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Linear Feedback Shift Registers in SAGE
Timothy Brian Brock

May 16, 2006

... random numbers should not be generated by a method chosen
at random.

- Donald Knuth, The Art of Computer Programming.

1 Introduction
Let F = Fq denote a �nite �eld having q elements. A general feedback shift
register is a map f : Fd → Fd of the form

f(x0, ..., xn−1) = (x1, x2, ..., xn),
xn = C(x0, ..., xn−1),

where C : Fd → F is a given function. When C is of the form

C(x0, ..., xn−1) = a0x0 + ... + an−1xn−1,

for some given constants ai ∈ F, the map is called a linear feedback shift
register (LFSR). It turns out such sequences are periodic.

The main focus of this paper will be to discuss Massey's algorithm [4] for
deciphering a stream cipher given by a linear feedback shift register. This al-
gorithm has been implemented (by the author) in the computer algebra system
SAGE [9] using Python (www.python.org)1.

Here, we shall work over any �nite �eld, instead of only dealing with the
binary case. However, this paper will begin by discussing some of the history of
LFSRs in applications.

1.1 Background on Linear Feedback Shift Registers
A (non-)linear feedback shift register can be easily implemented in hardware or
software and is used to create a pseudo-random sequence of numbers for many
di�erent applications. These applications include uses in consumer electronics,
such as cellphones and digital cable [7]; multiple access and polling techniques;
secure and privacy communications; error detecting and correcting codes; and

1SAGE is a free and open-source computer algebra system written primarily in Python.
Please see section 4 below for more details.
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cryptographic systems [1]. The fascinating notes of Körner [2] also mention cable
TV scrambling and the use of periodic sequences for modeling the behaviour of
the British and German WWII codes. (We refer to Sherman [8] for a rigorous
mathematical interpretation of the Enigma cipher machine.)

In consumer electronics, a Linear Feedback Shift Register can be used as
a counter [7]. When used in this manner, LFSRs are desirable because they
perform the function with less resources and usually much faster than the con-
ventional counters, such as binary counters or Gray Code counters. Though it
goes against intuition, LFSRs can also be used to generate pseudo-noise which is
used by such consumer electronics as cellphones and digital cable to increase the
reliability of the signal [7]. LFSRs can also be used in spread spectrum systems
[7]. A spread spectrum system utilizes the entire bandwidth a signal may use
to send information by spreading the data frequency over many frequencies in
the bandwidth. The next frequency to be utilized is determined by the LFSR
sequence. Other more common applications of a LFSR is the use in white noise
machines (such as the one shown below) and music synthesizers, where they are
used to make the electrically-produced music sound more natural.

White noise machine (photo: public domain)

Another application of LFSRs is the creation of pseudo-random sequences
that can be used in cryptography. The LFSR sequence is a pseudo-random
number sequence that can be applied to a message as a cipher, as explained in
Example 3 below. Throughout this paper, the cipher will be a sequence of binary
terms that is added to the binary message to provide the encoded message, also
known as the ciphertext. The cipher encodes the message so that only someone
with the key knows the proper way to decode the message and is then able
to read the message, anyone without the key receives the ciphertext and reads
only nonsense. The key is a piece of information that allows a user to determine
the speci�c cipher used in encrypting the message. In digital communication,
the enciphering of a message with a LFSR sequence is the same as adding in
pseudo-random noise. The proper recipient with a key removes the noise from
the message, but a third party without the key interprets the message only as
noise.
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1.2 How to Create a LFSR Sequence
A linear feedback shift register sequence is a pseudo-random sequence of num-
bers that is often created in a hardware implementation of a linear feedback
shift register. When a LFSR is implemented in hardware, a LFSR sequence is
recursively generated by taking the output from the last �stage� of a given LFSR
to compute the next �stage.� An example of a LFSR implemented in hardware
is included in Figure 1 (from Massey [4]). This LFSR is of length L, and each
state cell's current state is used as the input to the mod 2 adder. This adder
is implemented in hardware with an exclusive-or function. Since this is a shift
register, each iteration of the register causes the state of each state cell to shift
to the next cell (in this case, to the right). We use the output of the last state
cell to provide the next term of the sequence after each iteration.

This hardware LFSR can be modeled mathematically to generate a LFSR
sequence. In order to build this sequence, three pieces of information are needed.
They are the (1) key, the (2) initial �ll, and (3) an algorithm to obtain the next
term of the sequence. In the hardware implementation, the connections between
the state cells and the mod 2 adder determines how the outputs of the cells are
used as inputs to the mod 2 adder. In the same way, the key determines how
the previous terms of the LFSR sequence are used to compute the next term in
the sequence. The key may be represented as a vector c = [c1, c2, ..., cL], but is
more often de�ned by a polynomial, known as the connection polynomial

C(x) = 1 + c1 · x + c2 · x2 + ... + cL · xL. (1)

The coe�cients ci's can also be considered the key. In Figure 1, the coe�cients
describe which cells were used as inputs to the modulo 2 adder. The degree
of the polynomial also describes how many cells (or bits) are needed to create
the minimal linear feedback shift register that will generate the given LFSR
sequence.

According to Massey [4], the initial �ll is the list of initial values of the state
cells, s0, s1, s2, ..., sL−1 the initial contents of the L stages of Figure 1 above. In
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the binary case, the LFSR sequence is de�ned by the following recursion relation

sj =
L∑

i=1

ci · sj−i mod 2, (2)

for j ≥ L.

Example 1 If we are given the key as a vector c = [1, 0, 0, 1] and the initial
�ll as a vector s = [1, 1, 0, 1] in the �nite �eld GF (2), we can create the se-
quence 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, ... Note that the �rst four terms of
the sequence are the same as the terms given to us by the vector s (namely
s0 = 1, s1 = 1, s2 = 0, s3 = 1). The next term (s4) is found by using the
recursion function to give

s4 =
∑4

i=1 ci · s4−i = c1 · s3 + c2 · s2 + c3 · s1 + c4 · s0

= 1 · 1 + 0 · 0 + 0 · 1 + 1 · 1 = 0.

We know that L = 4 since the length of vectors c and s is 4. This sequence
satis�es Golomb's three randomness conditions given in �2.2. Fortunately, this
process can be easily automated and a function has been written for the computer
algebra system SAGE which will quickly generate terms of a LFSR sequence of
any length de�ned by the user. The inputs for this function are two vectors
representing the key and the initial �ll and an integer n > L representing the
desired number of terms in the output.

Example 2 More generally, let

f(x) = a0 + a1x + ... + anxn + ...,

g(x) = b0 + b1x + ... + bnxn + ...,

be given polynomials in F3[x] and let

h(x) =
f(x)
g(x)

= c0 + c1x + ... + cnxn + ... .

We can compute a recursion formula which allows us to rapidly compute the
coe�cients of h(x) (take f(x) = 1):

cn =
n∑

i=1

−bi

b0
cn−i.

The coe�cients of h(x) can, under certain conditions on f(x) and g(x), be
considered �random� from certain statistical points of view.

For instance, if we consider a case other than binary and if

f(x) = 1, g(x) = 2 · x4 + x + 1,

then
h(x) = 1 + 2 · x + x2 + 2 · x3 + 2 · x4 + x6 + x7 + x8 + ... .
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The coe�cients of h are

2, 1, 2, 2, 0, 1, 1, 1, 2, 2, 2, 2, 0, 2, 0,
2, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 2, 2, 1, 2, ... .

The sequence of 0, 1, 2's is periodic with period P = 34 − 1 = 80. However, this
sequence of period 80 can be �cracked� (i.e., a procedure to reproduce g(x)) by
knowing only 8 terms! This is the result of Massey's algorithm [4], which is
implemented in SAGE by the author, and described in detail below.

2 Linear Feedback Shift Registers in Cryptogra-
phy

A stream cipher is a sequence of binary digits called a cryptographic bit-
stream [6]. The stream cipher is then added to the message to create a ci-
phertext (encryption) and can be added to the ciphertext to obtain the original
message (decryption).

2.1 Four Tenets of Security
Imagine that Alice and Bob are sending messages back and forth to one another.
If the content of these messages was not very secret and Alice and Bob did not
care if anyone else read the message, they would not bother with any kind of
encryption. Then, if an evil eavesdropper, say Eve, intercepts the message she
can read it without any di�culty. If, on the other hand, Alice and Bob were
exchanging information they wanted to keep secret, they would need to employ
some kind of encryption system to encode their messages. Depending upon the
type of encryption they employ, Alice and Bob would receive a certain level of
security against the actions of third parties.

No matter what type of encryption Alice and Bob use, there will be several
objectives that Alice and Bob want the encryption method to achieve. Out of a
long list of objectives, there are four that form a framework upon which all the
others are built [5], [2]. The four security objectives that would apply to this
message include:

1. Secrecy : This objective ensures that the information is available only to
those people who are authorized to have it.

2. Integrity : This ensures that no third party can make unauthorized alter-
ations to the data.

3. Non-repudiation: This prevents the sender of information from denying
that they sent that information. This also allows the receiver to prove to
a third party that the information was sent by the sender [5].
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4. Authentication: Authentication is related to identi�cation. Two parties
that are communicating with each other need to be able to identify one an-
other and the receiver can be sure that the person sending the information
is who the receiver thinks it is.

Does the LFSR sequence, as an encryption method, meet the above four
security objectives? First, a binary LFSR sequence stream cipher achieves se-
crecy by adding the sequence to the binary representation of the message. The
LFSR sequence appears as noise added to the message, thus frustrating any-
one who intercepts the message. The problem with relying on LSFR sequences
for secrecy is that the minimal connection polynomial of the sequence is eas-
ily determined using the Berlekamp-Massey Algorithm, which is discussed in
�3.2. The minimal connection polynomial is the key necessary to generate the
LFSR sequence used as the stream cipher. With this key, the eavesdropper Eve
can easily add the sequence to the ciphertext to retrieve the original message.
One method Alice and Bob can use to have more secrecy in the stream cipher
is by picking LFSR sequences with extremely long periods (i.e. period length
p ≈ 1050). With long period lengths, Eve needs a longer amount of ciphertext
to �nd the minimal connection polynomial and she needs more terms of the
sequence to determine the correct polynomial.

LFSR sequences combined with some error-correcting codes can provide a
limited amount of integrity. However, on its own, a LFSR sequence provides
very little integrity. Likewise, on its own, a LFSR sequence provides very little
in terms of non-repudiation.

In order to provide for authentication, Alice and Bob could each create their
own stream cipher using a di�erent LFSR sequence. Alice would then send her
key and initial �ll to Bob and Bob would send his key and initial �ll to Alice.
Alice would then add together her sequence and Bob's sequence to obtain a
new sequence. She would use this sequence as the stream cipher and encode
her message to send to Bob. Bob would also add together the two sequences
to obtain the same stream cipher. This would allow Alice and Bob to verify
that they are talking with each other since they created their stream cipher by
adding their own individual sequences.

2.2 Pseudo-random Binary Sequences
Any binary sequence that has Golumb's three properties stated below is con-
sidered to be pseudo-random. One type of stream cipher that is used to create
ciphertexts is pseudo-random binary sequences. Linear feedback shift register
sequences are one type of pseudo-random binary sequence that are easily gen-
erated by linear feedback shift registers.

Ideally, a cryptographic bit-stream sequence would have in�nite length and
complete randomness. The reality of practical application and construction
techniques necessitates the use of only �nite sequences. Since �nite sequences
can never be truly random, there are certain properties singled out that are
associated with randomness. Golomb's properties are [1]:
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1. Balance: The number of 1's is approximately equal to the number of 0's.
(More generally, each symbol occurs with approximately equal frequency.)

2. Proportional runs: The runs of consecutive 1's or 0's frequently occur with
short runs more frequent than long runs. (More generally, runs of a given
symbol of a shorter length occur more frequently than those of a given
longer length.)

3. Low autocorrelation: The sequence possesses an auto-correlation func-
tion, which is peaked in the middle and tapering o� rapidly at the ends.

The auto-correlation function is a way to quantize how random a sequence is
and is de�ned by

AC(k) =
1
p

p∑

i=1

xi · xi+k

where p is the period of the sequence {xi} and the sum is taken as a real number
not as an element of the �nite �eld with 2 elements. When 0 < k < p, AC(k)
is close to zero (meaning there is very little correlation of the sequence with
itself) and AC(0) =

1
2
, since by the Balance property, 1/2 the elements of the

sequence are 0.
According to Golomb, linear feedback shift register sequences of maximal

period ful�ll the above three properties and are therefore pseudo-random. Linear
Feedback Shift Registers are also easy to use as stream ciphers since adding the
LFSR sequence to the message encodes it and adding the sequence again to the
ciphertext returns the original message.

Example 3 Next, a very simple example is provided to show how a message
might be encrpypted for secrecy and then decrypted by the authorized receiver so
that the information can be read. In order for Alice and Bob to send messages to
each other using computers, they must convert the english syntax of the message
into a binary form. For our purposes we will allow the following table de�ne
our alphabet.

SPACE = 0000 L = 1111
A = 0001 ! = 1000
B = 0010 # = 1001
E = 0011 ? = 1010
M = 0100 ; = 1011
R = 0101 , = 1100
T = 0110 . = 1101
Y = 0111 Q = 1110

Suppose Alice wanted to send the message M =�BEAT ARMY!� to Bob, but
she wanted to keep it secret. By converting �BEAT ARMY!� from english to
binary, we have a string of binary bits

M = 0010001100010110000000010101010001111000
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In order to generate a stream cipher that only Alice and Bob know, each person
will generate a pseudo-random sequence of su�cient length. Alice will send her
sequence to Bob and Bob will send his sequence to Alice. The two people will then
add their sequences together bit-wise to produce a common stream cipher. For
our purposes, suppose the resultant sequence from the two individual sequences
is

C = 1101011001000111101011001000111101011001

Alice now has a message in binary format and a cipher to encode the message.
Adding the cipher to the message, Alice gets the encrypted message or ciphertext,
E.

0010001100010110000000010101010001111000 M
+ 1101011001000111101011001000111101011001 = + C

1111010101010001101011011101101100100001 E

If a third party, Eve, were to intercept the ciphertext and tried to read it, knowing
that the computers used the above table to talk to one another, he would decrypt
the ciphertext as �LRRA?..;BA�. Notice that both `A's in the original message
where changed to two di�erent letters (`R' the �rst time and `.' the second time)
and that `E' and `A' both are changed to `R' and `T' and `!' are both changed to
`A'. This helps prevent a cryptanalyst from breaking the code by mapping each
character to something di�erent everytime. The mapping appears random since
the stream cipher used was a pseudo-random sequence.

When Bob receives the ciphertext, however, he is able to decrypt it since he
has the stream cipher that he and Alice created earlier. By adding the stream
cipher to the ciphertext, he will uncover the original message.

1111010101010001101011011101101100100001 E
+ 1101011001000111101011001000111101011001 = + C

0010001100010110000000010101010001111000 M

Now Bob can use the table to decode the message from binary into english and
receives �BEAT ARMY!� from Alice.

3 How to Find the Connection Polynomial
3.1 Recovering the Connection Polynomial from a LFSR

Sequence
In some cases, it is necessary to recover the connection polynomial of a LFSR
sequence from the sequence itself. This is true when attempting to do crypt-
analysis on a piece of intercepted code. When a part of the stream cipher is
intercepted, the connection polynomial can be recovered even if the number of
bits of the cipher is less than the period of the sequence. Once this polynomial is
known, the entire cipher can be generated and any messages that are encrypted
using that particular sequence as a stream cipher can be decrypted and read by
the third party.
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3.2 Massey's Algorithm
An algorithm exists that provides a connection polynomial given only a few
terms of a LFSR sequence. This algorithm is known as the Berlekamp-Massey
algorithm. One is able to determine the connection polynomial of a LFSR
sequence of period 15 with only 8 terms of the sequence. This can be generalized
since if we know that a sequence has a minimal connection polynomial with
degree ≤ L, then only 2 · L terms of the sequence need to be known in order
to determine the correct connection polynomial. We can determine L if we
know the period length of the sequence, since the period p = 2L − 1 [3]. This
is an extremely powerful tool for cryptanalysts trying to break stream ciphers
generated from LFSRs, since only a relatively small sample of a long period
sequence is needed to break the cipher. The algorithm as it is described by
James Massey is presented below [4]:

Input: a LFSR sequence of length n.
Output: a connection polynomial C(x) of the minimal LFSR.

1. Initialize the algorithm by setting C(x) = 1, B(x) = 1, m = 1, b = 1,
L = 0, and, N = 0.

2. If N = n, then terminate, otherwise calculate the discrepancy

d = sN +
L∑

i=1

ci · sN−i

3. If d = 0, then m = m + 1, go to step 6.

4. If d 6= 0 and 2 · L > N , then calculate C(x) = C(x) − d · b−1 · xm · B(x),
m = m + 1, go to step 6.

5. If d 6= 0 and 2 · L ≤ N , then set T (x) = C(x), calculate C(x) = C(x) −
d · b−1 · xm ·B(x), L = N + 1−L, B(x) = T (x),and set m = 1 and b = d,
go to step 6.

6. Calculate N = N + 1 and repeat steps 2 through 6.

This algorithm determines whether or not the current connection polynomial
C(x) can correctly produce the next term of the given sequence. If it can, the
discrepancy d = 0 and the algorithm leaves C(x) unchanged and iterates to
the next step. If C(x) does not provide the next term of the sequence, the
discrepancy d 6= 0 and a new C(x) is calculated as in steps 4 and 5 above. The
algorithm is complicated and mysterious enough to warrant a complete example,
showing all steps.

Example 4 The LFSR sequence used in this example: 110101100100011. We
take the algorithm all the way out to the termination when N = n. Though this
sequence is of length n = 15, we arrive at the correct connection polynomial C(x)
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after only 8 iterations of the algorithm. Iterations 9 through 15 return a dis-
crepancy d = 0 which causes the algorithm to return the connection polynomial
calculated in the previous iteration.

1. Step 1: C(x) = 1,B(x) = 1, m = 1, b = 1, L = 0, N = 0 6= 15 = n.

Step 2: Find the discrepancy

d = s0 +
0∑

i=1

ci · s0−i = s0 = 1

since d 6= 0, we compare 2 · L to N

2 · L = 2 · 0 = 0 ≤ 0 = N

go to step 5.

Step 5: Calculate C(x)
T (x) = C(x) = 1

C(x) = C(x)− d · b−1 · xm ·B(x) = 1− x
L = N + 1− L = 0 + 1− 0 = 1

B(x) = T (x) = 1
b = d = 1

m = 1

go to step 6.

Step 6: Increase N
N = N + 1 = 0 + 1 = 1

2. Step 1: C(x) = 1− x, B(x) = 1, m = 1, b = 1, L = 1, N = 1 6= 15 = n.

Step 2: Find the discrepancy

d = s1 +
1∑

i=1

ci · s1−i = s1 + c1 · s0 = 0

Step 3: Since d = 0, m = m + 1 = 1 + 1 = 2, and we skip to step 6.

Step 6: Increase N
N = N + 1 = 1 + 1 = 2

3. Step 1: C(x) = 1− x, B(x) = 1, m = 2, b = 1, L = 1, N = 2 6= 15 = n.

Step 2: Find the discrepancy
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d = s2 +
1∑

i=1

ci · s2−i = s2 + c1 · s1 = 1

since d 6= 0, we compare 2 · L and N

2 · L = 2 · 1 = 2 ≤ 2 = N

go to step 5.

Step 5: Calculate C(x)

T (x) = C(x) = 1− x
C(x) = C(x)− d · b−1 · xm ·B(x) = −x− x2

L = N + 1− L = 2 + 1− 1 = 2
B(x) = T (x) = 1− x

b = d = 1
m = 1

go to step 6.

Step 6: Increase N

N = N + 1 = 2 + 1 = 3

4. Step 1: C(x) = 1 − x − x2, B(x) = 1 − x, m = 1, b = 1, L = 2,
N = 3 6= 15 = n.

Step 2: Find the discrepancy

d = s3 +
2∑

i=1

ci · s3−i = s3 + c1 · s2 + c2 · s1 = 1 + 1 · 0 + 1 · 1 = 0

since d = 0, m = m + 1 = 1 + 1 = 2, and we skip to step 6.

Step 6: Increase N
N = N + 1 = 3 + 1 = 4

5. Step 1: C(x) = 1 − x − x2, B(x) = 1 − x, m = 2, b = 1, L = 2,
N = 4 6= 15 = n.

Step 2: Find the discrepancy

d = s4 +
2∑

i=1

ci · s4−1 = s4 + c1 · s3 + c2 · s2 = 0 + 1 · 1 + 1 · 0 = 1
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Step 3: Since d 6= 0, we compare 2 · L and N

2 · L = 2 · 2 = 4 ≤ 4 = N

go to step 5.

Step 5: Calculate C(x)

T (x) = C(x) = 1− x− x2

C(x) = C(x)− d · b−1 · xm ·B(x) = 1− x− x3

L = N + 1− L = 4 + 1− 2 = 3
B(x) = T (x) = 1− x− x2

b = d = 1
m = 1

go to step 6.

Step 6: Increase N
N = N + 1 = 4 + 1 = 5

6. Step 1: C(x) = 1 − x − x3, B(x) = 1 − x − x2, m = 1, b = 1, L = 3,
N = 5 66= 15 = n.

Step 2: Find the discrepancy

d = s5 +
3∑

i=1

ci ·s5−i = s5 +c1 ·s4 +c2 ·s3 +c3 ·s2 = 1+1 ·0+0 ·1+1 ·0 = 1

since d 6= 0 we compare 2 · L and N

2 · L = 2 · 3 = 6 > 5 = N

go to step 4.

Step 4: Calculate C(x)

C(x) = C(x)− d · b−1 · xm ·B(x) = 1 + x2

m = m + 1 = 1 + 1 = 2

go to step 6.

Step 6: Increase N
N = N + 1 = 5 + 1 = 6

7. Step 1: C(x) = 1 + x2, B(x) = 1 − x − x2,m = 2, b = 1, L = 3, N = 6 6=
15 = n.

Step 2: Find the discrepancy
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d = s6 +
3∑

i=1

ci ·s6−i = s6 +c1 ·s5 +c2 ·s4 +c3 ·s3 = 1+0 ·1+1 ·0+0 ·1 = 1

since d 6= 0 we compare 2 · L and N

2 · L = 2 · 3 = 6 ≤ 6 = N

go to step 5.

Step 5: Calculate C(x)

T (x) = C(x) = 1 + x2

C(x) = C(x)− d · b−1 · xm ·B(x) = 1 + x3 + x4

L = N + 1− L = 6 + 1− 3 = 4
B(x) = T (x) = 1 + x2

b = d = 1
m = 1

go to step 6.

Step 6: Increase N
N = N + 1 = 6 + 1 = 7

8. Step 1: C(x) = 1 + x3 + x4, B(x) = 1 + x2,m = 1, b = 1, L = 4, N = 7 6=
15 = n.

Step 2: Find the discrepancy

d = s7 +
4∑

i=1

ci · s7−i = s7 + c1 · s6 + c2 · s5 + c3 · s4 + c4 · s3 = 1

since d 6= 0 we compare 2 · L and N

2 · L = 2 · 4 = 6 > 7 = N

go to step 4.

Step 4: Calculate C(x)

C(x) = C(x)− d · b−1 · xm ·B(x) = 1− x + x4

m = m + 1 = 1 + 1 = 2

go to step 6.

Step 6: Increase N
N = N + 1 = 7 + 1 = 8
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9. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 2, b = 1, L = 4,
N = 8 6= 15 = n.

Step 2: Find the discrepancy

d = s8 +
4∑

i=1

ci · s8−i = s8 + c1 · s7 + c2 · s6 + c3 · s5 + c4 · s4 = 0

Step 3: Since d = 0, m = m + 1 = 2 + 1 = 3, and we skip to step 6.

Step 6: Increase N
N = N + 1 = 8 + 1 = 9

10. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 3, b = 1, L = 4,
N = 9 6= 15 = n.

Step 2: Find the discrepancy

d = s9 +
4∑

i=1

ci · s9−i = s9 + c1 · s8 + c2 · s7 + c3 · s6 + c4 · s5 = 0

Step 3: Since d = 0, m = m + 1 = 3 + 1 = 4, and we skip to step 6.

Step 6: Increase N
N = N + 1 = 9 + 1 = 10

11. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 4, b = 1, L = 4,
N = 10 6= 15 = n.

Step 2: Find the discrepancy

d = s10 +
4∑

i=1

ci · s10−i = s10 + c1 · s9 + c2 · s8 + c3 · s7 + c4 · s6 = 0

Step 3: since d = 0, m = m + 1 = 4 + 1 = 5, and we skip to step 6.

Step 6: Increase N
N = N + 1 = 10 + 1 = 11

12. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 5, b = 1, L = 4,
N = 11 6= 15 = n.

Step 2: Find the discrepancy

d = s11 +
4∑

i=1

ci · s11−i = s11 + c1 · s10 + c2 · s9 + c3 · s8 + c4 · s7 = 0
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Step 3: Since d = 0, m = m + 1 = 5 + 1 = 6, and we skip to step 6.

Step 6: Increase N
N = N + 1 = 11 + 1 = 12

13. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 6, b = 1, L = 4,
N = 12 6= 15 = n.

Step 2: Find the discrepancy

d = s12 +
4∑

i=1

ci · s12−i = s12 + c1 · s11 + c2 · s10 + c3 · s9 + c4 · s8 = 0

Step 3: Since d = 0, m = m + 1 = 6 + 1 = 7, and we skip to step 6.

Step 6: Increase N
N = N + 1 = 12 + 1 = 13

14. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 7, b = 1, L = 4,
N = 13 6= 15 = n.

Step 2: Find the discrepancy

d = s13 +
4∑

i=1

ci · s13−i = s13 + c1 · s12 + c2 · s11 + c3 · s10 + c4 · s9 = 0

Step 3: Since d = 0, m = m + 1 = 7 + 1 = 8, and we skip to step 6.

Step 6: Increase N
N = N + 1 = 13 + 1 = 14

15. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 8, b = 1, L = 4,
N = 14 6= 15 = n.

Step 2: Find the discrepancy

d = s14 +
4∑

i=1

ci · s14−i = s14 + c1 · s13 + c2 · s12 + c3 · s11 + c4 · s10 = 0

Step 3: Since d = 0, m = m + 1 = 8 + 1 = 9, and we skip to step 6.

Step 6: Increase N
N = N + 1 = 14 + 1 = 15

16. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 9, b = 1, L = 4,
N = 15 = n. terminate the algorithm
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At this point the algorithm outputs the last value of L and C(x) which are
L = 4 and C(x) = 1− x + x4 . The algorithm terminates since N = n. Figure
2 (from Massey [4]) depicts the minimal LFSR found in this example. Since
the coe�cients (c1, c2, c3, c4) of the connection polynomial C(x) = 1−x+x4are
(1, 0, 0, 1) we know that the inputs for the mod 2 adder are taken o� the �rst
and forth registers. Since L = 4, we know that the LFSR must have a minimum
of four registers. It should be noted that, since this example uses the binary case
of GF(2), −1 and +1 are the same modulo 2.

This determines the sequence, as desired.

4 SAGE
SAGE (Software for Algebra and Geometry Experimentation) is a computer
system by many contributors led by Professor William Stein of the University
of Washington. It is a free, open source program that can be used to help
research and teaching many di�erent types of mathematics, including: algebra,
geometry, and number theory. While conducting research for this paper, the
author utilized SAGE to explore cryptography and wrote three functions for a
crypto package that is now included in SAGE. For more information regarding
SAGE, the reader is invited to visit http://sage.scipy.org.

Example 5 Finally, we present the interested reader with the SAGE syntax
needed to compute the above connection polynomial in the above example using
SAGE [9]:

sage: F = GF(2)
sage: F
Finite Field of size 2
sage: o = F(0); l = F(1)
sage: key = [l,o,o,l]; fill = [l,l,o,l]; n = 20
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sage: s = lfsr_sequence(key,fill,n); s
[1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0]
sage: lfsr_connection_polynomial(s)
x^4 + x + 1

This implementation also works in the non-binary case. As shown below

sage: F = GF(3)
sage: F
Finite Field of size 3
sage: o = F(0); l = F(1); t = F(2);
sage: key = [l,o,o,t]; fill = [t,l,o,t]; n = 20
sage: s = lfsr_sequence(key,fill,n); s
[2, 1, 0, 2, 0, 1, 2, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 0, 1, 0]
sage: lfsr_connection_polynomial(s)
2*x^4 + x + 1

5 Open question
It is known that any periodic sequence can be modeled using a linear feedback
shift register sequence [10]; the linear complexity of the sequence is the length
of the key of the LFSR sequence that models it.

Open Question: What is the linear complexity of each of the Enigma ma-
chines?

This does not seem to be explicitly presented in the literature.
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