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Abstract

In this study, the author discusses the concept of function from a historical and pedagogical

perspective. The historical roots, ranging from ancient civilizations all the way to the twentieth

century, are summarized. The author then details several different function representations that

have emerged over the course of the concept’s history. Special attention is paid to the idea of

abstraction and how students understand functions at different levels of abstraction. Several

middle school, high school, and college textbooks are then analyzed and evaluated based on

their portrayal of the function concept. The author describes several common misconceptions

that students have about functions and finally proposes a short educational module designed

to help older high school students grow to a deeper level of understanding of this complex and

often misunderstood concept.
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1 Introduction

Irish writer Oscar Wilde once surmised that “[t]he truth is rarely pure and never simple.” While
his musings were most likely not directed towards the mathematics community, Wilde’s statement
sheds light on the nature of mathematical truth, an issue that has plagued mathematicians and
mathematics educators for centuries.

Many beginning mathematics students delight in the black and white nature of math. While they
struggle to decipher reality from fiction, right from wrong, and fact from opinion in their history and
English courses, they perceive math to be a subject of cut-and-dry answers. In working problems
or doing homework, students strive for the “right” answer and are often satisfied when reaching the
solution even if they do not completely understand why their answer is correct. While teachers often
stress that students “show their work,” such work typically exhibits the ability of the student to
reproduce a symbolic manipulation and is not always an indication of whether or not the student
comprehends the mathematical subtleties.

Exposure to higher level mathematics dispels the illusion of the simplicity of math. Students re-
alize that their prior understanding of mathematical concepts is incomplete. The study of functions,
perhaps the most central concept in all mathematics, is often one of the topics where students’ under-
standing is most incomplete. From early elementary school throughout the rest of their mathematics
careers, students encounter functions in various forms and applications. While they often learn how
to manipulate and “use” functions to perform tasks, students do not always grasp the complexity
of the multifaceted concept. In fact, mathematicians over the past 500 years have struggled to pro-
duce an accurate definition of function. Teachers and textbooks, in their attempts to make the idea
accessible, have used a myriad of pedagogical techniques to teach functions. Sometimes teachers
and textbooks “water-down” the concept in order to avoid confusing students, which leaves gaps
in their understanding. Other times students are overloaded with definitions and subtleties beyond
the depth of their mathematical understanding. These students end up disregarding or forgetting
certain aspects of what they are taught in favor of their own understanding.

In this paper, the notion of the function, its historical development, common misconceptions,
and the pedagogical difficulties that arise from its complexity are discussed. How functions are
taught and presented in various textbooks is analyzed, and suggestions are made about ways in
which functions can be taught with increased clarity.

2 History

The complexity of the function concept mirrors the intricacy of its historical development. The
concept has roots dating back 4000 years as ancient civilizations developed the idea of counting
and the notion of correspondence between objects that is implied by a sequence of numbers [15].
From their countless tablets of corresponding numbers, it is likely that the Babylonians touched on
aspects of the function idea. These tablets presented sets of ordered pairs with unknown purpose
but of evident functional character [14]. While they studied specific functions, it is not likely that
the Babylonians had developed a generalized concept [12]. Thus, while this early emergence demon-
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strates the primacy of the function within the natural world, it does not mark the beginning of a
sophisticated and deliberate understanding of the concept.

In the fourteenth century, French mathematician Nicole Oresme developed the geometric theory
of latitude of forms and the concept of the rectangular coordinate system [15]. In this work, Oresme
introduced the idea of acceleration as the intensity of velocity and touched on several ideas about
independent and dependent variables [21]. His investigation and depiction of natural laws that de-
scribe one quantity as dependent on another set the groundwork for the function concept of today
[12].

During the early 17th century, as scientists discovered more about natural laws and as mathe-
maticians began to connect the studies of algebra and geometry, the idea of function became more
of a necessity. Galileo, in his study of motion, clearly grasped the concept of the relation of variables
to one another, and Descartes, in his study of the algebraic expression of curves, also touched on
the function concept [12].

It is essential to note that at this point in time, Newton and Leibniz were developing calculus, a
subject which, in modern times, is inseparable from the function concept. Early calculus, however,
was not a calculus of functions but rather was a calculus of geometric curves. In fact, most early
calculus dealt with solving problems about curves and properties of curves such as tangents and
areas under them. Leibniz and Newton were concerned with the geometric nature of their new un-
derstanding, and it was not until after the introduction of the function concept that calculus began
to take shape in its algebraic form [8].

Neither the explicit concept nor the word ‘function’ were introduced until the 17th century.
Within the context of the development of analytical geometry, it is not surprising that the word
‘function’ emerged in relation to a geometric concept. Leibniz used the word to denote a geomet-
ric object, such as the tangent associated with a curve, in 1692 [8]. Leibniz’s usage of the word
“function” aligns with the present-day definition, however, he described a much narrower and more
restricted understanding of the concept. In fact, over the years, new examples have been a driving
force in the development of the function concept. In response to these ideas, the definition has had
to develop and expand to encompass the complete function concept. It was not until 1718 that
Johann Bernoulli introduced the first formal definition of the function in response to the need for
such a term. His definition reads,

“One calls here Function of a variable a quantity composed in any manner whatever of
this variable and of constants” [8].

This vague definition marked the beginning of the function’s evolution into the multi-faceted concept
that exists today.

As mathematics began to drift away from the geometric idea of analysis to the algebraic in the
1700’s, the notion of the function underwent a similar transformation. Euler’s definition in his 1748
work, Introductio in Amalysin Infinitorum, reads,
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“A function of a variable quantity is an analytical expression composed in any manner
from that variable quantity and numbers or constant quantities” [8].

Euler’s definition is nearly identical to Bernoulli’s, however, the addition of the term “analytical ex-
pression” is significant because it shifts the notion from the geometric to the algebraic. Euler’s term
“analytical expression” is not to be confused with the modern definition of analytic which refers to
a type of function locally given by a convergent power series. Euler refers to a more broad concept,
and although he does not explicitly define the term in his work, he does include expressions with
the four algebraic operations, roots, exponentials, logarithms, trigonometric functions, derivatives
and integrals in his list of acceptable “analytic expressions.” From here on in this paper the term
”analytic expression” will be used to refer to this concept defined by Euler. At a time when geometry
and algebra were viewed as distinct mathematical subjects, Euler’s definition emphasizes the idea
of using algebra to represent a geometric object. He links the geometric with the algebraic. [8].

At around this same time, Euler was also engaged in a debate with Jean d’Alembert and Daniel
Bernoulli concerning a famous problem concerning vibrating strings. The problem involves deter-
mining the function that describes the shape of an elastic string with fixed ends at a specific time, t,
after it has been released to vibrate from some initial shape. During this era, many mathematicians
ascribed to an “article of faith” which asserted that if two analytic expressions agree on an interval,
they must agree everywhere. Since, at that time, analytic expressions were generally thought to be
those described by Euler, this assumption was believable.

French mathematician d’Alembert, a believer in the aforementioned “article of faith,” took a
mathematically rigorous perspective on this problem. In 1747, he developed the wave equation,
given by

(

δ2y

δt2

)

= a2

(

δ2y

δx2

)

(1)

where a is a constant. From this partial differential equation, d’Alembert produced his “most gen-
eral” solution to the vibrating string problem:

y(x, t) =

(

1

2

)

[ϕ(x + at) + ϕ(x − at)],

where ϕ is a function determined on the interval between the fixed ends by the initial shape of the
string. Most significant to this discussion of functions was d’Alembert’s belief that ϕ must be what
Euler referred to as an analytic expression that, since it satisfied the wave equation (1), was twice
differentiable. D’Alembert’s contention that he had produced the most general solution emphasized
his belief that such analytic expressions were the only permissable functions [8].

The next year, Euler proposed his findings on the problem. He agreed with d’Alembert’s so-
lution, but disagreed with his assertions about ϕ. Euler contended that the original function did
not necessarily have to be representable by one analytic expression. In fact, he argued that a more
general solution to the problem could be given by extending ϕ to include initial shapes of the string
represented by multiple analytic expressions defined on different subintervals of the string. Even
more broadly, Euler believed that ϕ could represent any curve drawn freehand. Since ϕ is a function,
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Euler’s claim implies that the function concept extends to include piecewise functions, or functions
defined individually over different intervals, and freehand functions that cannot be expressed by any
combination of analytic expressions. The physical considerations in this problem caused Euler to
alter his conception of function significantly so that in 1755 he wrote

“If, however, some quantities depend on others in such a way that if the latter are changed
the former undergo changes themselves then the former quantities are called functions
of the latter quantities” [8].

Euler’s observations led to a broader view of the function concept.

In 1753, Daniel Bernoulli challenged both d’Alembert’s and Euler’s solutions to the vibrating
string problem. Bernoulli was more of a physicist than a mathematician, and he found d’Alembert’s
and Euler’s solutions to lack consistency with the physics of the problem. He even went so far as
to say in reference to the solutions, “beautiful mathematics but what has it to do with vibrating
strings?” [8].

Bernoulli based his solution to the vibrating string problem on his understanding of musical
vibrations. He knew that vibrating strings have infinitely many fundamental vibrations, and thus
concluded that given the constants bn and a and the endpoints of the string (0, `), the solution to
the problem could be expressed as

y(x, t) =

∞
∑

n=1

bn sin
(nπx

`

)

cos

(

nπat

`

)

.

While Bernoulli was not interested in debating the nature of functions, his solution, when solved for
initial conditions at t = 0, implies that any arbitrary function can be represented by the series

y(x, 0) = f(x) =

∞
∑

n=1

bn sin
(nπx

`

)

.

Euler and d’Alembert rejected Bernoulli’s solution. While Bernoulli understood the physics be-
hind the problem, Euler contended that he did not consider its implication concerning functions.
Euler believed that all series of sines must be odd and periodic, and thus, according to Euler, the
existence of even and non-periodic functions disproves Bernoulli’s solution. Euler’s argument rested
on his belief in the “article of faith,” mentioned earlier [20]. The debate surrounding the vibrating
string problem eventually died down, but the controversy led to increased thought and discourse
about the definition of the term function [8].

In 1807, Joseph Fourier, as a result of his study of heat conduction, developed a theorem about
functions that, similar to Bernoulli’s, deals with a series of sines and cosines. His theorem states:
Any function f(x) defined over (-`, `) is representable over this interval by a series of sines and cosines,

f(x) =
(ao

2

)

+
∞
∑

n=1

[

an cos
(nπx

`

)

+ bn sin
(nπx

`

)]

,
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where the coefficients an and bn are given by

an =

(

1

`

)
∫

`

−`

f(t) cos

(

nπt

`

)

dt

and

bn =

(

1

`

)
∫

`

−`

f(t) sin

(

nπt

`

)

dt.

Fourier’s proof was questionable, and his theorem was eventually studied by German mathematician
Johann Dirichlet. In 1829 Dirichlet developed sufficient conditions for Fourier’s theorem. He stated
that all functions with only finitely many discontinuities and finitely many maxima and minima on
an interval can be represented by a Fourier series. Fourier’s work is significant because it disproved
the “article of faith” assumption and because it re-emphasized analytic expressions as functions. The
result proved that two analytic expressions could agree on one interval without necessarily agreeing
outside that interval [8].

Fourier’s theorem also forced mathematicians to re-evaluate the concept of function both because
of the confusion caused by his results and because of the looseness of his proof techniques. His work
prompted the investigation of other mathematicians like Dirichlet, who once said, “To make sense
out of what he [Fourier] did took a century of effort by men of “more critical genius,” and the end
is not yet in sight” [8]. In 1829, Dirichlet produced a counterexample to Fourier’s original theorem.
The Dirichlet function, which assigns one value to all rationals and another to all irrationals, can
not be represented by a Fourier series and was the first clear example of a function that was neither
an analytic expression or a curve drawn freehand. It was also the first function to be discontinuous
everywhere. Rather importantly, the Dirichlet function highlights the concept of arbitrary pair-
ing. While many mathematicians had acknowledged the arbitrary nature of functions prior to him,
Dirichlet was the first to give a concrete example of an arbitrary function [8].

In 1939, the group of mathematicians that wrote under the allonym Nicolas Bourbaki defined
functions in the following manner:

“Let E and F be two sets, which may or may not be distinct. A relation between a
variable element x of E and a variable element y of F is called a functional relation in
y if for all x ∈ E there exists a unique y ∈ F which is in the given relation with x” [8].

The Bourbaki definition became the first to define function in terms of a set of ordered pairs. This
idea of functions as sets of ordered pairs has since been accepted by many mathematicians as an
all-encompassing and succinct manner in which to understand functions. In fact, many algebra and
higher level textbooks present this definition as the primary (or glossary) definition.

The function concept has undergone a drastic transformation over the course of more than 300
years since Leibniz introduced the term. What began as a word coined to describe a purely geometric
idea has evolved into a concept of importance in nearly every field of mathematics.

6



3 Function Representations

In light of the lengthy development of the function and debates within the mathematical world about
its nature, it is no wonder that students struggle to grasp the concept. Annie and John Selden, in
their 1992 summary of recent research on students’ conceptions of functions, explain that, “there is
an unavoidable conflict (tension) between the structure of mathematics and the cognitive process
of concept acquisition. Whereas it can only take one sentence to state a definition, ‘unpacking’ a
definition is a hard cognitive task” [18]. This task is especially difficult when students face concepts,
like functions, with many different definitions and representations. New ways of representing func-
tions have emerged continually over the course of its development. Each of these representations is
important in understanding a specific aspect of the idea and each is strongly tied to the others, but
as a collection, they may overwhelm and confuse students [18].

True understanding of functions runs deeper than just the ability to regurgitate definitions. Three
basic conceptions of functions are prominent throughout the literature concerning the teaching of
functions. These three categories, named and defined in Dubinsky and Harel’s “The Nature of the
Process Conception of Function,” indicate the level of understanding achieved by students. These
are not three completely different notions, but rather, they represent a continuum of abstraction [4].

The most basic concept of function is that of an action. Dubinsky and Harel call action “a
repeatable mental or physical manipulation of objects” [4]. Students at this phase of understanding
need evidence of a concrete action in order to grasp that something is a function. They see functions
as an explicit rule which takes an input, transforms it by means of a specific algorithm, and then
produces an output. Students with an action conception easily comprehend two of the most common
representations of functions.

Graphs are quite possibly the most recognizable representation of functions. This representation,
however, is not always directly connected with the idea of function in students’ minds since graphs
are often taught several years before the term function is ever introduced. Graphs help students
understand useful information about functions including maxima and minima as well as the concepts
of increasing and decreasing [18]. In fact, in his article about functions, Theodore Eisenberg goes so
far as to assert, “Single valued, real variable functions should be thought of as being inherently tied
to a graphical representation, and . . . all elementary concepts concerning functions (should) be de-
fined in a visual format” [6]. His argument rests on Israel Kleiner’s contention that concepts should
be viewed from as many points of view as possible. When students are introduced to functions,
Eisenberg believes that the visual representation should be specifically emphasized. Unfortunately,
students often struggle to develop visualization skills, especially when they encounter non-typical
functions such as the Dirichlet function [6].

The formula representation of functions is also another important aspect of the function con-
cept. This idea restricts the notion of function in a way similar to Euler’s original definition of
function [18]. While this representation is especially useful in calculus and pre-calculus, students
who are only exposed to this definition have difficulty understanding that functions can have com-
pletely arbitrary pairings. Functions do not necessarily have a formulaic representation nor do they
even have to concern numbers. This representation also leads to a misunderstanding about the
existence of discontinuous functions. Even functions depicted by two or more formulas defined over
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different parts of the domain are difficult for students to perceive as functions [18].

The next level of understanding is the process conception. This conception involves a deeper
understanding of a function as something that takes in an object, transforms it and produces a
completely new object. Rather than needing an explicit formula or rule, students at this level of
understanding are willing to accept functions that involve vague transformations.

The idea of a function machine is a common tool used by teachers to help students view functions
from the process conception. This technique presents a function as a machine or a box that accepts
an input and produces an output. With the process understanding, students have no need to know
the contents of the box; rather, the existence of the machine alone is enough to convince them
that they are dealing with a function. While some researchers suggest that “the function machine
provides a powerful foundation and is a cognitive root for developing understanding of the concept
of function” [10], others see the representation as ineffective for students who do not understand
how machines process numbers [18]. Research also shows that students have difficulty connecting
the function machine concept with graphs and other such representations of functions [10]. While
it offers a simplistic approach to help younger students understand functions as a process, like each
of the other representations, the function machine conception does not provide a complete picture
of the notion.

A second process-oriented view deals with the idea of functions as a correspondence between two
sets. This understanding is similar to Dirichlet’s 1837 definition, and basically says that a function
is a correspondence such that for every element of the first set there corresponds one element of the
second set. This correspondence idea forces students to abandon their need for an algorithm and
instead focus more on the idea of mapping one set to another [18].

The most sophisticated understanding is that of functions as objects. With this conception,
the “machine” is no longer necessary, and students see functions as entities in and of themselves
that can be transformed and operated upon. The concept is best encapsulated by the ordered-pair
representation.

The ordered pair definition of function, as introduced by Bourbaki in 1939, is arguably the most
mathematically accurate in the sense that it completely captures the essence of a function. This
representation describes a function as a possibly infinite set of ordered pairs (x,y) in which each
x-coordinate is paired with only one y-coordinate. It is important because it can accurately describe
discontinuous functions, arbitrary pairings, and can even be extended to account for functions whose
domain and range are not numbers. Also, the set concept gives rise more readily to the notion of
function as an object. Unfortunately, many researchers feel that this definition is too abstract for
students in high school or below. In order to fully grasp this definition, students must have a fairly
firm understanding of set theory. Most junior high and high school students, however, have had
little exposure to set theory, and as a result, use of words such as set and subset may add to their
confusion. In addition, students must also deal with the idea of infinity and, more perplexing, what
it means to have an infinite set. Researchers contend that while students are able to reproduce
the ordered pair definition formally, they seem to ignore the definition in application and practice
and instead default to their own intuitive understanding [18]. In this manner, there is a disconnect
between this definition and the adolescent’s concept of function.
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In her article about the formation of the view of functions as objects, Anna Sfard asserts that
this view, called a structural conception, is important for mathematicians in the sense that it makes
cognitive processes efficient [19]. Sfard uses the term operational conception to refer to the view of
a function as a process and argues that students should first be taught to see functions as opera-
tions so that they will more naturally develop a sense of functions as objects. She contends that
students should not be expected to obtain a structural understanding of functions until they reach
higher-level theory in which such an understanding is necessary [19]. While this issue is debateable,
the importance of the object conception of function is undeniable. Leading students to an object
understanding of function is the ultimate goal of function understanding, but Sfard argues that stu-
dents will not be able to completely grasp the concept of functions as object until they use functions
as such in their course work.

4 Textbook Analyses

Textbooks often serve as an authority to the students they serve. Many teachers use their students’
textbooks as their primary resource. They develop their lesson plans directly from the exercises and
activities within the texts, and often, some of the teachers’ own understanding of the concepts they
teach are derived from these books. Even when teachers do not teach directly from the book, their
students still have a copy of the text for reference. When they encounter a concept that they do not
know or cannot remember, it is likely that they turn to the glossaries of their books for a definition.
Under such conditions, the way information is presented within each book is vitally important to
the students’ understanding of the concepts.

Textbook authors face a dilemma when writing about concepts as complex as the function. When
developing their presentation of the concept, they must consider the mathematical maturity of their
audience without losing sight of the core mathematical principles involved. They must also evaluate
the pedagogical issues that underlie all of education. Should they introduce a specific example first
and then develop outward to a general definition? Or should they clearly define the concept first
and then list specific examples? In all of these matters, which subtleties will help the most students?

Nine texts ranging in level from pre-algebra through college mathematics were analyzed for this
study to determine how authors present the concept of function to students of varying mathematical
maturity. Four of these texts are pre-algebra and algebra books, all published between 1990 and
1999. Calculus books published between 1994 and 2002 account for three of the texts, and a discrete
mathematics text makes eight. Also, the handbook for the TAKS (Texas Assessment of Knowledge
and Skills) exit level mathematics test is analyzed in order to understand what the state expects of
students.

While traces of the concept are taught as early as kindergarten, students in the United States are
not usually introduced to the mathematical use of the word function until they enter pre-algebra or
algebra when they are somewhere between 12 and 15 years old. At this point in their mathematical
careers, students will begin to encounter variables and equations for the first time. They will first
begin to classify and describe relationships between variables. While the algebra curriculum is fairly
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uniform across textbooks, the manner in which the material is presented varies greatly from book
to book. Each of the four algebra textbooks studied here emphasizes different concepts, and with
respect to functions, gives students different perceptions of the subject.

As stated previously, graphs are often introduced to students before the concept of function. In
the 1998 Glencoe Algebra 1: Integration, Applications, Connections [2], functions are introduced
directly as graphs. The textbook authors take the concept of graphs, which are familiar to students,
and build the function idea on it. The word function is defined as

“. . . a relationship between input and output. In a function the output depends on the
input. There is exactly one output for each input” [2].

The authors immediately illustrate the concept with a graph and then foreshadow the idea of sets
of ordered pairs and relations. Over two hundred pages after its initial definition in the 748 page,
two volume set of books, a function is redefined as “a relation in which each element of the domain
is paired with exactly one element of the range” [2]. Later, functions are addressed again within
the context of describing linear, quadratic, and exponential functions. For each of these sections,
the authors place a heavy emphasis on graphical representation. At this entry level text into un-
derstanding the function concept, the authors chose to focus on the concrete, visual representation
rather than the more abstract notion of functions as sets of ordered pairs.

Some educators believe that the discovery method of teaching is the most effective teaching ap-
proach. They believe that helping students to explore a concept so that they will discover it on
their own rather than explicitly teaching the topic allows students to more successfully internalize
what they are learning. Some textbooks were written with this philosophy in mind. HRW’s Algebra:

Integrating [17] is one such text with respect to its presentation of functions. The first mention of
the word function occurs during its introduction of linear functions. The book describes a linear
equation and explains that it is a linear function because one of the variables depends on another. It
goes on to “preview” several different types of functions, including step, exponential, and quadratic,
without ever specifically defining the term function. While this text digs deeper into non-traditional
functions like absolute value, integer, and piecewise functions in a way that gives students a broader
understanding of the concept, the book does not actually define function until towards the end of the
book when it gives the ordered pair definition. While it does elaborate on the function machine con-
cept of function, it does not explicitly make connections between different representations of function.

The 1999 Glencoe Pre-Algebra book [9] takes a more straightforward approach to its introduc-
tion of function. The text covers slightly different material than the other algebra books since it is
intended for younger students, but towards the end it begins to discuss the function concept. First it
introduces relations as a set of ordered pairs, and calls the set of all the first coordinates the domain
and the set of all the second coordinates the range. Functions are then presented as a special type of
relation “in which each element of the domain is paired with exactly one element in the range” [9].
The authors then move into a lengthy discussion of graphical representations of different functions
and specifically focus on scatter plots and linear relations. One of the most notable aspects of this
book is the way that it attempts to continue the ordered pairs concept beyond one isolated part of
the text. Even in its discussion of equations, it states, “Since the solutions of an equation in two
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variables are ordered pairs, such an equation describes a relation” [9]. Rather than abandoning the
relation concept after a quick cursory introduction, the authors attempt to make connections for
their young students that will help them have a deeper understanding of functions.

A similar approach to introducing functions was taken by the 1990 Heath Algebra I [3] textbook.
Relations appear first and are established as a set of ordered pairs. The authors then demonstrate
several different representations of relations including lists of pairs, tables, and graphs. Unlike the
other algebra texts, this book details these differing representations of the relation and, by extension
function concepts, so that students are encouraged to connect and reconcile them as different facets
of the same idea. This text also defines functions directly from the relation idea. It explains,

“A relation is a function if and only if each first component in the relation is paired with
exactly one second component” [3].

With its use of the expression “if and only if,” this definition may be too complex for young students
who have not yet developed an understanding of the nuances of definitional language. While it does
not elaborate on the concept as a process or leave room for the extension of the function idea to
entities other than numbers, this text does provide a straightforward function definition.

On the whole, the algebra books studied for this paper presented the function in a basic, simple
manner. Each book tended to describe the idea from only one perspective, often tailoring their
emphasis to the aspect that would be most useful later in the text. Some may see this technique as
inadequate, however, it can be argued that providing too much information about the complexity
of functions may serve only to confuse and frustrate students, especially at an early level of under-
standing. In fact, some, including Anna Sfard, whose research will be discussed later, contend that
gradual instruction beginning with a lower level of expectation for understanding will actually lead
to a better understanding of the subtleties in the future. [19]

The TAKS test determines whether or not students in Texas graduate, and within the public
education system, teachers in Texas feel pressure to focus their instruction solely on state-mandated
curriculum. For many students, the perception of the function presented by the TAKS test de-
termines their understanding of the concept. While algebra marks the beginning of the study of
functions, the TAKS standards mark what students are expected to know about functions by the
end of their high school careers. Function-related concepts are addressed by four of the ten TAKS
objectives for the exit level mathematics test. This percentage of objectives demonstrates the high
level of attention that the Texas Education Agency (TEA) feels the topic deserves [1].

The TAKS study guide was developed by the TEA as a resource primarily for students and
their parents [1]. The guide is designed specifically for struggling students and is free to students
who have previously failed the test. The book collectively addresses the test objectives by giving
explanations, practice questions, and answer keys.

Objective one states,“The student will describe functional relationships in a variety of ways” [1].
This section of the study guide introduces functions and defines a function as a set of ordered pairs in
which “each x-coordinate is paired with only one y-coordinate” [1]. More significant than the actual
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definition is the stress that the objective places on the student’s understanding that functions can
be represented in multiple ways. The study guide immediately gives multiple examples of different
representations including a table, an input/output function machine, a list of ordered pairs, a graph,
and a word problem describing a functional relationship.

Objective two concerns the students’ understanding of the properties and attributes of functions.
It deals with parent functions, domains and ranges, correlation of scatterplots, and representing pat-
terns with algebraic expressions. Objective three focuses on linear functions and objective five deals
with quadratic and other nonlinear functions.

It is evident that the TEA wants students to have as broad an understanding of functions as pos-
sible. The guide, however, never encourages students to think of functions outside of the numerical
realm nor does it expose them to non-traditional functions like piecewise functions or the absolute
value function. The addition of such material might serve to confuse students more than it would
actually enhance their understanding of function. In a text designed to make concepts as simple as
possible, the authors may have found such material inappropriate.

While the TAKS test measures the success of students in mastering high school mathematics in
Texas, the study of calculus marks the beginning of advanced mathematical study. Many students
never take a course in calculus, and those who do enter a course do not usually do so until their
last year of high school or during college. By the time they reach calculus, most students have been
exposed to functions for several years. The study of calculus, however, sheds new light on functions
as the ideas of differentiation and integration clarify the notion of functions as objects. The three
texts studied for this paper each use different techniques to present the concept, but while the al-
gebra books focused on functions as either graphs or ordered pairs, each of the calculus texts take
more of an action approach and refer to functions as rules.

In Edwards and Penney’s Calculus [5], the authors explain that understanding the relationships
between variables is often crucial in order to mathematically analyze geometric and scientific situa-
tions. They state that these relationships can often be expressed as formulas in which one variable
is a function of another and write,

“A real-valued function f defined on a set D of real numbers is a rule that assigns to each
number x in D exactly one real number, denoted by f(x)” [5].

While this definition leaves room for a broad, process-oriented “rule” view of function, the book fo-
cuses mainly on the formula idea. This trend is natural considering that much of the time involved
in a first year calculus course revolves around learning how to differentiate and integrate functions
in their formula form.

In the quintessential reform calculus text, Calculus [7], the authors hint at two different function
definitions, both at the very beginning of the book. The first definition is basically the ordered pair
concept; however, the authors avoid using set notation or vocabulary. They write, “One quantity,
H, is a function of another, t, if each value of t has a unique value of H associated with it” [7]. This
definition sufficiently depicts the arbitrary nature of function pairings, but it fails to capture the
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idea of functions as entities. In the second part of the definition, the authors tell readers to “think
of t as the input and H as the output” [7]. The input/output concept reflects the process concept
of function as it implies that somehow the input is manipulated to produce the output. The book
then gives three examples of function representations: tables, graphs, and formulas.

Arnold Ostebee and Paul Zorn’s Calculus: From Graphical, Numerical, and Symbolic Points of

View [13], takes a similar discovery learning approach as the HRW algebra book. The text begins by
presenting and discussing five different examples of functions: an equation, a relationship expressed
in words, a piecewise function, a graph, and a table. The definition is finally presented only after
examples are discussed at which point the authors write, “A function is a rule for assigning to each
member of one set, called the domain, one member of another set, called the range” [13]. While this
definition and the examples help to dispel many common function misconceptions, the text does not
mention the set of ordered pairs definition nor does it attempt to reconcile the entity nature of a
function with the idea that functions are rules.

Generally, calculus texts seem to focus on the idea of functions as rules or formulas. Interestingly,
while calculus texts are designed for students of greater mathematical maturity, they avoid using
ordered pairs and set notation even more notably than the algebra texts. While they probably avoid
this notation for the sake of simplicity and to prevent confusion over vocabulary, calculus books are
capable of doing this due to the way functions are used in the course. In the author’s opinion, how-
ever, this discrepancy in definition between levels of mathematics study may cause an even greater
disconnect in students’ understandings of the function concept. Students may not see that the idea
of function that they studied in algebra is actually the same entity as the concept of function that
they learn about in calculus.

University students studying mathematics should achieve a broader view of functions. As they
enter more challenging courses, they will be required to think and learn about functions in new
ways, and ideally they will begin to connect the bits of isolated definitions that they have absorbed
throughout their mathematical careers thus far. In the abstract math text Mathematics: A Discrete

Introduction [16], Edward Scheinerman explains that, “Intuitively, a function is a ‘rule’ or ’mecha-
nism’ that transforms one quantity into another.” He goes on to state that this text will “develop a
more abstract and rigorous view of functions” [16] at which point he defines functions in terms of
relations:

“A relation f is called a function provided (a,b) in f and (a,c) in f imply b=c” [16].

This definition serves as an umbrella definition for all the other function representations before it.
This definition packs a lot of meaning into a concise statement, but is difficult to understand without
knowledge of mathematical terminology. In the author’s opinion, students need exposure to various
function representations in order to gain the intuitive understanding of functions necessary to make
sense of such technical definitions.
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5 Common Misconceptions

As the human brain attempts to understand new information, it also works to categorize and syn-
thesize it with its existing knowledge base [21]. Throughout these acts of understanding, however,
it is the author’s opinion that students have the tendency to develop incorrect assumptions and
conceptions about new ideas, especially with respect to complex concepts like functions. Several
misconceptions obscure students’ perceptions of functions.

Students often believe that functions must be continuous and differentiable in order to truly be
considered functions. Anna Sierpinska explains this phenomenon: “As, normally the first examples
of functions encountered by a student are everywhere continuous, non-differentiable in at most finite
number of points, built up of one piece of a curve in the graphical representation, given by a single
formula; such rare functions constitute, in the student’s mind, the prototype of a function” [21].
Students, when faced with a function unlike the examples that they have been taught, will hesitate
before accepting it as a function. Many students base their understanding of what a function is
on their reserve of examples rather than the definitions they have been taught. For her study on
students’ function conceptions, Professor Anna Sfard evaluated 22-25 year old university students
who had completed a foundational mathematics course covering introductory set-theory, algebra,
and calculus. She found that many students were unfamiliar with piecewise functions and tended to
view expressions defined by cases over different sections of domain as multiple functions rather than
one [19]. In a questionnaire, she asked students to state whether the following example describes a
function (x and y are natural numbers):

If x is an even number then y = 2x + 5
Otherwise (x is an odd number) y = 1− 3x.

Only 50% of the students surveyed believed that this proposition describes a function even though
many willingly suggested that it describes two separate functions. Some students also have difficulty
accepting that a graphical representation of a discontinuous curve represents one function rather
than several. Such perplexity is natural considering that even great mathematicians like d’Alembert
did not accept split-domain functions [19]. In fact, the idea of a nowhere-differentiable function was
so new and disputed that in 1893 mathematician Hermite declared, “I turn away with fright and
horror from this lamentable evil of functions which do not have derivatives” [8].

Similarly, some mathematicians felt that functions must have a rule or algorithm behind them,
leading to a second common misconception. Sierpinska relates, “algebraic skill accompanied by the
belief in the power of algebra to solve almost automatically many kinds of problems, may be an im-
pediment to understanding the general concept of function” [21]. Students who are accustomed to
working with functions in algebraic expression notation may have difficulty believing that functions
may be constructed arbitrarily. Just as mathematicians prior to Dirichlet did not accept the concept
of a function as an arbitrary correspondence, students fail to understand the notion because of its
abstract nature [8]. Such a function was not conjured out of necessity or great usefulness to the
world outside of mathematics, but its development was of vital importance to those trying to under-
stand and develop a deeper understanding of functions. In 1899 Poincaré expressed his frustration
with the new developments in thought about function: “In former times when one invented a new
function it was for a practical purpose; today one invents them purposely to show up defects in the
reasoning of our fathers and one will deduce from them only that” [8]. While arbitrary functions
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may seem impractical, their existence highlights the deeper concept that algebraic expressions are
only means of describing functions. Students, however, tend to see formulas as things in themselves
rather than as representations of other entities [19]. In her study, Sfard presented students with the
following true or false statements:

1.) Every function expresses a certain regularity (the values of x and y cannot be matched in a
completely arbitrary manner).
2.) Every function can be expressed by a certain computational formula.

Only 6% of the students responded that both statements were false, which suggests that the
majority of the students believe that there must be an algorithm corresponding to the function in
order for it to be valid. Sfard suggests that “Not only do the students seem to think about functions
in terms of process rather than of permanent objects, but they also believe that the processes must
be algorithmic and reasonably simple” [19]. This desire for algorithmic simplicity also accounts for
students’ hesitancy to accept discontinuous and non-differentiable functions.

Sierpinska suggests that introducing students to one function represented by two different for-
mulae may help students to discriminate between the function itself and the “analytic tools” used
to describe it [21]. Unfortunately, students have a difficult time accepting that algorithms that look
different, but produce the same values, are actually the same function. When presented with the
algorithmically different functions:

N to N: f(x) = x2

and the recursively defined
g(0) = 0, g(x + 1) = g(x) + 2x + 1

students had difficulty believing that they were equivalent even though they produce the same val-
ues [19]. This misconception is tied to students’ unfamiliarity with the ordered pair definition of
function. They cannot comprehend that two different algorithms that produce the same set of
ordered pairs are in fact the same function because they cannot separate their understanding of
functions as rules.

When students are first introduced to the function concept, they are often taught the vertical
line test to check if a graph is a function. The test instructs students to slide a vertical line across
the graph they are testing. If the line ever crosses two points of the graph at once, the graph is
not a function. This technique is a helpful aid for young students who have trouble comprehending
what it means for a function to be unique, however, it does not prevent students, even when they
are older, from confusing domain and range values. In fact, many students overcompensate and
hold the misconception that functions must have a one-to-one correspondence. Ed Dubinsky and
Guershon Harel write, “It is extremely common for subjects at all levels to have difficulty with this
uniqueness condition and confuse it with the notion of one-to-one” [4].

This phenomenon may be connected to students’ lack of ability to visualize functions. While
they may remember and understand the vertical line test, the test is of little use without a graph
on which to employ it. Eisenberg asserts that “. . . students have a strong tendency to think of
functions algebraically rather than visually” even though visualization can be extremely helpful [6].
He argues that students resist visual representations because visual processing requires higher level
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skills than analytical processing [6]. While analytical processing often involves only one degree of
abstraction from an expression to concrete numbers, visualization requires the ability to evaluate
an expression, develop trends, and transfer all the knowledge into a visual format. Interestingly,
Alexander Norman, in his study of teachers’ knowledge of functions, found that in contrast to the
students, teachers tend to rely on and prefer graphical representations of functions, especially when
determining whether or not a particular expression is a function [11]. He explains that teachers have
typically had a high degree of exposure to different types of functions. They are comfortable with
standard graphs and know how to answer a variety of questions from these graphs [11]. For students,
who have had considerably less exposure to standard graphs, visualization can be intimidating and
can feel quite foreign. Increased exposure to graphs and visual representations may help students
overcome this reluctancy.

These misconceptions are simply the manifestation of students’ incomplete understanding of the
function concept. While misunderstanding is to be expected as students learn new concepts, the
goal of educators is to help students attain the highest possible level of understanding in the shortest
amount of time. Careful consideration of students’ cognitive processes and capabilities, as well as
attention to outside factors that contribute to misunderstanding, are essential to the achievement
of this goal.

6 Function Module Proposal

From the textbook analyses, it is evident that students receive a varied view of the nature of func-
tions as they progress through middle and high school. As discussed previously, functions can be
understood on three levels of abstraction: as actions, as processes, and as objects. Studies performed
on college age students reveal that few have progressed beyond the action understanding and even
fewer beyond the process understanding [4], [19]. Such a lack of comprehension of the abstract
indicates the value of developing new ways to help students understand functions.

A possible way to approach this problem is to develop a short lesson module specifically designed
to teach students about the three conceptions of functions. The following module was designed to
consist of five hour-long sessions that fill the gaps in understanding. It is intended to be taught
to students near the end of their algebra II course. At this point, they will be quite familiar with
functions. In fact, many of the students will probably be able to produce accurate definitions and
examples of functions, but as with most topics, they probably will not have thought much about
the subtleties of functions or about their own thought processes. The author’s hope is that a new
look at a familiar subject will help students make connections and piece together ideas that have
previously been separated in their minds.

Day 1: Overview of all three abstractions
The first day of the function module begins with an interactive discussion in which students are
asked the question: What is a function? Students are encouraged to think back to all their previous
courses to produce as many different definitions as they can. The teacher makes a running list of
these definitions on the blackboard, leaving space next to each item for further notes. The teacher
serves as the facilitator for this discussion, but does not make qualitative judgements about any of
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the definitions produced. Next, the students are challenged to produce examples of different types
of functions. The teacher encourages the students to think creatively to produce unique examples.
In total this discussion lasts approximately half an hour, at which point the teacher introduces
the three different levels of abstraction of the function concept. The teacher then explains that in
mathematics, an abstraction is an idea that has been generalized from another concept so that it is
less dependent on real world objects and closer to a mathematical construct. He or she then goes
on to talk through each abstraction using the function machine idea as the base to which he or
she ties each abstraction (See Figure 1). The action process is associated with a box on which a
specific formula or algorithm is explicitly given. The instructor emphasizes that students often start
out understanding functions only as specific rules or formulas and that this is typical of an action
conception. The process conception is represented by the same function box, however, for those
who have reached the process level of understanding, the box no longer has a specific algorithm
written on it, but instead, the process that takes place within the function machine is unknown.
Lastly, the teacher presents the students with the final conception, the object conception. The visual
for this conception actually excludes the machine altogether. The instructor explains that at the
most abstract level, functions are simply arbitrary pairings. At this point the instructor turns the
class’ focus back to the original definitions on the board and asks the students to identify which
definitions fit under each abstraction. After further discussion, the teacher chooses several of the
examples brainstormed earlier and, for homework, asks students to classify each of these examples
based on the abstraction to which they are most related: action, process, or object.

Day 2: Action conception in depth
The second day of the function module is devoted to the action conception. The instructor asks the
students to identify the action examples from the previous night’s assignment. Using these examples
as a springboard, the rest of the class is spent reviewing functions in their graphical and algebraic
forms and talking about action-related concepts like finding intercepts, maxima, and minima. While
much of the material covered in this class is review, students are encouraged to use this time to
cement and refine their base knowledge. For homework, students are assigned review problems from
various sections of their textbook dealing with functions and different applications of functions.
These may include problems dealing with finding function values for given inputs on graphs or with
equations.

Day 3: Process conception in depth
During the third day of instruction, students examine what it means to view functions from a process
point of view. The teacher begins the class by referring to the examples from day one that have been
deemed process examples. The overlap and subtle distinction between action and process examples
may result in difficulty for the student in identifying these. The instructor discusses these difficulties
and tries to help students understand that the significance of the process conception lies mainly in
the students’ ability to broaden their understanding of what functions can be. The teacher then
spends some time discussing processes outside the type of algebraic manipulations typically stud-
ied by mathematics students. These functions may include recursive formulas, computer algorithms,
and real-life conditional statements. For example, the students The last part of the period is devoted
to reviewing transformations on generalized linear, quadratic, and exponential functions. Students
are taught that the ability to perform these transformations is a significant step in the abstraction
of functions. Students realize that they are doing more than plugging numbers into equations, but
rather, they are able to perform processes on the functions themselves. For homework, the teacher
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Figure 1: The function machine idea as it extends to the action, process, and object conceptions of
function

selects and assigns several problems dealing with this conception. These may include problems in
which the students are given a table of inputs and outputs and must determine the process that
the input underwent to become the output. Students may also be asked to produce inputs and
outputs from a graphical representation of a function. Some of the problems should also be devoted
to transformations of linear, quadratic, and exponential functions.

Day 4: Object conception in depth
The fourth day of this module is concerned with building a function definition from the relation
concept. While the topic of relations should be review for the students, many will probably have
only a vague recollection of it. The teacher defines relations and then explains that functions are
a specific kind of relation in which each x coordinate is paired with only one y. At this point, the
instructor also introduces the concepts of onto and one-to-one and discusses in depth about domain
and co-domain. The instructor introduces students to the graphical representations of these pairings
consisting of circles to represent the two sets between which the mapping occurs and arrows connect-
ing each pair of elements. The instructor is careful to emphasize that these pairs do not necessarily
have to have a rule that determines them, but that those that do can still be represented in this
fashion. For students the equation f(x) = 3x + 2, where the domain is the real numbers, may seem
impossible to represent as a set of ordered pairs. Astute students will realize that simply listing a
few ordered pairs that satisfy this equation will not actually accurately depict the function. The
instructor, however, describes that (x, 3x + 2) actually represents the same function in ordered-pair
notation. The teacher also spends some time discussing inverse functions. Students are encouraged
to make observations about what types (i.e. one-to-one, onto) of functions have inverses. For home-
work, the students are assigned several problems dealing with sets of ordered-pairs and questions of
whether functions are onto, one-to-one, and if they have inverses.

Day 5: Special functions and wrap-up
The final day in this module is spent discussing special examples of functions that highlight im-
portant aspects of the function concept. The instructor begins by showing students examples of
functions whose inputs and outputs are not numbers. An example of such a function is a table with
a list of the people in the class and their favorite colors. Next, the teacher introduces the Dirichlet
function as a means of showing students that functions can be discontinuous. The students will
likely have difficulty understanding this function particularly due to the fact that it cannot be vi-
sualized or graphically displayed. Lastly, the teacher presents an example of two different processes
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that represent the same function. This example illustrates how the difference between the process
and object conceptions can completely alter one’s view of a specific function. While someone with
a process conception would view these functions as different, people with object conceptions would
readily agree that they are the same. The instructor ends the module by allowing students to discuss
things that confuse them about functions. For homework, the students must produce and express a
function from the action, process, and object conception.

7 Conclusion

Functions play an important role in all of mathematics. They can be found in every mathemat-
ics course from pre-algebra through graduate studies. The development of the idea now known as
function has a long history only matched in complexity by the many different ways that functions
can be represented. Surface familiarity with concepts of such complexity, however, often leads to
misunderstanding and misconceptions. Researchers surmise that students must learn such concepts
slowly and with careful attention to each level of understanding before new abstractions can be
grasped. Teachers and textbooks tend to send students different signals regarding functions and
many students, upon reaching college, have incomplete understandings of functions. These have
often been constructed by students from the examples with which they are most familiar rather
than the definitions that they have been taught. While developmental factors hinder young students
from fully grasping the concept, the author believes that with careful and deliberate instruction high
school juniors can understand the idea of function on an abstract level.
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