily seen that {0} = sq(Z2)
is a subring of Z2.

Now, assume n > 2. We know by closure of the additive group
(sq(Zn),+), and the fact that 2 ∈ Zn for all n > 2, that the set
{0, 2, 4, . . . , n − 4, n − 2} ⊆ sq(Zn). Now by Lemma (2.2), for each
x ∈ sq(Zn), since 2 ∈ sq(Zn), we must have that 2 · (2x) = 0. This
implies 4x = 0, for all x ∈ sq(Zn), since sq(Zn) is assumed to be a
subring. However, if n ≥ 9, for x = 2, it is clear that 4 · 2 = 8 6= 0.
Thus for any n ≥ 9, sq(Zn) is not a subring of Zn.

Lastly, we check the values 3 ≤ n ≤ 8. It is evident that {0, 2} =
sq(Z3), but the three element field has no proper, nontrivial subrings.
Next, it is easily calculated that 4 6∈ sq(Zn) for any n ∈ {5, 6, 7},
so that the subring generated by 2 is not entirely self-quasi-regular,
and hence sq(Zn) is not a subring in these cases. Finally, it is easily
checked that sq(Z4) = {0, 2} and that sq(Z8) = {0, 2, 4, 6} and that
these are indeed subrings of their respective rings. Thus only for n

in the set {1, 2, 4, 8} do we have that sq(Zn) is a subring of Zn. It is
worth noting that in each of these four cases, sq(Zn) = J(Zn), and
so sq(Zn) is in fact an ideal in Zn.

Having taken care of some preliminaries, we are ready to dive into
some of the deeper results. We now begin characterizing the self-
quasi-regular elements of Zn based on the prime power decomposi-
tion of n. We begin with two rather simple decompositions n = pr

for some r > 0, with p an odd prime and n = 2k with k > 2.

Proposition 3.8. The only self quasi-regular elements of Zpr , with
r > 0 and p an odd prime, are 0̄ and 2̄.
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Proof. First, we show the lemma is true for r = 1. Observe Zp is
a field and so by Lemma 2.1 we know that sq(Zp) = {0, 2}. Now,
suppose r > 1 and let x ∈ sq(Zpr ) with x 6= 0 and x 6= 2. So, we

have x = spk (since (x, pr) 6= 1) where 0 < k < r, 0 < s < pr−k, and
(s, p) = 1. Observe, since x ∈ sq(Zpr ) we obtain

x2 ≡ 2x (mod pr)

⇔ (spk)2 ≡ 2spk (mod pr)

⇔ s2p2k ≡ 2spk (mod pr)

⇔ s2pk ≡ 2s (mod pr−k), by Lemma 3.4,

⇔ spk ≡ 2 (mod pr−k) by Lemma 3.3. (1)

Observe that p | spk and p | pr−kt and so the equivalence (1) implies
that p | 2. However, we know that p is an odd prime and so p ∤ 2.
Thus, we have contradicted the assumption that x 6= 0 and x 6= 2.
Hence, there does not exist such an x̄ ∈ sq(Zpr ). It follows that
sq(Zpr ) = {0, 2} whenever p is an odd prime and r > 0.

Theorem 3.9. Suppose n = 2k with k > 2. Then |sq(Zn)| = 4 and

in particular sq(Zn) = {0, 2, 2k−1, 2k−1 + 2}.

Proof. Suppose x ∈ sq(Zn). Since n is even, we know x is even by
Lemma 3.6. So x = 2m for some m ∈ Z. Using substitution gives

(2m)2 ≡ 2(2m) (mod 2k)

⇔ 4m2 ≡ 4m (mod 2k)

⇔ m2 ≡ m (mod 2k−2), by Lemma 3.4,

⇔ m2 − m ≡ 0 (mod 2k−2)

⇔ m(m − 1) ≡ 0 (mod 2k−2)

We now consider two cases:
Case I: Suppose that m is odd. Since m is odd, we have (m, 2k−2) =
1 and we obtain

m(m − 1) ≡ 0 (mod 2k−2)

⇔ m − 1 ≡ 0 (mod 2k−2), by Lemma 3.3,

⇔ m ≡ 1 (mod 2k−2)

⇔ m = 2k−2r + 1

for some r ∈ Z. Observe that x = 2m = 2k−1r + 2. If r = 2s for
some s ∈ Z, then x = 2k−1r + 2 = 2k−1(2s) + 2 = 2ks + 2 = 2. If

r = 2s+1 for some s ∈ Z, then x = 2k−1r + 2 = 2k−1(2s + 1) + 2 =

2ks + 2k−1 + 2 = 2k−1 + 2. Thus, in Case I, we must have x = 2 or
2k−1 + 2.
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Case II: Suppose that m is even. So, we have m − 1 is odd, (m −
1, 2k−2) = 1, and

m(m − 1) ≡ 0 (mod 2k−2)

⇔ m ≡ 0 (mod 2k−2), by Lemma 3.3,

⇔ m = 2k−2r

where r ∈ Z. We now have x = 2m = 2k−1r. If r = 2s for some
s ∈ Z, then x = 2k−1(2s) = 2ks = 0. If r = 2s + 1 for some s ∈ Z,

then x = 2k−1(2s + 1) = 2ks + 2k−1 = 2k−1. Thus, in Case II, we

must have x = 0 or 2k−1.
So, all cases being exhausted, if x ∈ sq(Zn), with n = 2k and

k > 2, then x ∈ {0, 2, 2k−1, 2k−1 + 2}.

Observe that |sq(Z2)| = 1 because 0 is the only self-quasi-regular
element of Z2. Also, |sq(Z22)| = |sq(Z4)| = 2 since 0 and 2 are
the only self-quasi-regular elements of Z4. Thus, we know the set
sq(Z2k) for all k ∈ N. Next, we consider an n of the form n =
pλ1

1 pλ2

2 · · · pλk

k where k ∈ N, the pi terms are distinct odd primes for
all i = 1, 2, . . . , k, and λi ∈ N for all i = 1, 2, . . . , k.

4 Main Results

In this section, we completely characterize the sets sq(Zn), for each
choice of n ∈ N. We determine the cardinality of the set, and by our
proof techniques, we can explicitly construct the membership of the
set sq(Zn), given any n ∈ N.

Theorem 4.1. Suppose n = pλ1

1 pλ2

2 · · · pλk

k , where the pi terms
are distinct odd primes and λi ∈ N for all i = 1, 2, . . . , k. Then
|sq(Zn)| = 2k.

Proof. First, let 0 6= x ∈ sq(Zn) with (x, n) = peb

b t where 0 < eb <

λb, (t, pb) = 1 and b ∈ {1, 2, . . . , k}. We show that eb < λb leads to a
contradiction and so it turns out that if some pi divides x for 0 6= x ∈
sq(Zn), then it follows that pλi

i must also divide x. Thus, we need
only consider (x, n) = P where n = PQ, P,Q > 1, and (P,Q) = 1.
Now, we prove our assertion. Assume 0 6= x ∈ sq(Zn) such that
(x, n) = peb

b t, 0 < eb < λb, (t, pb) = 1, and b ∈ {1, 2, . . . , k}. Since
x ∈ sq(Zn), we have x2 ≡ 2x (mod n). Observe, since (x, n) = peb

b t,

we have x = peb

b ts, where (s, pb) = 1. So, we have

x2 ≡ 2x (mod n)

⇔ p2eb

b t2s2 ≡ 2peb

b ts (mod n)

Observe that peb+1

b | p2eb

b t2s2 and peb+1

b | n, but peb+1

b ∤ 2peb

b ts and
so the equation above has no solution. This is a contradiction of
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the fact that 0 6= x ∈ sq(Zn). Hence the assumption (x, n) = peb

b t

for some b ∈ {1, 2, . . . , k} implies eb = 0 or eb = λb. So, the only
possibilities for (x, n) for some nonzero x ∈ sq(Zn) are

(x, n) = 1

(x, n) = p
λi1

i1

(x, n) = p
λi1

i1
p

λi2

i2

...

(x, n) = p
λi1

i1
p

λi2

i2
· · · p

λik−1

ik−1
.

We now consider each possibility. Observe (x, n) = 1 implies that
x = 2 by Lemma 3.5. Let us consider the general case; that is, we

consider (x, n) = p
λi1

i1
p

λi2

i2
· · · p

λim

im
= P > 1 where 0 < m < k and

n = PQ with (P,Q) = 1. Note that we may now write x = sP for
some s ∈ N with (s,Q) = 1. Since x ∈ sq(Zn), we have

x2 ≡ 2x (mod n)

⇔ (sP )2 ≡ 2sP (mod PQ)

⇔ s2P 2 ≡ 2sP (mod PQ)

⇔ s2P ≡ 2s (mod Q), by Lemma 3.4,

⇔ sP ≡ 2 (mod Q), by Lemma 3.3. (2)

We know (2) has a unique solution since (P,Q) = 1 and so there
does exist a self-quasi-regular element x of Zn such that (x, n) =

p
λi1

i1
p

λi2

i2
· · · p

λim

im
where 0 < m < k namely x = sP where s ≡ 2P−1

(mod Q). We now count how many such self-quasi-regular elements
exist that these equations will generate. Since there are k primes,

there are
(

k

1

)

ways for (x, n) = p
λi1

i1
. Similarly, there are

(

k

2

)

ways

for (x, n) = p
λi1

i1
p

λi2

i2
. For the general case, there are

(

k

a

)

ways for

(x, n) = p
λi1

i1
p

λi2

i2
· · · p

λia

ia
where 0 < a < k. Summing all of the

cases and including the special case where (x, n) = 1, there are
1+

(

k

1

)

+
(

k

2

)

+ · · ·+
(

k

k−1

)

= 2k−1 possibilities where k is the number
of distinct primes in the factorization of n. We need also include the
other trivial self-quasi-regular element 0̄. This gives a total of 2k

possible cases that each generate a self quasi-regular element. We
now need to show that each equation generates a unique self quasi-
regular element. This will demonstrate that |sq(Zn)| = 2k.

Our only concern is that two distinct equations of the form of
(2) will generate the same self-quasi-regular element of Zn. We now
show that this cannot happen. For the purpose of contradiction,
suppose that two distinct equations of the form of (2) generate the
same self-quasi-regular element. Consider n = P1Q1 = P2Q2 where
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(Pi, Qi) = 1 for i = 1, 2, P1 6= P2, and 1 < P1, P2, < n. So, we have
x = s1P1 = s2P2 for some s1, s2 ∈ Z with (s1, P1Q1) = (s2, P2Q2) =
1. Since P1 6= P2, there exists pi such that that pi | P1 and pi ∤ P2.
However, the odd prime pi | n and hence pi | Q2. Also, we know
pi | x and since (pi, P2) = 1 we know pi | s2. Together, the observed
pi | s2 and pi | Q2 imply that (s2, P2Q2) ≥ pi > 1. This is a
contradiction of the assumption that one self-quasi-regular element
of Zn could be generated by two distinct equations of the form of
(2). Therefore, we must have that each equation of the form of (2)
generates a unique self-quasi-regular element. Thus, we have that
|sq(Zn)| = 2k where n = pλ1

1 pλ2

2 · · · pλk

k , where the pi’s are distinct
odd primes and λi > 0 for all i = 1, 2, . . . , k.

Probably the most striking part of this theorem is that the num-
ber of self-quasi-regular elements of Zn (for the above prime power
decomposition) depends not on the specific primes or their powers.
The number of self-quasi-regular elements depends entirely on the
number of primes in the prime power decomposition! This is a rather
remarkable fact, which will prove to be true for other factorizations
of n as well. Next, we look at n = 2pλ1

1 pλ2

2 · · · pλk

k , where the pi

terms are distinct odd primes and λi > 0 for all i = 1, 2, . . . , k.

Theorem 4.2. Suppose n = 2pλ1

1 pλ2

2 · · · pλk

k , where the pi terms
are distinct odd primes and λi > 0 for all i = 1, 2, . . . , k. Then
|sq(Zn)| = 2k.

Proof. This proof follows the exact same form of the proof of the
previous theorem. Let 0 6= x ∈ sq(Zn). The only difference is that
the possible values of (x, n) are all multiplied by 2. In a fashion
quite analagous to that in the previous theorem, (x, n) = 2peb

b t for
some b ∈ {1, 2, . . . , k} implies eb = 0 or λb. So, the only possibilities
for (x, n) for some nonzero x ∈ sq(Zn) are

(x, n) = 2

(x, n) = 2p
λi1

i1

...

(x, n) = 2p
λi1

i1
p

λi2

i2
· · · p

λik−1

ik−1
.

We solve the appropriate linear congruence equations to find the
self-quasi-regular elements. A similar counting argument to the one
from the last theorem gives that there are 2k possibilities for the
number of self-quasi-regular elements and a similar uniqueness ar-
gument guarantees that |sq(Zn)| = 2k.

The next theorem is similarly striking in that it completely con-
structs what the self-quasi-regular elements of Zn are for the remain-
ing prime power decompositions of n. That is, we consider sq(Zn)
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where n = 2λpλ1

1 pλ2

2 · · · pλk

k where the pi terms are all distinct odd
primes and λi > 0 for all i = 1, 2, . . . , k.

Theorem 4.3. Suppose n = 2λpλ1

1 pλ2

2 · · · pλk

k where the pi terms are
distinct odd primes, λi > 0 for all i = 1, 2, . . . , k, and λ ≥ 3. Then
|sq(Zn)| = 2k+2. Similarly, if λ = 2, then |sq(Zn)| = 2k+1.

Proof. Let R = pλ1

1 pλ2

2 · · · pλk

k and so n = 2λR. Since n is even, we
know x ∈ sq(Zn) implies x = 2s for some s ∈ Z, by Lemma 3.6. So,
we have (x, n) = 2mt where (t, n) = 1 and 1 ≤ m ≤ λ. However, it
is easily shown that all values of m except for m ∈ {1, λ− 1, λ} lead
to a contradiction. So, we need only consider those m listed above.
Let R = PQ where (P,Q) = 1 and Q,P > 1. We consider all of the
possibilities for (x, n) where 0 6= x ∈ sq(Zn). We have the following
possibilities:

(x, n) = 2 (3)

(x, n) = 2P (4)

(x, n) = 2R (5)

(x, n) = 2λ−1 (6)

(x, n) = 2λ−1P (7)

(x, n) = 2λ−1R (8)

(x, n) = 2λ (9)

(x, n) = 2λP (10)

We now consider each case.

Case (3): Consider (x, n) = 2. So, we have x = 2t where (t, n) =
1, for some t ∈ Z. So, observe

x2 ≡ 2x (mod n)

4t2 ≡ 4t (mod 2λR)

⇔ t2 ≡ t (mod 2λ−2R)

⇔ t ≡ 1 (mod 2λ−2R)

⇔ t = 2λ−2Rs + 1, for some s ∈ Z

⇔ x = 2t = 2λ−1Rs + 2.

Observe, if s is even, then s = 2a for some a ∈ Z and x = 2λRa + 2 =
2. If s is odd, then s = 2a+1 for some a ∈ Z and x = 2λRa + 2λ−1R + 2 =
2λ−1R + 2. So, for (x, n) = 2 we obtain two self-quasi-regular ele-
ments.

Case (4): Consider (x, n) = 2P . So, we have x = 2Pt where
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(t, n) = 1, for some t ∈ Z. Observe

x2 ≡ 2x (mod n)

⇔ 4P 2t2 ≡ 4Pt (mod 2λPQ)

⇔ Pt ≡ 1 (mod 2λ−2Q)

⇔ t ≡ P ′ (mod 2λ−2Q)

where PP ′ ≡ 1 (mod 2λ−2Q),

(note: P ′ is guaranteed by Lemma 3.2),

⇔ t = 2λ−2Qs + P ′, for some s ∈ Z,

⇔ x = 2Pt = 2λ−1PQs + 2PP ′.

Observe, in a fashion similar to the last case, s even implies x = 2PP ′

and s odd implies x = 2λ−1PQ + 2PP ′. So, for each different P,
there are two self-quasi-regular elements associated with (x, n) = 2P .

Case (5): Consider (x, n) = 2R. So, we have x = 2Rt where
(t, n) = 1, for some t ∈ Z. Observe

x2 ≡ 2x (mod n)

⇔ 4R2t2 ≡ 4Rt (mod 2λR)

⇔ Rt ≡ 1 (mod 2λ−2)

⇔ t ≡ R′ (mod 2λ−2)

where RR′ ≡ 1 (mod 2λ−2)

⇔ t = 2λ−2s + R′

⇔ x = 2Rt = 2λ−1Rs + 2RR′.

Observe, in a fashion similar to the last case, s even implies x = 2RR′

and s odd implies x = 2λ−1R + 2RR′. So, for (x, n) = 2R we obtain
two self-quasi-regular elements.

Case (6): Consider (x, n) = 2λ−1. So, we have x = 2λ−1t where
(t, n) = 1, for some t ∈ Z. Observe

x2 ≡ 2x (mod n)

⇔ 22λ−2t2 ≡ 2λt (mod 2λR)

⇔ 2λ−2t ≡ 1 (mod R)

⇔ t ≡ 2′ (mod R)

where 2λ−22′ ≡ 1 (mod R)

⇔ t = Rs + 2′

⇔ x = 2λ−1t = 2λ−1Rs + 2λ−12′.

Observe, in a fashion similar to the last case, s even implies x =
2λ−12′ and s odd implies x = 2λ−1R + 2λ−12′. So, for (x, n) = 2λ−1
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we obtain two self-quasi-regular elements.

Case (7): Consider (x, n) = 2λ−1P . So, we have x = 2λ−1Pt

where (t, n) = 1. Observe

x2 ≡ 2x (mod n)

⇔ 22λ−2P 2t2 ≡ 2λPt (mod 2λPQ)

⇔ 2λ−2Pt ≡ 1 (mod Q)

⇔ t ≡ A (mod Q)

where 2λ−2PA ≡ 1 (mod Q)

⇔ t = Qs + A

⇔ x = 2λ−1Pt = 2λ−1PQs + 2λ−1PA.

Observe,in a fashion similar to the last case, s even implies x =
2λ−1PA and s odd implies x = 2λ−1PQ + 2λ−1PA. So, for each
different P, there are two self-quasi-regular elements associated with
(x, n) = 2λ−1P .

Case (8): Consider (x, n) = 2λ−1R. Then x = 2λ−1Rs for

some s ∈ Z. Observe s odd gives x = 2λ−1R, the integer s even
gives x = 0 and so either way x ∈ sq(Zn) since x2 ≡ 22λ−2R2 ≡
(2λR)(2λ−2R) ≡ 0 (mod n) and 2x ≡ 2λR ≡ 0 (mod n).

We claim that even though (x, n) = 2λ and (x, n) = 2λP do not
lead to a contradiction, they do lead to redundant self-quasi-regular
elements already generated by equations (6) and (7). It is straight-
forward to verify that this is the case.

Now, having exhausted all possible cases for 1 < (x, n) < n,
we proceed with counting the number of elements that each case
gives. Observe (x, n) = 2 gives x = 2 and so case (3) generates one
self-quasi-regular element. For case (4), observe that each distinct
choice for P generates 2 self-quasi-regular elements. We now need to
determine how many different choices of ”P” exist. The total num-

ber of ways that (x, n) = p
λi1

i1
is

(

k

1

)

, the total number of ways that

(x, n) = p
λi1

i1
p

λi2

i2
is

(

k

2

)

, and in general the total number of ways that

(x, n) = p
λi1

i1
p

λi2

i2
· · · p

λia

ia
where a < k is

(

k

a

)

. So, counting all the dif-
ferent possibilites for P and remembering that each separate P gen-
erates 2 self-quasi-regular elements we get 2(

(

k

1

)

+
(

k

2

)

+· · ·+
(

k

k−1

)

) =

2(2k − 2) = 2k+1 − 4. Case (5) generates two quasi-regular-elements
as does case (6). Case (7) generates, 2k+1 − 4 from the same argu-
ment used above. Case (8) generates one self-quasi-regular element,
namely 2λ−1R. Observe that cases (9) and (10) are redundant. We
finally include the trivial self-quasi-regular element, 0. So, we have
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|sq(Zn)| ≤ 2+2k+1−4+2+2k+1−4+2+1+1 = 2k+1+2k+1 = 2k+2.
Furthermore, an argument similar to that in Theorem (4.1) shows
that the self-quasi-regular elements found in the last step are indeed
distinct.

Lastly, consider n = 2λp1p2 · · · pk where λ = 2. We again have
cases (3) through (8) generating distinct self-quasi-regular elements.
However, for λ = 2, observe that cases (3), (4), and (5) are the same
as cases (6), (7), and (8) respectively. So, there are exactly half as
many self-quasi-regular elements as the case where λ ≥ 3. Therefore,

there are 2
k+2

2
= 2k+1 self-quasi-regular elements for λ = 2.

We summarize the results of this section in a rather concise form
in order to understand the pattern that emerges naturally.

Theorem 4.4. Let n be any positive integer. By the Fundamental
Theorem of Arithmetic, we may write n = 2λpλ1

1 pλ2

2 · · · pλk

k , where
the pi terms are distinct odd primes, λ ≥ 0, and λi > 0 for all
i = 1, 2, . . . , k. (Let k = 0 if n = 2λ.) Then, we have the following:

|sq(Zn)| =







2k if λ = 0 or 1
2k+1 if λ = 2
2k+2 if λ ≥ 3

5 Examples and Another Approach

Here, we demonstrate how our proof techniques may explicitly de-
termine the membership of some choice of sq(Zn). We have already
seen that 0̄ and 2̄ are always in sq(Zn), and thus we consider only
the non-trivial self-quasi-regular elements.

Example Suppose n = 2250 = 2 · 32 · 53. Our main Theorem 4.4
tells us that there should be four elements in the set sq(Z2250), in-
cluding the trivial self-quasi-regular elements. We now find the other
two members of this set. If we consider each case of the proof we
realize that we need only consider P = 32 and P = 53. We need
to solve the equations 32s ≡ 1 (mod 53) and 53t ≡ 1 (mod 32) and
then substitute these values s, t into x = 2 · 32 · s and x = 2 · 53 · t.
It is easy to calculate that the solution to the first linear congruence
equation is s = 14 which gives x = 252. It is also easy to see that
2522−2∗252 ≡ 0 (mod 2250). Observe the second congruence equa-
tion has the solution of t = 8 which gives x = 2 · 53 · 8 = 1750 and
this, too, is easily checked for the property of self-quasi-regularity.

Example Suppose n = 784 = 24 · 72. Our main Theorem 4.4 tells
us that there should be eight elements in the set sq(Z784), including
the trivial self-quasi-regular elements. Ahead of time, we go ahead
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and give sq(Z784) = {0, 2, 98, 296, 392, 394, 490, 688} and show that
the linear congruence equations give the desired elements. Following
the proof of Theorem 4.3 we consider the different cases (we use x

to denote an element of sq(Z784)):

Case (4): We consider (x, 2472) = 2. We know x = 2 or x =
2 + 2372 = 394.

Case (5) or (6): These cases are the same because there is only
one odd prime to consider. Consider (x, 2472) = 2 · 72 which gives
x = 2 · 72 · t or x = 2 · 72 · t + 2372. In the form of the proof of the
theorem, we need to solve 72t ≡ 1 (mod 22) which has the solution
t = 1 and gives x = 2 · 72 · 1 = 98 Also, we have 98 + 2372 = 490 is
self-quasi-regular.

Case (7): Consider (x, 2472) = 23 and so x = 23t or x =
23t + 2372. We need to solve 22t ≡ 1 (mod 72) which has the so-
lution of t = 37. So, we substitute and obtain x = 2337 = 296 or
x = 296 + 2372.

Case(8) or (9): Consider (x, 2472) = 2372 and so x = 2372 = 392
or 392 + 2372 = 0.

So, we showed that sq(Z784) is exactly as listed above. So the
problem of finding the exact self-quasi-regular elements of Zn reduces
to the problem of solving linear congruence equations. Indeed, one
of the merits of our somewhat labor-intensive approach is the con-
structive nature of the proofs. For any n, we may construct the set
sq(Zn) with the methods illustrated in the two previous examples.

Another Approach Dr. David Anderson solved the problem of
counting self-quasi-regular elements in Zn rather elegantly. He per-
sonally communicated this solution via email after we discussed the
problem in person at a conference. We include his proof of the the-
orem both for its beauty and conciseness.

Proof. (Sketch.) Let n be as the theorem states. For any two
rings R and S, we have |sq(R × S)| = |sq(R)||sq(S)|. A simple
induction argument extends this fact to any number of rings, i.e.
if R1, R2, . . . , Rt are any rings, then |sq(R1 × R2 × · · · × Rt)| =
|sq(R1)||sq(R2)| · · · |sq(Rt)|. By the Chinese Remainder Theorem,
for n = 2λpλ1

1 pλ2

2 · · · pλk

k , we have Zn
∼= Z2λ×Z

p
λ1
1

×Z
p

λ2
2

×· · ·×Z
p

λk

k

.

Recall that Z2 has only 0 as a self-quasi-regular element and so
|sq(Z2)| = 1. Also, |sq(Z4)| = 2 and our Theorem 3.9 gives that
|sq(Z2λ)| = 4, for any λ > 2. Recall, our Proposition 3.8 gives
that the only self-quasi-regular elements in Zpr are 0̄ and 2̄. Hence
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|sq(Z
p

λi

i

)| = 2 for any i. So, using all of these facts, we know that

|sq(Zn)| = |sq(Z2λ)||sq(Z
p

λ1
1

)||sq(Z
p

λ2
2

)| · · · |sq(Z
p

λk

k

)|

=







2k if λ = 0 or 1
2k+1 if λ = 2
2k+2 if λ ≥ 3
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