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Randomly Generated Triangles whose Vertices are

Vertices of a Regular Polygon

Anna Madras Shova KC
Drury University Hope College

October 2, 2006

Abstract

We generate triangles randomly by uniformly choosing a subset of three vertices
from the vertices of a regular polygon. We determine the expected area and perimeter
in terms of the number of sides of the polygon. We use combinatorial methods com-
bined with trigonometric summation formulas arising from complex analysis. We also
determine the limit of these equations to compare with a classical result on triangles
whose vertices are on a circle.

1 Introduction

This paper is an exploration into a method of randomly generating triangles. We start

with a regular n-gon inscribed in a unit circle. Then out of

(

n
3

)

possible subsets

of vertices of size three, one subset is chosen uniformly. The three vertices form our
randomly generated triangle.

Research into this method of generating triangles has lead us to four main questions:

• What is the average area of a triangle generated by this process?

• What is the limit of this area as n tends to infinity?

• What is the average perimeter of a triangle generated by this process?

• What is the limit of this perimeter as n tends to infinity?

In this paper, we present the answers to the above questions. In Section 2, we
present background information, including the solution to a related problem dealing
with three randomly chosen points on a unit circle. In particular, we detail the follow-
ing classical result:

Theorem 1: Suppose that three points are randomly chosen uniformly and indepen-
dently on the circumference of a unit circle. Then the expected area of the triangle

formed is
3

2π
and the expected perimeter of the triangle formed is

12

π
.

In Section 3, we give examples of finding expected area and perimeter in our situation
for certain small values of n.
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In Section 4, we present the main theorems and proofs. These are summarized in
the following result.

Theorem 2: Let P be a regular n-gon inscribed in a unit circle. If a set of three
vertices of P is chosen uniformly at random, then the expected area An of the triangle
formed is

An =
3n cot (π/n)

2(n − 1)(n − 2)
.

The expected perimeter Pn of the triangle formed is

Pn =
6(csc(π/n) + cot(π/n))

(n − 1)
.

Moreover, we have

lim
n→∞

An =
3

2π
and lim

n→∞
Pn =

12

π
,

which corresponds to the results given by Theorem 1.
In Section 5, we extend our main result to determine the expected area and perime-

ter of quadrilaterals, pentagons, and other polygons that are generated randomly by
choosing vertices of a regular n-gon. We give two equations that can be used to find
both the expected area and expected perimeter of an m-gon generated randomly from
the vertices of a regular n-gon.

2 Related Problem on a Circle

Our research was motivated by the classical problem dealing with a unit circle [2].
Let P , Q, and R be points chosen randomly, uniformly, and independently on the
circumference of a unit circle. Two questions naturally arise:

• What is the expected area of 4PQR?

• What is the expected perimeter of 4PQR?

The solution to the first question can be found online [2] and can be summarized
as follows:

Theorem 2.1 If three points are chosen randomly, uniformly, and independently on

the circumference of a circle with radius one, then the expected area of the triangle

inscribed in the circle is
3

2π
.

Proof. (following [2]) One of the points can be taken to be (1, 0) without loss of
generality. Let θ1 and θ2 be the polar angles of the other two points, as seen in Figure
1. Due to symmetry, we are able to assume without loss of generality that θ1 is in the
interval [0, π], while θ2 is allowed to take on any value in the interval [0, 2π).

The area of the triangle formed is given by

A = A(θ1, θ2) =

∣

∣

∣

∣

2 sin

(

1

2
θ1

)

sin

(

1

2
θ2

)

sin

(

1

2
(θ1 − θ2)

)∣

∣

∣

∣

.
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Figure 1: Circle with Inscribed Triangle (adapted from [2])

The expected area is given by

A =
1

2π2

∫ 2π

0

∫ π

0
A(θ1, θ2) dθ1 dθ2.

This integral can be evaluated to give
3

2π
. See [2] for details of the integration. �

A solution for the average perimeter can be found in a similar way.

Theorem 2.2 If three points are chosen randomly, uniformly, and independently on

the circumference of a unit circle, then the expected perimeter of the triangle inscribed

in the circle is
12

π
.

Proof. The same assumptions can be made as in the previous proof without loss of
generality. Let θ1 and θ2 be defined the same as in the previous proof. The lengths of
the sides, a, b, and c, of the inscribed triangle are

a = 2 sin
θ1

2
b = 2 sin

θ2

2
c = 2 sin

|θ2 − θ1|

2

where θ1 = [0, π] and θ2 = [0, 2π) (the absolute value is used for c because θ2 may be
less than θ1). Since the perimeter of the triangle is a + b + c, the integral for finding
expected perimeter is

P =
1

2π2

∫ π

0

∫ 2π

0
(a + b + c) dθ2 dθ1

=
1

2π2

∫ π

0

∫ 2π

0

(

2 sin
θ1

2
+ 2 sin

θ2

2
+ 2 sin

|θ2 − θ1|

2

)

dθ2dθ1

=
1

2π2

∫ π

0

[
∫ 2π

0
2 sin

θ1

2
dθ2 +

∫ 2π

0
2 sin

θ2

2
dθ2 +

∫ 2π

θ1

2 sin
(θ2 − θ1)

2
dθ2

+

∫ θ1

0
2 sin

(θ1 − θ2)

2
dθ2

]

dθ1

=
1

2π2

∫ π

0

[

4π sin
θ1

2
+ 8 − 4 cos

(

π −
θ1

2

)

+ 8 − 4 cos
θ1

2

]

dθ1

=
1

2π2

(

−8π cos
θ1

2
+ 16θ1 + 8 sin

(

π −
θ1

2

)

− 8 sin
θ1

2

)∣

∣

∣

∣

π

0

=
12

π
.
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3 Examples and General Formulas

In this section, we give examples relating to randomly choosing a subset consisting of
three vertices of a regular n-gon. We also show how the methods used in these specific
cases lead to the formula for general values of n that will be needed in the next section.

3.1 Area Examples

Given a regular n-gon R, we number the vertices 0, 1, . . . , n − 1. By 4(a, b, c), we
will mean the triangle inscribed in R whose vertices are numbered a, b, and c. We will
denote the area of 4(a, b, c) as A(a, b, c) and the perimeter of 4(a, b, c) as P (a, b, c).
We will assume for convenience that 0 ≤ a < b < c ≤ n − 1.

Figure 2: Pentagon

As an example, we calculate the area of 4(0, 1, 3) inside a regular pentagon inscribed
in a unit circle, as seen in Figure 2. To find the area of 4(0, 1, 3), we add up the areas
of the three triangles within the triangle, which gives us the equation

A(0, 1, 3) =
1

2

(

2 sin
θ1

2
cos

θ1

2
+ 2 sin

θ2

2
cos

θ2

2
+ 2 sin

2π − θ1 − θ2

2
cos

2π − θ1 − θ2

2

)

.

Then using the double angle identity we can simplify this equation to

A(0, 1, 3) =
1

2
(sin θ1 + sin θ2 + sin(2π − θ1 − θ2))

where θ1 =
2π

5
and θ2 =

4π

5
. Note that θ1 and θ2 are both multiples of the central

angle of pentagon which is equal to
2π

5
. So, the area of 4(0, 1, 3) can be written as

A(0, 1, 3) =
1

2

[

sin
2π

5
+ sin

(

2 ·
2π

5

)

+ sin

(

2 ·
2π

5

)]

.

This can also be written as

A(0, 1, 3) =
1

2

[

sin

(

(1 − 0) ·
2π

5

)

+ sin

(

(3 − 1) ·
2π

5

)

+ sin

(

(0 − 3 + 5) ·
2π

5

)]

.
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This analysis easily generalizes to yield a general equation for finding the area of
4(a, b, c) in any regular n-gon inscribed in a unit circle:

A(a, b, c) =
1

2

[

sin

(

(b − a)
2π

n

)

+ sin

(

(c − b)
2π

n

)

+ sin

(

(a − c + n)
2π

n

)]

.

We remark that, in Figure 2, 4(0, 1, 3) contains the center of the circle and therefore
its area is computed as the sum of the areas of three smaller triangles. If this is not
the case, the above formula for A(a, b, c) still applies. For example, when computing
the area of 4(0, 1, 2) inside the regular pentagon, one can still use the three triangles
determined by the center C of the circle and vertices 0, 1, and 2 of the pentagon.
However, in obtaining the area of 4(0, 1, 2), the area of the triangle determined by C
and vertices 0 and 2 must be subtracted off of the sum of the other two areas. The
formula given above does this automatically, since the appropriate sine function will
be negative in this case.

We now turn our attention to the n = 5 case of the first general question of interest.
In particular, if R is a regular pentagon inscribed in a unit circle, and a set three vertices
of R are chosen uniformly at random, then we compute the expected area of the triangle
formed. In order to do this, we need to find the areas of all possible triangles 4(a, b, c)
where 0 ≤ a < b < c ≤ 4. We then calculate (b − a), (c − b) and (a − c + n) for all
those triangles and apply the formula derived above. By adding the areas of all of
these triangles and dividing the result by the number of all such triangles, we will find
the expected area.

The table below gives all possible triangles in pentagon along with (b − a), (c − b)
and (a − c + n).

(a, b, c) (b − a) (c − b) (a − c + n)
(0,1,2) 1 1 3
(0,1,3) 1 2 2
(0,1,4) 1 3 1
(0,2,3) 2 1 2
(0,2,4) 2 2 1
(0,3,4) 3 1 1
(1,2,3) 1 1 3
(1,2,4) 1 2 2
(1,3,4) 2 1 2
(2,3,4) 1 1 3

Table 1: Triangles Generated from a Regular Pentagon

The expected area of a randomly generated triangle based on the vertices of a
regular pentagon inscribed in a unit circle is

A5 =
1

(

5
3

)

∑

0≤a<b<c≤4

A(a, b, c).
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By examining Table 1, we count fifteen 1’s, ten 2’s, and five 3’s that occur as either
(b − a), (c − b), or (a − c + n). By collecting all like terms and factoring out 1/2, the
equation for the expected area reduces to

A5 =
1

2(10)

(

15 sin
2π

5
+ 10 sin

2 × 2π

5
+ 5 sin

3 × 2π

5

)

.

We now turn our attention to carrying out the analogous computation when n = 6.
In other words, we are generating random triangles by choosing a set of three vertices
of a regular hexagon inscribed in a unit circle. Again, we list all such triangles in order
to collect like terms in the sum which gives the expected area of the triangle formed.

In this case, there are

(

6
3

)

= 20 possible triangles since n = 6.

(a, b, c) (b − a) (c − b) (a − c + n) (a, b, c) (b − a) (c − b) (a − c + n)
(0,1,2) 1 1 4 (1,2,3) 1 1 4
(0,1,3) 1 2 3 (1,2,4) 1 2 3
(0,1,4) 1 3 2 (1,2,5) 1 3 2
(0,1,5) 1 4 1 (1,3,4) 2 1 3
(0,2,3) 2 1 3 (1,3,5) 2 2 2
(0,2,4) 2 2 2 (1,4,5) 3 1 2
(0,2,5) 2 3 1 (2,3,4) 1 1 4
(0,3,4) 3 1 2 (2,3,5) 1 2 3
(0,3,5) 3 2 1 (2,4,5) 2 1 3
(0,4,5) 4 1 1 (3,4,5) 1 1 4

Table 2: Triangles Generated from a Regular Hexagon

In the above table, there are twenty-four 1’s, eighteen 2’s, twelve 3’s, and six 4’s
that occur as (b − a), (c − b), or (a − c + n). Similar to the case of the pentagon, we
can collect like terms in the sum

A6 =
1

(

6
3

)

∑

0≤a<b<c≤5

A(a, b, c)

to obtain the result

A6 =
1

2(20)

(

24 sin
2π

6
+ 18 sin

2 × 2π

6
+ 12 sin

3 × 2π

6
+ 6 sin

4 × 2π

6

)

.

The general equation for finding the expected area of a triangle formed by choosing
three vertices of a regular n-gon inscribed in a unit circle is given by

An =
1

2

(

n
3

)

∑

[

sin

(

(b − a)
2π

n

)

+ sin

(

(c − b)
2π

n

)

+ sin

(

(a − c + n)
2π

n

)]

,

where the sum is taken over all integers a, b, c such that 0 ≤ a < b < c ≤ (n−1). In the
next section, we will explore methods of simplifying this sum by collecting like terms
as above, and then applying trigonometric summation identities.
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3.2 Perimeter Examples

We now proceed to employ similar methods to compute the expected perimeter of
a triangle randomly generated from the vertices of a regular pentagon or hexagon
inscribed in a unit circle. As before, we use these results to indicate the proper form
for the corresponding expression involving a regular n-gon.

Let 4(a, b, c) be defined using vertices of a regular n-gon inscribed in the unit circle
as above. Using basic trigonometry, it follows that the perimeter of 4(a, b, c) is given
by

P (a, b, c) = 2
[

sin
(

(b − a)
π

n

)

+
(

sin(c − b)
π

n

)

+
(

sin(n + a − c)
π

n

)]

.

Let R be a regular pentagon inscribed in a unit circle. The expected perimeter of
a triangle chosen by randomly choosing a subset of three vertices of R is now given by

P5 =
1

(

5
3

)

∑

0≤a<b<c≤4

P (a, b, c).

Using Table 1 this can be simplified to give

P5 =
2

10

(

15 sin
π

5
+ 10 sin

2π

5
+ 5 sin

3π

5

)

.

Now let R be a regular hexagon inscribed in a unit circle. The expected perimeter
of a triangle chosen by randomly choosing a subset of three vertices of R is now given
by

P6 =
1

(

6
3

)

∑

0≤a<b<c≤5

P (a, b, c).

Using Table 2 this can be simplified to give

P6 =
2

20

(

24 sin
π

6
+ 18 sin

2π

6
+ 12 sin

3π

6
+ 6 sin

4π

6

)

.

The general equation for finding the expected perimeter of a triangle formed by
choosing three vertices of a regular n-gon inscribed in a unit circle is given by

Pn =
2

(

n
3

)

∑

[

sin
(

(b − a)
π

n

)

+ sin
(

(c − b)
π

n

)

+ sin
(

(a − c + n)
π

n

)]

,

where the sum is taken over all integers a, b, c such that 0 ≤ a < b < c ≤ (n − 1). We
will simplify this expression in the next section.

4 The Main Theorems

Theorem 4.1 Let R be a regular n-gon inscribed in a unit circle. If a subset consisting

of three distinct vertices of R is chosen uniformly at random, then the expected area of

the triangle formed is given by

An =
3n

2(n − 1)(n − 2)
cot

π

n
.
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Proof. From the preceding section, it follows that

An =
1

2

(

n
3

)

∑

[

sin

(

(b − a)
2π

n

)

+ sin

(

(c − b)
2π

n

)

+ sin

(

(a − c + n)
2π

n

)]

,

where the sum is taken over all integers a, b, c such that 0 ≤ a < b < c ≤ (n − 1).
For each k such that 0 ≤ k ≤ n − 2, let p(n, k) be defined to be the number of times

k occurs as (b − a),(c − b), or (a − c + n) in the above sum, so that

An =
1

2

(

n
3

)

n−2
∑

k=1

p(n, k) sin
2kπ

n
=

1

2

(

n
3

)

n−2
∑

k=0

p(n, k) sin
2kπ

n
.

In the last expression, we have added the k = 0 term to the sum for ease of computation
later. It makes no difference in the value of the sum, since sin(0) = 0.

Claim: p(n, k) = n(n − 1 − k) for all n ≥ 3 and 1 ≤ k ≤ (n − 2).

Proof of Claim:
1 Let n ≥ 3, and let k be an integer satisfying 1 ≤ k ≤ (n − 2).

We count the number of times that a difference of size k occurs due to a triple of the
form (0, b, c) (with 0 < b < c ≤ n − 1), where 0 is used in the subtraction (that is,
k = b−0 or k = 0− c+n). There are n−1−k triples of the form (0, k, c) and n−1−k
triples of the form (0, b, n − k), and therefore a difference of size k occurs in this way
2(n−1−k) times. By symmetry, for any j such that 1 ≤ j ≤ n−1, a difference of size
k occurs from a triple in a subtraction involving j exactly 2(n−1−k) times. There are
n choices for j (counting j = 0), and 2(n − 1 − k) differences of size k for each j. This
process counts each difference of size k exactly twice (once for each number involved
in the subtraction), and therefore, p(n, k) = n(n − 1 − k), as desired.

From the claim, it follows that

An =
1

2

(

n
3

)

n−2
∑

k=0

n(n − 1 − k) sin
2kπ

n
. (4-1)

Equation (4-1) implies that

An =
1

2

(

n
3

)

(

(n2 − n)
n−2
∑

k=0

sin
2kπ

n
− n

n−2
∑

k=0

k sin
2kπ

n

)

. (4-2)

Let f(x) =
n−2
∑

k=0

cos(kx) and g(x) =
n−2
∑

k=0

sin(kx). Euler’s Formula gives that

eikx = cos kx + i sin kx,

1We are thankful to the referee for providing this alternative to our original proof of the claim. This
proof is simpler and leads more naturally into the extensions given in Section 5.
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where i2 = −1. It follows from the partial sum formula for a geometric series that

n−2
∑

k=0

(f(x) + i g(x)) =
n−2
∑

k=0

eikx =
1 − ei(n−1)x

1 − eix

Simplifying this right hand side, and comparing real and imaginary parts yields the
trigonometric summation identities

f(x) =

n−2
∑

k=0

cos(kx) =
1 − cos(((n − 2) + 1)x) − cos(x) + cos((n − 2)x)

2 − 2 cos(x)
(4-3)

and

g(x) =

n−2
∑

k=0

sin(kx) =
sin(x) + sin((n − 2)x) − sin(((n − 2) + 1)x)

2 − 2 cos(x)
. (4-4)

Also, by differentiating, we obtain

f ′(x) = −

n−2
∑

0

k sin(kx) =
d

dx

[

1 − cos(((n − 2) + 1)x) − cos(x) + cos((n − 2)x)

2 − 2 cos(x)

]

.

(4-5)
Equation (4-2) implies that

An =
n

2

(

n
3

)

(

(n − 1)g(2π/n) + f ′(2π/n)
)

.

A tedious simplification using trigonometric identities now yields

An =
3n

2(n − 1)(n − 2)
cot

π

n
.

�

The question concerning perimeter can be answered by a similar process.

Theorem 4.2 Let R be a regular n-gon inscribed in a unit circle. If a subset con-

sisting of three distinct vertices of R is chosen uniformly at random, then the expected

perimeter of the triangle formed is given by

Pn ==
6(csc π

n + cot π
n)

(n − 1)
.

Proof. As this proof is nearly identical to the proof of Theorem 4.1, we provide only
a sketch. From the preceding section, we have

Pn =
2

(

n
3

)

∑

[

sin
(

(b − a)
π

n

)

+ sin
(

(c − b)
π

n

)

+ sin
(

(a − c + n)
π

n

)]

,

where the sum is taken over all integers a, b, c such that 0 ≤ a < b < c ≤ (n−1). Using
the Claim 1 from the proof of Theorem 4.1, we find that

Pn =
2

(

n
3

)

n−2
∑

k=0

n(n − 1 − k) sin
kπ

n

9



Then by using the Euler’s formula and the functions f(x) and g(x) as in the proof of
Theorem 4.1, we can simplify this expression to the closed form as desired. �

Now that we have derived closed form expressions for the expected area and perime-
ter, we can determine the limit as n tends to infinity and compare with the answers
for the problem on the unit circle from Section 2.

Theorem 4.3 Let An and Pn be as in Theorems 4.1 and 4.2. Then

lim
n→∞

An =
3

2π
and lim

n→∞
Pn =

12

π
.

Proof. We rearrange terms and apply Ĺ Hôpital’s rule.

lim
n→∞

An =
3

2
lim

n−>∞

n cot π
n

(n − 1)(n − 2)

=
3

2
lim

n−>∞

n

(n − 1)(n − 2)
·
cos π

n

sin π
n

·
π

n
·
n

π

=
3

2
lim

n−>∞

(

n2

(n − 1)(n − 2)

)(

cos π
n

π

)(

π

n sin π
n

)

=
3

2
· 1 ·

1

π
· 1 =

3

2π
.

lim
n→∞

Pn = lim
n−>∞

6(csc π
n + cot π

n)

n − 1

= lim
n−>∞

6

n − 1
·
1 + cos π

n

sin π
n

·
π

n
·
n

π

= lim
n−>∞

6

(

1 + cos π
n

π

)(

n

n − 1

)(

π

n sin π
n

)

= 6 ·
2

π
· 1 · 1 =

12

π

�

We find that the limits of An and Pn correspond precisely with the answers for the
problem on the circle found in Section 2.

5 Extensions

In this section, we study the effects of increasing the number of vertices chosen, thus
constructing randomly generated polygons based on the vertices of a regular polygon
inscribed in a unit circle. The analysis is very similar to the case of random triangles
detailed in the last section, and therefore, we will only sketch the main details here.
Further details and extensions are left to the interested reader.

We use An,m and Pn,m to represent the expected area and perimeter, respectively,
of an m-gon generated randomly by (uniformly) choosing a subset of size m of the
vertices of a regular n-gon inscribed in a unit circle.
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Theorem 5.1 Let R be a regular n-gon inscribed in a unit circle. Suppose that a

subset consisting of m vertices of R is chosen uniformly at random. Then the expected

area of the convex m-gon formed is given by

An,m =
1

2

(

n
m

)

∑

m
∑

j=1

sin

(

(aj+1 − aj)
2π

n

)

,

where the first sum is over all a1, . . . , am with 0 ≤ a1 < a2 < · · · < am ≤ (n − 1), and

am+1 = a1. The expected perimeter of this m-gon is

Pn,m =
2

(

n
m

)

∑

m
∑

j=1

sin
(

(aj+1 − aj)
π

n

)

.

.

The preceding result shows, for example, that if a set of 4 vertices of a regular n-gon
inscribed in a unit circle is chosen uniformly at random, then the expected area and
perimeter of the quadrilateral formed are given by

An,4 =
1

2

(

n
4

)

∑

(

sin(b − a)
2π

n
+ sin(c − b)

2π

n
+ sin(d − c)

2π

n
+ sin(a − d + n)

2π

n

)

,

and

Pn,4 =
2

(

n
4

)

∑

(

sin(b − a)
π

n
+ sin(c − b)

π

n
+ sin(d − c)

π

n
+ sin(a − d + n)

π

n

)

,

where the sum is taken over all integers a, b, c, d such that 0 ≤ a < b < c < d ≤ (n−1).
We can collect like terms in the summations in Theorem 5.1 to prove the following

result. As in the case of the triangle, the k = 0 term adds nothing to the sum since
sin(0) = 0; this term is included for ease of computation later.

Theorem 5.2 Let R be a regular n-gon inscribed in a unit circle. Suppose that a

subset consisting of m vertices of R is chosen uniformly at random. Then the expected

area of the convex m-gon formed is given by

An,m =
n

2

(

n
m

)

n−m+1
∑

k=0

(

n − k − 1
m − 2

)

sin
2kπ

n
.

The expected perimeter of this m-gon is given by

Pn,m =
2n

(

n
m

)

n−m+1
∑

k=0

(

n − k − 1
m − 2

)

sin
kπ

n
.
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Sketch of Proof: We do not include a full proof of this theorem, since it is essentially
the same as the proof of the Claim in the proof of Theorem 4.1. The main difference is

the appearance of the coefficient

(

n − k − 1
m − 2

)

. This occurs because, for each relevant

k, there are now

(

n − k − 1
m − 2

)

lists of integers of the form

0 < k < c3 < · · · < cm ≤ n − 1,

and

(

n − k − 1
m − 2

)

lists of integers of the form

0 < c2 < c3 < · · · < cm−1 < n − k ≤ n − 1. �

We now sketch the details of a method of simplifying the above summations to
closed form. Since the methods for An,m and Pn,m are nearly identical, we will focus
simply on An,m and leave the analogous results concerning Pn,m for the interested
reader.

From Euler’s formula and Theorem 5.2, we see that An,m = Im g(n,m), where

g(n,m) =
n

2

(

n
m

)

n−m+1
∑

k=0

(

n − k − 1
m − 2

)

αk, with α = e2πi/n.

We note that

(α − 1)g(n,m) =
n

2

(

n
m

)

[

n−m+1
∑

k=0

(

n − k − 1
m − 2

)

αk+1 −

n−m+1
∑

k=0

(

n − k − 1
m − 2

)

αk

]

=
n

2

(

n
m

)

[

n−m+2
∑

k=1

(

n − k
m − 2

)

αk −

n−m+1
∑

k=0

(

n − k − 1
m − 2

)

αk

]

=
n

2

(

n
m

)

[(

n−m+2
∑

k=0

((

n − k
m − 2

)

−

(

n − k − 1
m − 2

))

αk

)

−

(

n
m − 2

)

]

=
n

2

(

n
m

)

[(

n−m+2
∑

k=0

(

n − k − 1
m − 3

)

αk

)

−

(

n
m − 2

)

]

=
n

2

(

n
m

)

[

2

n

(

n
m − 1

)

g(n,m − 1) −

(

n
m − 2

)]

=
m

n − m + 1
g(n,m − 1) −

nm(m − 1)

2(n − m + 2)(n − m + 1)
.

This implies that

g(n,m) =
m

(α − 1)(n − m + 1)

(

g(n,m − 1) −
n(m − 1)

2(n − m + 2)

)

.
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Recall that α = e2πi/n = cos(2π/n) + i sin(2π/n). It follows that α−1 = ᾱ =
cos(2π/n) − i sin(2π/n). We can make the denominator of the expression for g(n,m)
real by multiplying numerator and denominator by (ᾱ − 1), resulting in

g(n,m) =
m(ᾱ − 1)

(n − m + 1)(2 − α − ᾱ)

(

g(n,m − 1) −
n(m − 1)

2(n − m + 2)

)

.

Substituting in for α and computing real and imaginary parts yields

g(n,m) =
−m

(

1 − cos 2π
n + i sin 2π

n

)

4(n − m + 1) sin2 π
n

(

g(n,m − 1) −
n(m − 1)

2(n − m + 2)

)

=
1

2
(1 + i cot

π

n
)

[

−m

n − m + 1

(

g(n,m − 1) −
n(m − 1)

2(n − m + 2)

)]

=
−m

2(n − m + 1)

(

1 + i cot
π

n

)

(

Re g(n,m − 1) + i Im g(n,m − 1) −
n(m − 1)

2(n − m + 2)

)

=
−m

2(n − m + 1)

[

Re g(n,m − 1) −
n(m − 1)

2(n − m + 2)
− Im g(n,m − 1) cot

π

n

+i

(

Im g(n,m − 1) + Re g(n,m − 1) cot
π

n
−

n(m − 1)

2(n − m + 2)
cot

π

n

)]

Recall that the An,m is equal to the imaginary part of g(n,m). Therefore,

An,m =
−m

2(n − m + 1)

(

Im g(n,m − 1) + Re g(n,m − 1) cot
π

n
−

n(m − 1)

2(n − m + 2)
cot

π

n

)

.

Write g(n,m) = am + ibm, and note that am and bm are both functions of n and
that An,m = bm. Let a2 = b2 = 0. The above computations imply the recurrence

am =
m

2(n − m + 1)

[

−am−1 + bm−1 cot
π

n
+

n(m − 1)

2(n − m + 2)

]

bm =
m

2(n − m + 1)

[

−am−1 cot
π

n
− bm−1 +

n(m − 1)

2(n − m + 2)
cot

π

n

]

In vector form, this recurrence becomes
(

am

bm

)

=
m

2(n − m + 1)

[(

−1 cot π
n

− cot π
n −1

)(

am−1

bm−1

)

+
n(m − 1)

2(n − m + 2)

(

1
cot π

n

)]

,

with initial condition
(

a2

b2

)

=

(

0
0

)

.

Using this recurrence, one can compute bm = An,m.
The vector recurrence can also be solved using diagonalization of the matrix M =

(

−1 cot π
n

− cot π
n −1

)

. The eigenvalues of M are i cot π
n − 1 and −i cot π

n − 1 and the

respective eigenvectors are

(

1
i

)

and

(

1
−i

)

. This can be used to show that

bm =
n

2

(

n
m

) Im
m−2
∑

j=1

(

n
m − 1 − j

)(

i cot π
n − 1

2

)j

.
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m bm

3
3n cot π

n

2(n − 1)(n − 2)

4
3n cot π

n

(n − 1)(n − 2)

5
5n cot π

n
(2n2 − 12n + 19 − 3 cot2 π

n
)

2(n − 1)(n − 2)(n − 3)(n − 4)

6
15n cot π

n
(n2 − 5n + 7 − 3 cot2 π

n
)

2(n − 1)(n − 2)(n − 3)(n − 4)

7
21n cot π

n
(2n4−30n3+160n2−10n2 cot2 π

n
+90n cot2 π

n
−360n−230 cot2 π

n
+303+15 cot4 π

n
)

4(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)

8
7n cot π

n
(2n4−28n3−15n2 cot2 π

n
+139n2+105n cot2 π

n
−287n−240 cot2 π

n
+219+45 cot4 π

n
)

(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)

Table 3: Expected Area An,m

We may simplify this further to yield

An,m =
n

2

(

n
m

)

bm−3

2
c

∑

l=0









m−2
∑

j=2l+1

(−1)j+l−1

(

n
m − 1 − j

)(

j
2l + 1

)

2j









(cot
π

n
)2l+1.

The above methods may be applied directly to compute Pn,m. This is left to the
reader. The interested reader may also like to pursue the generalization to the circle
problem from Section 2 for m > 3, and its relationship to the results given here.
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