
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal 

Volume 7 
Issue 2 Article 6 

On Large Rational Solutions of Cubic Thue Equations: What Thue On Large Rational Solutions of Cubic Thue Equations: What Thue 

Did to Pell Did to Pell 

Jarrod Anthony Cunningham 
University of South Alabama, jarrod2001@yahoo.com 

Nancy Ho 
Mills College, nho@mills.edu 

Karen Lostritto 
Brow University, karen.lostritto@yale.edu 

Jon Anthony Middleton 
SUNY Buffalo, jonam@nsm.buffalo.edu 

Nikia Tenille Thomas 
Morgan State University, thomas_nikia@msn.com 

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj 

Recommended Citation Recommended Citation 
Cunningham, Jarrod Anthony; Ho, Nancy; Lostritto, Karen; Middleton, Jon Anthony; and Thomas, Nikia 
Tenille (2006) "On Large Rational Solutions of Cubic Thue Equations: What Thue Did to Pell," Rose-Hulman 
Undergraduate Mathematics Journal: Vol. 7 : Iss. 2 , Article 6. 
Available at: https://scholar.rose-hulman.edu/rhumj/vol7/iss2/6 

https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol7
https://scholar.rose-hulman.edu/rhumj/vol7/iss2
https://scholar.rose-hulman.edu/rhumj/vol7/iss2/6
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol7%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol7/iss2/6?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol7%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages


ON LARGE RATIONAL SOLUTIONS OF CUBIC THUE
EQUATIONS: WHAT THUE DID TO PELL

JARROD ANTHONY CUNNINGHAM, NANCY HO, KAREN LOSTRITTO, JON ANTHONY
MIDDLETON, AND NIKIA TENILLE THOMAS

Abstract. In 1659, John Pell and Johann Rahn wrote a text which explained
how to find all integer solutions to the quadratic equation u2 − d v2 = 1. In

1909, Axel Thue showed that the cubic equation u3 − d v3 = 1 has finitely

many integer solutions, so it remains to examine their rational solutions. We
explain how to find “large” rational solutions i.e., a sequence of rational points

(un, vn) which increase without bound as n increases without bound. Such
cubic equations are birationally equivalent to elliptic curves of the form y2 =

x3 −D. The rational points on an elliptic curve form an abelian group, so a

“large” rational point (u, v) maps to a rational point (x, y) of “approximate”
order 3. Following an idea of Zagier, we explain how to compute such rational

points using continued fractions of elliptic logarithms.

Introduction
The equation uN − d vN = 1 seems innocent enough: once we fix an exponent

N and a coefficient d, we can try and search for solutions u and v. For example,
u2−2 v2 = 1 has a solution u = 3 and v = 2; and u3−7 v3 = 1 has a solution u = 2
and v = 1. In the exposition that follows, we consider how to find some solutions
– whether integral or rational – and examine their properties.

We divide our discussion into two parts. The first concerns the quadratic equa-
tion u2 − d v2 = 1. We give an informal discussion of the history of the equation,
illuminate the relation with the theory of groups, and review known results on
properties of integer solutions through the use of continued fractions. The second
concerns the more general equation uN − d vN = 1. We explain why N = 3 is the
most interesting exponent, present the relation with elliptic curves, and investigate
properties of rational solutions through the use of elliptic integrals.

Part 1. John Pell and The Quadratic Equation u2 − d v2 = 1

Pell was a striking figure, remarkably handsome, with strong, excel-
lent posture, dark hair and eyes, and a good voice. His temperament
was sanguine and melancholic.
– Dictionary of National Biography

In 1657, French lawyer and amateur mathematician Pierre de Fermat became
interested in positive integer solutions u and v to the equation u2 − 61 v2 = 1.
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He posed a sadistic challenge to established mathematicians of the day, such as
the Englishmen William Brouncker and John Wallis, asking if they could find the
solutions he found – without telling them the answer, of course. You see, Fermat
had found the solution

(1) u = 1766319049 and v = 226153980

by using pen and paper alone! Brouncker and Wallis were intrigued. Over the next
year or so, they exchanged letters with Fermat to work out a systematic theory.
They eventually found that

Given a positive integer d that is not a square, one can always find
infinitely many positive integer solutions u and v to the equation
u2 − d v2 = 1.

Soon these methods intrigued other mathematicians as well. In 1659, fellow
Englishman John Pell wrote an algebra text with Swiss mathematician Johann
Rahn which outlined these methods. A more famous Swiss mathematician eventu-
ally learned about this book: Leonhard Euler became interested in these results in
1766, but unfortunately, Euler confused Pell with Brouncker – and to this day the
equation u2−d v2 = 1 is called “Pell’s equation” instead of “Brouncker’s equation”!
But the most rigorous treatment of the equation was given in 1771 by a colleague
of Euler’s, the Frenchman Joseph-Louis Lagrange. Eventually, Lagrange was be-
stowed many accolades – including being named to the French Legion of Honor
by none less than Napoleon Bonapart himself. It is perhaps fitting then to quote
Napoleon on the misnamed equation which is the focus of this paper:

Glory is fleeting, but obscurity is forever.
Poor Brouncker!

Rings and Norms and Groups, Oh My!

We will outline Lagrange’s methods, but to do so, we’ll use some modern lan-
guage. Formally, we have the identity

(2) u2 − d v2 =
(
u+ v

√
d
)(

u− v
√
d
)
.

Since we want to study integer solutions u and v to the equation u2 − d v2 = 1,
we’ll consider the following collection of irrational numbers:

(3) Z

[√
d
]

=
{
u+ v

√
d
∣∣ u, v ∈ Z} .

Elements in this set are called algebraic integers, as opposed to the rational integers,
Z. This definition makes sense for all integers d – not just those that are positive.
For example, when d = −1 this set forms what are called the Gaussian integers. A
rational integer u can be thought of as an algebraic integer: indeed, u = u+ 0

√
d.

For this reason, the rational integers −1, 0, and 1 are elements in Z
[√
d
]
. In general,

an algebraic integer a is a number that is a root of a polynomial equation, where
the coefficients are rational integers and the leading coefficient is 1:

(4) aN + αN−1 a
N−1 + · · ·+ α1 a+ α0 = 0, αi ∈ Z.

For instance, the algebraic integer a = u+ v
√
d is a root of the quadratic equation

a2 + α1 a+ α0 = 0, in terms of the rational integers α1 = −2u and α0 = u2 − d v2.
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It is well-known that the collection of all algebraic integers forms a ring, just like
the rational integers Z. For example, given any two algebraic integers a = u1+v1

√
d

and b = u2 + v2

√
d, we can add them and multiply them to get another algebraic

integer:

(5)
a+ b = (u1 + u2) + (v1 + v2)

√
d,

a · b = (u1 u2 + d v1 v2) + (u1 v2 + u2 v1)
√
d.

When d = −1, you’ll note the similarity with properties of the complex numbers.
We will not formally define a ring, since it does not add to the exposition at hand.

Since we are generalizing properties of the complex numbers to our set Z
[√
d
]
,

we make two more familiar definitions. For an algebraic integer a = u+v
√
d, define

its conjugate as the algebraic integer a = u − v
√
d; and its norm as the rational

integer

(6) N(a) = a · a =
(
u+ v

√
d
)(

u− v
√
d
)

= u2 − d v2.

It is easy to show (and we invite the reader to do so) that both the conjugate and
norm are multiplicative i.e. a · b = a · b and N(a · b) = N(a) · N(b). We should be
a bit careful here: the conjugate and norm are well-defined only when d is not a
square. We invite the reader to prove this fact by first considering some examples.
(For instance, consider a = 1 +

√
1 = 2 + 0

√
1. What is its conjugate? Norm?)

Now we are ready to consider Pell’s (Brouncker’s?) equation. Given an integer d
that is not a square, we want to consider integer solutions u and v to the equation
u2−d v2 = 1. This is equivalent to considering algebraic integers a = u+v

√
d with

norm N(a) = 1. For this reason, we consider the set

(7) G =
{
a ∈ Z

[√
d
] ∣∣∣ N(a) = 1

}
.

This set has the following properties:
• Closure: If both a, b ∈ G then a · b ∈ G.
• Identity : The element 1 ∈ G.
• Inverses: If a ∈ G then 1/a ∈ G.
• Associativity: For all a, b, c ∈ G we have a · (b · c) = (a · b) c.
• Commutativity: For all a, b ∈ G we have a · b = b · a.

A set with these properties forms an abelian group. We explain why these are true.
Closure follows because N(a · b) = N(a) · N(b) = 1 · 1 = 1, and the identity exists
because N(1) = 1. Associativity and commutativity hold because they hold for all
complex numbers. Showing the existence of inverses is a bit tricky. Since a ∈ G,
we know that a · a = N(a) = 1, so upon dividing both sides by a we have 1/a = a.
It suffices to check that a is an algebraic integer of norm 1 – which we leave as an
exercise.

The One to Rule Them All
Why did we make these definitions? Note that if we are given just one solution

to Pell’s equation, we can find other solutions by “raising it to an arbitrary integral
power.” That is, say u1 and v1 is a solution to u2−d v2 = 1, and let a = u1 +v1

√
d.

Since N(a) = 1 then N(an) = 1 as well for any integer n, so denote un + vn
√
d =(

u1 + v1

√
d
)n

. Then un and vn is also a solution to u2 − d v2 = 1! Let’s consider
an example, say with d = 2. By inspection, it is easy to see that u1 = 3 and
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v1 = 2 is a solution to u2−2 v2 = 1. In particular, the norm of an algebraic integer
a = u+ v

√
2 is N(a) = u2 − 2 v2, and so the element a = 3 + 2

√
2 has norm 1. We

can then raise this a to any power in order to obtain other elements with norm 1.
For instance,

(
3 + 2

√
2
)2

= 17 + 12
√

2, and it is easy to check that u2 = 17 and
v2 = 12 satisfies u2 − 2 v2 = 1. We can find other solutions by considering a3, a4,
and so on. Perhaps we can use this to show there are infinitely many solutions?

Before we get ahead of ourselves, let’s focus on three questions:
#1: The integers u = ±1 and v = 0 are trivial integer solutions to u2−d v2 = 1.

Does there even exist one nontrivial solution i.e., nontrivial algebraic integer
δ = u1 + v1

√
d of norm 1?

#2: Can we find a nontrivial solution δ so that all solutions a = un + vn
√
d are

in the form a = ±δn?
#3: Are there infinitely many positive integer solutions u and v to u2−d v2 = 1?

We’ll focus on Question #1 a bit later, but assuming it is affirmative for the mo-
ment, we answer Question #2 with the following statement:

Fix a positive integer d that is not a square, and assume that the
equation u2 − d v2 = 1 has a nontrivial solution. Then there exists
a unique δ ∈ G such that

i. δ > 1, and
ii. for each element a ∈ G there exists an integer n such that

a = ±δn.
We give the proof stated in LeVeque [3]. Let a = u + v

√
d ∈ G be an algebraic

integer. Consider the following identities:

(8)
a = u+ v

√
d,

1/a = u− v
√
d,

and
−a = −u− v

√
d,

−1/a = −u+ v
√
d.

Since each of these is an algebraic integer of norm 1, each is an element of G. It
follows that we may assume u and v are nonnegative integers, so that a ≥ 1. If
a = 1 then a = δ0, so assume a > 1. There exists at least one such algebraic
integer a = u + v

√
d because we’re assuming that there is a nontrivial solution to

u2−d v2 = 1. Let δ ∈ G be the smallest element such that δ = u1 +v1

√
d > 1; such

an element exists because the set
{
v ∈ Z

∣∣ v > 0 and u =
√
d v2 + 1 ∈ Z

}
has a least

element v1 by the Well Ordering Principle. Then 1 < δ ≤ a, so choose the positive
integer n = blog a/ log δc in terms of the floor function. Then δn ≤ a < δn+1, and
so 1 ≤ (a/δn) < δ. By the minimality of δ, we must have a/δn = 1.

The element δ above is called the Fundamental Solution. Now that Question
#2 is answered, we can answer Question #3. We’ll use the Fundamental Solution
to list infinitely many positive integer solutions! Write δ = u1 + v1

√
d > 1 as the

Fundamental Solution, and consider the sequence of algebraic integers un+vn
√
d =(

u1 + v1

√
d
)n

for n = 0, 1, 2, . . . . By taking the conjugate of both sides, we have

(9)
un + vn

√
d = δn,

un − vn
√
d = δ−n;

so adding and subtracting gives
un =

δn + δ−n

2
,

vn =
δn − δ−n

2
√
d

.

This may look strange, but un and vn are still positive integers. Since δ > 1 yet
δ−1 < 1 we see that both un and vn increase without bound as n increases without
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bound. Hence there are infinitely many positive integer solutions u and v to the
equation u2 − d v2 = 1. In fact, the ratios un/vn give great approximations to

√
d

because

(10)
un
vn

=
√
d
δ2n + 1
δ2n − 1

→
√
d as n→∞.

We mention in passing that the statements above may be expressed using the
theory of groups: {±1} ' Z2 is a cyclic group of order 2, and 〈δn | n ∈ Z〉 ' Z is
a cyclic group of infinite order, so the statement a = ±δn means

(11) G =
{
a ∈ Z

[√
d
] ∣∣∣ N(a) = 1

}
' Z2 × Z when d > 0 is not a square.

We’ll explain a bit later why this holds for positive integers d, and not for negative.

Making Sense of Irrational Behavior

Fix a positive integer d that is not a square. We’ve seen that if a nontrivial
integer solution u1 and v1 exists for the equation u2 − d v2 = 1, then we can
generate infinitely many integer solutions u and v to u2−d v2 = 1 from the relation

(12) u+ v
√
d = ±

(
u1 + v1

√
d
)n

for any integer n.

Conversely, if u1 and v1 are small enough (i.e, δ = u1 + v1

√
d is the Fundamental

Solution) then every integer solution arises this way. So when does a nontrivial
integer solution exist? We come back to Lagrange. Here is his remarkable result:

Given a positive integer d that is not a square, one can always
find at least one positive integer solution u and v to the equation
u2 − d v2 = 1.

The proof of this statement relies on properties of continued fractions. Before we
outline the proof, we remark that this statement is false when d is a negative
integer. Indeed, when d = −1, we invite the reader to compute all integer solutions
to u2 + v2 = 1. Is it possible to find positive integers u and v?

Continued fractions are a way to approximate an irrational number by a sequence
of rational numbers. Given a positive integer d that is not a square, the irrational
number of interest is

√
d. Given any irrational number x, define the sequence of

irrational numbers recursively by

(13) x0 = x, xk+1 =
1

xk − bxkc
for k = 0, 1, 2, . . .

in terms of the floor function. The continued fraction of x is the infinite nested
fraction

(14) a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

where ak = bxkc is an integer.

We really only want to deal with finitely many terms, so for each positive integer
n denote the nth convergent as that quantity obtained by including just the first n
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terms of the continued fraction:

(15) {a0; a1, a2, . . . , an−1} = a0 +
1

a1 +
1

a2 +
1

· · ·+
1

an−1

.

(Warning : this is not the standard convention for the nth convergent!) This is
some rational number which we denote in lowest terms by

(16) {a0; a1, a2, . . . , an−1} =
un
vn
.

We give an example. Consider d = 2 i.e., we compute the continued fraction of√
2 = 1.4142135 . . . . The table below on the left lists the irrational numbers xk and

their integer parts ak, whereas the table below on the right lists the convergents:

k xk ak

0 1.4142135 1
1 2.4142135 2
2 2.4142135 2
3 2.4142135 2
4 2.4142135 2

n {a0; a1, . . . , an−1} un vn

1 {1} 1 1
2 {1; 2} 3 2
3 {1; 2, 2} 7 5
4 {1; 2; 2; 2} 17 12
5 {1; 2; 2; 2; 2} 41 29

As for the table on the left, note that eventually the ak’s repeat, and do so forever.
It’s easy to see why: Upon rationalizing the denominator

(17)
1

1 +
√

2
=
√

2− 1 we find that
√

2 = 1 +
1

1 +
√

2
.

Now we can substitute
√

2 iteratively in the denominator:

(18)
√

2 = 1 +
1

2 +
1

1 +
√

2

= 1 +
1

2 +
1

2 +
1

2 + · · ·

= {1; 2, 2, 2, . . . } .

As for the table on the right, did you notice the pattern u2
n − 2 v2

n = (−1)n?
Lagrange proved two remarkable facts about the continued fraction of

√
d and

the relationship with solutions to Pell’s equation:
Fix a positive integer d which is not a square.

i. The continued fraction of
√
d is in the form

(19)
√
d = {a0; a1, a2, . . . , ah−1, 2 a0}

where the bar means the sequence of h terms repeats indefi-
nitely.

ii. Write the hth convergent of the continued fraction above as the
rational number

(20) {a0; a1, a2, . . . , ah−1} =
uh
vh
.

Then uh and vh are positive integers which satisfy the relation
u2
h − d v2

h = (−1)h.
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Instead of giving a proof, we explain how to use this to find the Fundamental
Solution δ. The process when h is even is slightly different than when h is odd.
In the former case we have u2

h − d v2
h = 1, whereas in the latter case h is odd we

have u2
h − d v2

h = −1. Hence, whenever h is the smallest period, the Fundamental
Solution is

(21) δ =

uh + vh
√
d if h is even,

u2h + v2h

√
d =

(
uh + vh

√
d
)2

if h is odd.

Let’s use this to work through a couple of examples. First consider d = 2; we
want to recover our solution u = 3 and v = 2 to the equation u2 − 2 v2 = 1. The
continued fraction of interest is

√
2 = {1; 2}, so h = 1. The first convergent gives

u1 = 1 and v1 = 1, which satisfies u2
1 − 2 v2

1 = −1. The second convergent gives
u2 = 3 and v2 = 2, which satisfies u2

2 − 2 v2
2 = 1. Hence δ = 3 + 2

√
2 =

(
1 +
√

2
)2

is the Fundamental Solution in this case. Now consider d = 61; we want to recover
Fermat’s nontrivial solution to the equation u2− 61 v2 = 1. The continued fraction
of interest is

(22)
√

61 =
{

7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14
}
.

where here h = 11 is odd. We have the convergent

(23)
u11

v11
= {7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1} =

29718
3805

.

This satisfies u2
11 − 61 v2

11 = −1, which is the wrong sign. On the other hand,

(24)
u22

v22
= {7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1} =

1766319049
226153980

.

Hence the fundamental solution for u2 − 61 v2 = 1 is

(25) δ = 1766319049 + 226153980
√

61 =
(

29718 + 3805
√

61
)2

.

In other words, a positive integer solution u and v to the equation u2 − 61 v2 = 1
is

(26) u = 1766319049 and v = 226153980.

Remarkably, this is Fermat’s original solution!

Part 2. Axel Thue and the Cubic Equation u3 − d v3 = 1

The further removed from usefulness or practical application,
the more important.
– Axel Thue.

With the publication of Joseph-Louis Lagrange’s results in 1771, we know that
the equation u2 − d v2 = 1 has infinitely many integer solutions u and v for each
positive integer d that is not a square. Can we generalize this? For instance, why
consider just integer solutions? Why not consider rational solutions? And what’s
special about the exponent 2? Why not consider the equation uN − d vN = 1?

Let’s Think Rationally About This!
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Let’s try and tackle the most general case – but looking for integer solutions.
Consider a homogeneous polynomial of degree N with integer coefficients:

(27) f(u, v) = αN u
N + αN−1 u

N−1 v + · · ·+ α0 v
N , αi ∈ Z.

We consider only irreducible polynomials i.e., we cannot factor f(u, v) = g(u, v) ·
h(u, v) into homogeneous polynomials g and h of smaller degree with integer co-
efficients. In particular, we assume that not all of the integers αi have a common
divisor. For example, Pell’s equation is related to the polynomial f(u, v) = u2−d v2

for integers d. This polynomial is irreducible precisely when d is not a square.
For each nonzero integer m, what can we say about the number of integer so-

lutions u and v to an equation f(u, v) = m? In 1909, Norwegian mathematician
Axel Thue proved a remarkable result:

Fix an irreducible homogeneous polynomial of degree N with integer
coefficients. For each nonzero integer m, consider the equation

αN u
N + αN−1 u

N−1 v + · · ·+ α0 v
N = m.

If N = 1 there are infinitely many integer solutions u and v. If
N ≥ 3 there are only finitely many integer solutions u and v.

The interested reader should consult Silverman and Tate [7] for a proof.
As an example of Thue’s result, consider N = 3. As a special case of the

above theorem, it follows that, given an integer d that is not a cube, the equation
u3− d v3 = 1 has only finitely many integer solutions u and v. This is by no means
obvious.

The case N = 1 is actually a well-known result. Here we have the linear equation
a u + b v = m, where a, b, and m are relatively prime integers. One proves in
an introductory course in Abstract Algebra (or even Number Theory) that this
equation has infinitely many integer solutions u and v. Indeed, if u0 and v0 is one
integer solution, then other solutions are given by

u = u0 + b n

v = v0 − an
for any integer n.

One can find the initial solution u0 and v0 through the Euclidean algorithm. It
turns out that every integer solution u and v is in the form above for some integer
n. (We leave this an exercise for the reader; here is one approach. Start by showing
the relation a (u− u0) = b (v0 − v), and observe that a and b are relatively prime.
Conclude that u− u0 is a multiple of b, and that v0 − v is a multiple of a.)

Why is N = 2 missing from the theorem? Let’s revisit the equation u2−d v2 = 1
once more. When d > 0 is not a square, there are infinitely many integer solutions,
but when d < 0 there are only finitely many integer solutions. Unfortunately,
equations with exponent N = 2 don’t have a simple classification of their integer
solutions; you can’t determine the number of solutions based on the degree alone.

We have a satisfactory answer for the number of integer solutions to f(u, v) = m,
but what about rational solutions? If an integer solution exists, then it is by
definition a rational solution. Unfortunately, the converse is not true: just because
a rational solution exists, that’s not enough to say an integer solution does as well.
For instance, consider solutions to 2u = 3. For each nonzero integer m, what can
we say about the number of rational solutions u and v to an equation f(u, v) = m?

Surprisingly, not much was known until 1983. That year, a 29 year-old German
mathematician named Gerd Faltings proved a series of results in a branch known
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as Algebraic Geometry, verifying a long-standing conjecture of L. J. Mordell. One
consequence of his work is the following result:

Fix an irreducible homogeneous polynomial of degree N with integer
coefficients. For each nonzero integer m, consider the equation

αN u
N + αN−1 u

N−1 v + · · ·+ α0 v
N = m.

If N = 1 there are infinitely many rational solutions u and v. If
N ≥ 4 there are only finitely many rational solutions u and v.

For this result (which was not even the main result of his work), Faltings won the
Fields Medal in 1986, the most prestigious award to be given to a mathematician.
In fact, he was – and still is! – the only German to ever win the prize.

The above result suggests that equations with exponent N = 2 or 3 don’t have
a simple classification of their rational solutions. Indeed, we’ll show that this is the
case. Let’s focus on N = 2 for the moment. We’ll show the following:

Given an integer d which is not a square, the equation u2−d v2 = 1
has infinitely many rational solutions u and v.

Surprisingly, this result holds for d positive or negative – regardless of the number of
integer solutions! For example, when d = −1, there are only finitely many integers
u and v such that u2 + v2 = 1, but there are infinitely many rational points (u, v)
on the unit circle. To explain why this result is true in general, we first parametrize
all rational solutions u and v. We know that u = ±1 and v = 0 are solutions, so
consider now only the nontrivial rational solutions. Denote x = d v/(u−1). Solving
for v and then substituting this into the equation u2 − d v2 = 1 gives

(28) u =
x2 + d

x2 − d
and v =

2x
x2 − d

.

Conversely, making these choices for u and v for any rational number x gives
rational solutions to u2 − d v2 = 1. Since there are infinitely many choices for x,
there are infinitely many solutions.

What about N = 3? What can we say about the number of rational solutions u
and v to the equation a u3 + b u2 v + c u v2 + d v3 = m?

Three is A Magic Number

The following table recaps what we know about the solutions u and v to the
equation f(u, v) = m:

N Number of Integer Solutions Number of Rational Solutions
1 Infinitely Many Infinitely Many
2 ? ?
3 Finitely Many ?
≥ 4 Finitely Many Finitely Many

We’ve spent the first half of this exposition discussing the integer solutions of qua-
dratic equations, so we spend this half discussing the rational solutions of cubic
equations.

Fortunately for us, rational points on cubic equations such as

(29) a u3 + b u2 v + c u v2 + d v3 = m
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have a long and rich history. In order to simplify our exposition, we’ll make the
following two assumptions:

• Nonsingularity: The cubic equation above involves the cubic polynomial
f(u, 1) = a u3 + b u2 + c u+ d, so we assume that its discriminant

(30) Disc(f) = b2 c2 − 4 a c3 − 4 b3 d+ 18 a b c d− 27 a2 d2

is nonzero. We do not assume f(u, v) = a u3 + b u2 v + c u v2 + d v3 is
irreducible.
• Normal Form: We assume there is a rational point of inflection on the

curve. That means there are rational numbers u0 and v0 such that the
Hessian matrix of the cubic polynomial a u3+b u2 v+c u v2+d v3 is singular.
Rather explicitly, there is a rational solution u0 and v0 to the system of
equations

(31)
a u3

0 + b u2
0 v0 + c u0 v

2
0 + d v3

0 = m(
b2 − 3 a c

)
u2

0 + (b c− 9 a d)u0 v0 +
(
c2 − 3 b d

)
v2

0 = 0

Given such a solution, let w0 be a nonzero rational number such that
v0 w0 =

(
b2 − 3 a c

)
. Since the quadratic equation has a rational root, the

quantity
√
−3 Disc(f) will be an integer. (We leave this as an exercise.)

These criteria are not as harsh as one might imagine. As a generalization of the
quadratic equation u2 − d v2 = 1, consider the cubic equation u3 − d v3 = 1. The
discriminant is −27 d2, and so it is nonzero whenever d is nonzero – a criterion that
is certainly satisfied if d is not a cube. The rational point (u0, v0) = (1, 0) is a
rational point of inflection because u0 = 1 and v0 = 0 is a rational solution for the
set of equations u3

0 − d v3
0 = 1 and 9 d u0 v0 = 0.

Why make these assumptions in the first place? There is a method to the
madness! We make these assumptions for the following result:

Fix integers a, b, c and d such that Disc(f) 6= 0. For each nonzero
integer m, consider the cubic curve

(32) C : a u3 + b u2 v + c u v2 + d v3 = m.

Assume the existence of rational numbers u0, v0, and w0 as above.
If (u, v) is a rational point on C, then via the substitution

(33)
x = 4m

v0 (u− u0)− u0 (v − v0)
(3 a u0 + b v0) (u− u0) + (b u0 + c v0) (v − v0)

w0

y = 4m
(3 a u0 + b v0) (u+ u0) + (b u0 + c v0) (v + v0)
(3 a u0 + b v0) (u− u0) + (b u0 + c v0) (v − v0)

√
−3 Disc(f)

the point (x, y) is a rational point on the cubic curve

(34) E : y2 = x3 −D where D = −16m2 Disc(f).

Conversely, we can recover (u, v) via the substitution

(35)

u = u0
y + 4m

√
−3 Disc(f)

y − 4m
√
−3 Disc(f)

+
b u0 + c v0

w0

2
√
−3 Disc(f) x

y − 4m
√
−3 Disc(f)

v = v0
y + 4m

√
−3 Disc(f)

y − 4m
√
−3 Disc(f)

− 3 a u0 + b v0

w0

2
√
−3 Disc(f) x

y − 4m
√
−3 Disc(f)
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Moreover, this transformation sends the point of inflection (u0, v0)
on C to a point “at infinity” on E.

Plain and simple, this result states that the study of rational points on the cubic
a u3 + b u2 v + c u v2 + d v3 = m may be reduced to the study of rational points on
y2 = x3 −D. We remark that similar formulas can be found in Mordell [4].

Here is a specific example. Consider a curve u3 − d v3 = 1 such that Disc(f) =
−27 d2 is nonzero. The substitutions

(36)
x = 12 d

v

u− 1

y = 36 d
u+ 1
u− 1

←→
u =

y + 36 d
y − 36 d

v =
6x

y − 36 d

give a one-to-one correspondence with rational points (u, v) on C : u3 − d v3 = 1
and rational points (x, y) on E : y2 = x3 − 432 d2.

I Sing the Curve Elliptic

Let’s spend some time discussing the equation y2 = x3−D where D is a nonzero
integer. In general, cubic equations in the form

(37) E : y2 = x3 +Ax+B

for integers A and B with 4A3 +27B2 6= 0, are called elliptic curves. Maybe you’ve
heard of them. So what makes these curves so interesting? Well, the set of rational
points forms an abelian group.

The group law describes a way of combining two rational points P and Q to yield
a third rational point P ⊕ Q also on the curve. Here’s how: Given two rational
points, we draw the line through them, then mark where it intersects the cubic
curve. Call this third rational point P ∗Q. Reflecting this point through the x-axis
will yield another rational point, which we denote as P ⊕ Q. The order in which
we draw the line is unimportant, so P ⊕ Q = Q ⊕ P . The identity element is the
“point at infinity” mentioned above; we denote it by O. The inverse [−1]P of a
rational point P is its reflection through the x-axis i.e., [−1]P = P ∗ O. Adding a
point to its inverse will yield the identity O because the line through the two points
will be vertical.

For explicit formulas, express the line through two rational points P = (x1, y1)
and Q = (x2, y2) as y = λx+ ν. If P 6= Q we may choose λ = (y2 − y1)/(x2 − x1);
otherwise we take the slope of the line tangent at P . (The criteria 4A3 +27B2 6= 0
guarantees that the slope always exists.) We have

(38) (x1, y1)⊕ (x2, y2) =
(
λ2 − x1 − x2,

3λ (x1 + x2)− y1 − y2

2
− λ3

)
.



12 J. CUNNINGHAM, N. HO, K. LOSTRITTO, J. MIDDLETON, AND N. THOMAS

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

-10

-5

5

10

P
Q

P*Q

P+Q

Group Law on an Elliptic Curve

The group law isn’t really specific to the rational numbers Q. In fact, we can
consider points P = (x, y) with coordinates x and y which are real numbers or even
complex numbers. Hence, if we set K = Q, R, or even C, the set of K-rational
points as enlarged by the “point at infinity”

(39) E(K) =
{

(x, y) ∈ K ×K
∣∣∣∣ y2 = x3 +Ax+B

}
∪ {O}

has the following properties:

• Closure: If both P, Q ∈ E(K) then P ⊕Q ∈ E(K).
• Identity: The element O ∈ E(K).
• Inverses: If P ∈ E(K) then [−1]P ∈ E(K).
• Associativity: For all P, Q, R ∈ E(K) we have P⊕(Q⊕R) = (P ⊕Q)⊕R.
• Commutativity: For all P, Q ∈ E(K) we have P ⊕Q = Q⊕ P .

The only property we haven’t explained is associativity. Did you wonder why we
chose P ⊕Q = (P ∗Q) ∗ O instead of P ∗Q? This is because of the five properties
above, only associativity doesn’t hold for ∗. This means E(K) is an abelian group.

We’ll study E(R) and E(C) later, but for now, let’s consider the structure of
this abelian group E(Q) in more detail. Given a positive integer m, denote [m]P =
P ⊕ P ⊕ · · · ⊕ P as the point P added to itself m times. Rather explicitly,

(40)

[−1](x, y) = (x,−y)

[2](x, y) =
(
x4 − 2Ax2 − 8B x+A2

ψ2
2 ,

x6 + 5Ax4 + · · ·
ψ2

3

)
[3](x, y) =

(
x9 − 12Ax7 + · · ·

ψ3
2 , y

x12 + 22Ax10 + · · ·
ψ3

3

)
where we have denoted the 2- and 3-division polynomials as ψ2 = 2 y and ψ3 =
3x4+6Ax2+12B x−A2, respectively. We say P is an m-torsion point if [m]P = O
i.e., if ψm = 0. Denote the collection of these points of finite order by E(Q)tors;
this is a subgroup of E(Q). In the cases of interest for us, this torsion subgroup is
easy to compute:
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With assumptions as above, let E : y2 = x3−D be the elliptic curve
corresponding to the equation a u3 + b u2 v + c u v2 + d v3 = m i.e.
D = −16m2 Disc(f). Then #E(Q)tors = 1, 2 or 3.

We sketch why this statement is true. It is well-known that #E(Q)tors divides 6.
(The proof uses some results on elliptic curves over finite fields; see for instance
Silverman and Tate [7, Exercise 4.11, pg. 142].) If we had equality, then we would
have both a point of order 2 and a point of order 3; assume this is the case in
order to find a contradiction. The 2-division polynomial is φ2 = 2 y, so P = (x, y)
is a 2-torsion point when y = 0 and x3 = D. Hence D must be a perfect cube.
The 3-division polynomial is ψ3 = 3x

(
x3 − 4D

)
, so P = (x, y) is a 3-torsion point

when either x = 0 and y2 = −D or x = 3
√

4D and y =
√

3D. The latter cannot
happen since D is a perfect cube, so −D must be a perfect square. We know√
−3 Disc(f) is an integer, so write Disc(f) = −3n2 for some integer n. Then

D = −16m2 Disc(f) = 48m2 n2 is positive which means −D cannot be a perfect
square! Hence #E(Q)tors 6= 6.

This discussion explains how to find examples of interesting torsion subgroups.
Recall that rational points on the cubic C : u3 − d v3 = 1 are in one-to-one
correspondence with rational points on E : y2 = x3 − 432 d2. When d = 3,
the torsion subgroup E(Q)tors = {O} is trivial. When d = 2, we find that
E(Q)tors = {O, (12, 0)} has two elements, where [2](12, 0) = O. When d =
1, we find that E(Q)tors = {O, (12, 36), (12,−36)} has three elements, where
[2](12, 36) = (12,−36) and [3](12, 36) = O. You may wish to work directly with C
instead of E to find these torsion points. We may define a group law on C as being
that induced by the group law on E:

(41) (u1, v1)⊕ (u2, v2) =
(
u1 v1 − u2 v2

u2
2 v1 − u2

1 v2
,
u2 v

2
1 − u1 v

2
2

u2
2 v1 − u2

1 v2

)
.

The identity element is just the point of inflection, (1, 0). One also checks that

(42)

[−1](u, v) =
(

1
u
, − v

u

)
[2](u, v) =

(
− 2u3 − 1
u4 − 2u

, −v (u3 + 1)
u4 − 2u

)
[3](u, v) =

(
u9 − 6u6 + 3u3 + 1
u9 + 3u6 − 6u3 + 1

, − 3u v (u6 − u3 + 1)
u9 + 3u6 − 6u3 + 1

)
We invite the reader to find the 2-torsion points on u3 − 2 v3 = 1, or even the
3-torsion points on u3 − v3 = 1.

All Ranks: Fall In!
In 1922, the English mathematician L. J. Mordell proved a long-standing con-

jecture of Henri Poincaré:
Let E : y2 = x3 + Ax + B be an elliptic curve. Then E(Q) is
a finitely generated abelian group. That is, there is a finite set
{P1, P2, . . . , Pr} ⊆ E(Q) such that for each P ∈ E(Q), there exist
integers m1, m2, . . . , mr as well as a torsion element T ∈ E(Q)tors

for which we may express

(43) P = T ⊕ [m1]P1 +⊕[m2]P2 ⊕ · · · ⊕ [mr]Pr.
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Using the language of group theory, this result says there is a nonnegative integer r,
called the rank, such that E(Q) ' E(Q)tors×Zr. This result was vastly generalized
by the Frenchman André Weil in 1930. In honor of both Mordell and Weil, the set
E(Q) is called the Mordell-Weil group. For more information, see Silverman and
Tate [7]. (For more advanced reading, see Silverman [5] and [6].)

We’ve seen that the torsion subgroup E(Q)tors of the elliptic curve E : y2 =
x3 −D is well-understood. But what about the rank r? To give an idea, the table
below lists information about the Mordell-Weil group E(Q) ' E(Q)tors × Zr when
D = 432 d2 for positive integers d up to 100. Recall that this is equivalent to the
curve u3 − d v3 = 1.

Mordell-Weil Group of u3 − d v3 = 1

Rank Torsion Corresponding d’s
3, 4, 5, 10, 11, 14, 18, 21, 23, 24, 25, 29, 32, 36, 38, 39,

0 1 40, 41*, 44, 45, 46, 47, 52, 55, 57, 59*, 60, 66, 73, 74,
76, 77, 80, 81, 82, 83, 88, 93, 95, 99, 100

0 Z2 2, 16, 54
0 Z3 1, 8, 27, 64

6, 7, 9, 12, 13, 15, 17, 20, 22, 26, 28, 31, 33, 34, 35, 42,
1 1 43, 48, 49, 50, 51, 53, 56, 58, 61, 62, 63, 67, 68, 69, 70,

71, 72, 75, 78, 79, 84, 85, 87, 89, 90, 92, 94, 96, 97, 98
2 1 19, 30, 37, 65, 86, 91

In general, it’s not too hard to show that the Mordell-Weil group of the curve
E : y2 = x3 − 432 d2 is one of three types:

(44) E(Q) '


Z3 if d is a cube,
Z2 if d is twice a cube,
Z
r otherwise.

(The reader should prove this as an exercise. Here is an approach: The equation
u3 − d v3 = 1 only depends on the cube-free part of d. You should be able to
determine E(Q)tors by considering roots of the division polynomials ψ2 and ψ3.)
You’ll note that of the 100 integers listed above, 48 correspond to curves with rank
0 and 46 correspond to curves with rank 1. In general, one expects that a random
elliptic curve will have either rank 0 or 1, with each possibility occurring roughly
50% of the time. The first curve with rank 3 doesn’t appear until d = 657!

There are computer packages, such as mwrank and MAGMA [1], which will compute
the rank r for a given elliptic curve E. Unfortunately these programs use an
algorithm which may take anywhere from five seconds to five months to compute
this integer. In fact, the algorithm is not guaranteed to terminate at all! You’ll
note that in the table above, there are ∗’s next to 41 and 59; this is because the
aforementioned programs failed to determine the rank exactly. Indeed, computing
ranks of elliptic curves is a difficult task.

Let’s return our attention to the general cubic equation

(45) C : a u3 + b u2 v + c u v2 + d v3 = m.

As always, we assume that
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• the discriminant Disc(f) is nonzero, and
• there is a rational point of inflection (u0, v0) on the curve.

The cubic equation is equivalent to the elliptic curve y3 = x3 − D with D =
−16m2 Disc(f), so we can discuss its rank. If it is zero, then there are only finitely
many rational points; in fact, we’ve seen that there are at most three rational
points. We may as well focus on the cases where the curve has positive rank, so
that there are infinitely many rational points.

-4.8 -4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

-3.2

-2.4

-1.6

-0.8

0.8

1.6

2.4

3.2

(2,1)

(73/17, 38/17)

Graph of u3 − 7 v3 = 1

We expect these points to be “evenly distributed” on the curve: if we pick any
region of the graph, we should be able to find as many rational points as we’d like.
But how do we find these points? We focus on a couple of questions:

#1: Are the rational points (u, v) on C clustered in any finite region of the
graph? Or can we find a sequence of rational points (un, vn) such that
|un|, |vn| → ∞ as n increases without bound?

#2: How do we explicitly compute such a sequence?
Maybe focusing on the cubic equation C is too difficult, and we should look closely
at the elliptic curve E:

With notation as above, say (xn, yn) is the sequence of rational
points on E corresponding to the sequence of rational points (un, vn)
on C. If |un|, |vn| → ∞ as n increases without bound, let

(46) P = lim
n→∞

(xn, yn) =

(
−4m 3

√
Disc(f)
m

, 4m
√
−3 Disc(f)

)
be the corresponding limit as a point on E. Then [3]P = O i.e., P
is 3-torsion point.

The proof of this isn’t very hard. First, one computes the limit using the formulas
in (33). Second, one uses the 3-division polynomial ψ3 = 3x

(
x3 − 4D

)
to show P

is a 3-torsion point. We remark in general P is not a rational point on E; it may
be irrational. But since

√
−3 Disc(f) is an integer, P is actually a real point.

As an example of this result, consider the curve C : u3 − d v3 = 1. We wish to
find a sequence of rational points (un, vn) that increase without bound, so consider
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the sequence of rational points on E : y2 = x3 − 432 d2 defined by

(47) (xn, yn) =
(

12 d
vn

un − 1
, 36 d

un + 1
un − 1

)
.

As n increases without bound,

(48)
un
vn
→ 3
√
d and (xn, yn)→

(
12 d2/3, 36 d

)
.

We modify slightly our motivating questions above:
#1: How much control do we have on the rational points (x, y) on E? Can

we find a sequence of rational points (xn, yn) such that (xn, yn) → P a
3-torsion point as n increases without bound?

#2: How do we explicitly compute such a sequence?
If we have a sequence of rational points (xn, yn) on E, then we can recover the
desired sequence of rational points (un, vn) on C by using the formulas in (35). We
will use continued fractions again to construct such a sequence (xn, yn).

Before we continue, we should point out a contrast to the previous half of this
exposition. In Part I, we gave an algorithm using continued fractions to construct
an initial point (u1, v1) on a quadratic curve u2− d v2 = 1, then used group theory
to construct a sequence of points (un, vn) such that |un|, |vn| → ∞ as n increases
without bound. Cubic equations in general and elliptic curves in particular are
mysterious objects, so we’ll present an algorithm which constructs points (un, vn)
on a cubic curve u3−d v3 = 1 – assuming that an initial point (u1, v1) can be found
by some unspecified method.

Not Your Grandfather’s Logarithms
Eventually, we want to construct a sequence of rational points (xn, yn) on an

elliptic curve which tend to a real point P . In fact, we’ll prove the following result
to help keep track of the real points:

Given the elliptic curve E : y2 = x3 − D, denote the set of real
points P on E by E(R), and the real period of E by the integral

(49) Ω =
∫ ∞

3√
D

dt√
t3 −D

.

The map E(R)→ R/Z defined by

(50) logE : P = (x, y) 7→ 1
2 Ω

∫ ∞
x

dt√
t3 −D

(mod Z)

is an isomorphism of abelian groups. (The sign of the square root
is the same as the sign of y.)

The isomorphism logE is called an elliptic logarithm. This result says the real points
on E are in one-to-one correspondence with the elements of R/Z. In particular, if
P is a real m-torsion point i.e., [m]P = O, then logE(P ) = k

m for some integer
k. Here’s an example. The elliptic curve E : y2 = x3 − 432 has real period
Ω = 0.883319. We saw before that P = (12, 36) is a 3-torsion point, so we compute
its elliptic logarithm as

(51) logE(P ) =
1

2 Ω

∫ ∞
12

dt√
t3 − 432

=
0.58888
1.76664

= 0.333333 =
1
3
.
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In order to understand where this result comes from, let’s try to understand
more about the points (x, y) on a general elliptic curve E : y2 = x3 + Ax + B.
We’ve considered rational points so far, but as we saw above we need to consider
irrational points as well. The Mordell-Weil group E(Q) is a subset of E(R), and
the set of real points is a subset of E(C). We know that E(Q) ' E(Q)tors × Zr,
but what can we say about E(R) and E(C)?

Consider for the moment a function ℘(z) that is the solution to the differential
equation

(52)
(
d℘

dz

)2

= ℘3 +A℘+B.

Once this function is known, then (x, y) = (℘(z), ℘′(z)) is a complex point on
the elliptic curve E : y2 = x3 + Ax + B. We construct the solution in a clever
way. Define a function ℘ : C → C implicitly as follows. Given z ∈ C, integrate
the function 1/

√
t3 +A t+B along a path integral in the complex plane from ∞

(interpreted as the limit of i y as y increases without bound) to a complex number
x so that we find a value of z:

(53) z =
∫ ∞
x

dt√
t3 +A t+B

.

Define ℘(z) = x. There is a pole at z = 0 because ℘(0) =∞. By the Fundamental
Theorem of Calculus, we can differentiate this relation with respect to z:

(54) 1 =
1√

℘3 +A℘+B

d℘

dz
so that

d℘

dz
=
√
℘3 +A℘+B.

Upon squaring both sides, we find the differential equation above! Not only have we
found a solution to the differential equation, but we have defined a map C→ E(C)
that sends z 7→ (℘(z), ℘′(z)).

Actually, we cheated a little bit: we never showed that ℘ is a well-defined func-
tion. Indeed, the integral is not path independent. For motivation, consider the
following similar integral:

(55) z =
∫ 1

x

dt√
1− t2

= arccosx so that x = cos z.

The function arccosx is only defined modulo multiples of 2π. The integrand has
poles at the zeroes ±1 of the quadratic t2 − 1, so consider an integral which loops
m times around this pair of complex numbers:

(56)
∮

dt√
1− t2

= 2m
∫ 1

−1

dx√
1− t2

= 2πm ∈ 2π Z.

That means x = cos z is a well-defined function C/ (2π Z) → C. Via the map
z 7→ (x(z), x′(z)) = (cos z, − sin z) we may identify each complex point (x, y) on
the unit circle with a complex number z ∈ C/ (2π Z). Indeed, given a point (x, y)

on the unit circle, we can recover z as the integral
∫ 1

x

dt√
1−t2 (mod 2π Z).

Let’s return to the original integral in (53). The integrand has poles at the zeroes
e1, e2, e3 of the cubic t3 + A t + B, so consider the integral around closed loops
which wind around pairs of these zeroes:

(57) ω1 = 2
∫ ∞
e1

dt√
t3 +A t+B

and ω2 = 2
∫ e3

e2

dt√
t3 +A t+B

.
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This means ℘ is a well-defined function C/Λ→ C in terms of the period lattice

(58) Λ =
{
mω1 + nω2

∣∣∣∣m, n ∈ Z} = ω1 Z+ ω2 Z.

Via the map z 7→ (℘(z), ℘′(z)), we may identify each complex point (x, y) on the
elliptic curve E with a complex number z ∈ C/Λ. Indeed, given a complex point
P = (x, y), we can recover z as the integral

(59)
∫ O
P

dx

y
=
∫ ∞
x

dt√
t3 +A t+B

(mod Λ).

Here the sign of the square root is chosen to match the sign of y.
We have shown that E(C) ' C/Λ as sets. There is a slightly stronger result:

With notation as above, the map C/Λ → E(C) defined by z 7→
(℘(z), ℘′(z)) is an isomorphism of abelian groups. That is, for
P, Q ∈ E(C),

i. there exist z1, z2 ∈ C/Λ such that

(60) P = (℘(z1), ℘′(z1)) and Q = (℘(z2), ℘′(z2)) ,

ii. under the group law on the elliptic curve we have

(61) P ⊕Q = (℘(z1 + z2), ℘′(z1 + z2)) .

The complete proof of this result can be found in Silverman [6, Corollary 2.3.1,
pg. 420]; the hard part is showing the relation with the group law. In particular,
the real points on the elliptic curve correspond to the real values of ℘(z). The
isomorphism above implies the group isomorphism

(62) E(R) =
{

(x, y) ∈ R× R
∣∣∣∣ y2 = x3 +Ax+B

}
∪ {O} ' R

Λ ∩ R
.

Finally, we explain how this is all related to the elliptic logarithm in (50). Let’s
focus on the elliptic curve E : y2 = x3 − D. The cubic t3 − D has just one real
root e1 = 3

√
D, so ω1 = 2 Ω – in terms of the real period – is a real number. On

the other hand, ω2 is a purely imaginary number. That means Λ∩R = ω1 Z, so we
have an isomorphism R/ (2 ΩZ)→ E(R) defined by z 7→ (℘(z), ℘′(z)). The inverse
of this map is essentially the elliptic logarithm.

The Point Is to Roam Freely
From now on, we consider a cubic equation

(63) C : a u3 + b u2 v + c u v2 + d v3 = m

satisfying three criteria:
• Disc(f) = b2 c2 − 4 a c3 − 4 b3 d+ 18 a b c d− 27 a2 d2 is nonzero.
• There is a rational point (u0, v0) on C satisfying

(64)
(
b2 − 3 a c

)
u2

0 + (b c− 9 a d)u0 v0 +
(
c2 − 3 b d

)
v2

0 = 0.

• E : y3 = x3 −D with D = −16m2 Disc(f) has positive rank.
Remember that every cubic equation u3 − d v3 = 1 satisfies the first two criteria,
because Disc(f) = −27 d2 is nonzero and (u0, v0) = (1, 0) is a rational point of
inflection. We explain how to find a sequence of rational points (un, vn) such that
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|un|, |vn| → ∞ as n increases without bound. We use an idea following Guy [2],
which in turn is motivated by a paper of Zagier [8].

Perform the following algorithm:

Step 1. Find a rational point P1 = (x1, y1) on E that is not a torsion point. Choose
y1 > 0. (Such a point exists because E has positive rank. It suffices to pick
a rational point that is not a 2- or 3-torsion point.) Set n = 1 and m0 = 0.

Step 2. Compute

(65) γ = 3 · 1
2 Ω

∫ ∞
x1

dt√
t3 −D

in terms of Ω =
∫ ∞

3√
D

dt√
t3 −D

.

(These are real numbers which can be computed with any calculator.)
Step 3. Use continued fractions to approximate γ ≈ kn

mn
for a numerator kn not

divisible by 3, and a denominator |mn| > |mn−1|.
Step 4. Compute Pn = [mn]P1 = (xn, yn) as a rational point on E. Choose the

sign of mn so that yn > 0. (Recall that [−1] (x, y) = (x,−y).)
Step 5. Return the rational point (un, vn) on C through the formulas in (35). For

the curve u3 − d v3 = 1, the formulas simplify to

(66) (un, vn) =
(
yn + 36 d
yn − 36 d

,
6xn

yn − 36 d

)
.

Step 6. Increase n, and return to Step 3.

We explain why this algorithm works. Say that (u, v) is a rational point on C
corresponding to a rational point P = (x, y) on E. We have seen that |u|, |v| are
“large” if and only if [3]P is “approximately” O. Say that we’ve approximated
γ ≈ k

m , and write P = [m]P1. We compute

(67) logE ([3]P ) = 3m · logE(P1) = 3m · 1
2 Ω

∫ ∞
x1

dt√
t3 −D

= mγ ≈ k.

Hence logE ([3]P ) ≈ 0 (mod Z) so that [3]P ≈ O. Note that if k is divisible by 3,
then logE(P ) ≈ 0 (mod Z) so that P ≈ O. This is why we stay away from such
points.

Let’s work through an example. Consider the curve C : u3−7 v3 = 1. It is easy to
check that (u1, v1) = (2, 1) is one rational point. This cubic equation is equivalent
to the elliptic curve E : y2 = x3 − 21168 with d = 7; in fact, (u1, v1) = (2, 1)
corresponds to the rational point P1 = (84, 756). Rather nicely, the elliptic curve
has Mordell-Weil group

(68) E(Q) =
{

[m](84, 756)
∣∣∣∣m ∈ Z} ' Z,

so that it has positive rank. We will use the generator P1 = (84, 756) to construct
the desired sequence. The real period is Ω = 0.461762, and we have the continued
fraction

(69) γ = 0.710699 . . . = {0; 1, 2, 2, 5, 3, 1, 4, 2, 4, . . . }.

The following table contains the relevant information at the various stages of the
algorithm.
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Stage n Convergent of γ Pn

1 {0; 1} = 1/1 [1]P1 = (84, 756)
2 {0; 1, 2} = 2/3 [−3]P1 = (57, 405)
3 {0; 1, 2, 2} = 5/7 [−7]P1 ≈ (42.0481, 230.597)
– {0; 1, 2, 2, 5} = 27/38 [38]P1 ≈ (9.76× 105, 9.64× 108)
4 {0; 1, 2, 2, 5, 3} = 86/121 [−121]P1 ≈ (43.4989, 247.263)
5 {0; 1, 2, 2, 5, 3, 1} = 113/159 [−159]P1 ≈ (44.0055, 253.077)

Note that just after the third stage we find that [38]P ≈ O has very large coeffi-
cients. This is because the numerator of the convergent, namely 27, is divisible by
3. The Pn = (xn, yn) are rational points on E, so we may translate these back to
rational points (un, vn) on C:

Stage n (xn, yn) (un, vn)
1 P1 = (84, 756) (2, 1)
2 P2 = (57, 405) (73/17, 38/17)
3 P3 ≈ (42.0481, 230.597) (−22.5476, −11.7873)
4 P4 ≈ (43.4989, 247.263) (−105.386, −55.0912)
5 P5 ≈ (44.0055, 253.077) (469.183, 245.269)

We see that |un|, |vn| → ∞ as desired. What about the rational points Pn on C?
They’re tending to the limit

(70) (xn, yn)→
(

12 d2/3, 36 d
)

= (43.9117, 252) .

It seems that our mission is accomplished!
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