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1 Introduction

In 1579 Francois Vieta (1540-1603) derived the following formula
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to approximate the value of �. He obtained this formula, which subsequently
became known as Vieta�s formula using a geometric approach [3]. As it is often
the case, things can be achieved in many di¤erent ways in mathematics. Vieta�s
formula can be derived from the identity

sin x

x
=

1Y
k=1

cos
x

2k
(2)

by setting x = �
2
, and identity (2) can be obtained by using the elementary

trigonometric identity
sin 2x = 2 sinx cosx

and elementary calculus.
In his beautiful monograph [1] Mark Kac (1914 - 1984) began with a proof of

Vieta�s formula using the Rademacher functions and their independence property,
and in the �rst chapter, a generalization of Vieta�s formula was suggested as an
exercise. In this paper we provide a proof following Kac�s idea of using the inde-
pendence property of the Rademacher functions. To the best of our knowledge,
this generalization has only been achieved by Kent E. Morrison using the Fourier
transform and delta distributions (see [2]).

In the following section we introduce some facts about the expansion of num-
bers in the closed interval [0; 1] to any base g � 2: In section 3 we brie�y present
the Rademacher functions and their independence property. In section 4 we give
the generalization and its proof using the Rademacher functions and their inde-
pendence property. In section 5 we use the general formulas to approximate the
value of � and give a comparison of di¤erent formulas:
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2 Preliminaries

Real numbers in the interval [0; 1] can be represented using the binary expansion.
In fact, each real number 0 � t � 1 can be written as

t =
"1
2
+
"2
22
+
"3
23
+ � � �

where each value of "i is either 0 or 1. For example
3
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To ensure uniqueness we also impose a terminating expansion in which all the
digits from a certain point on are all equal to 0. For example, we write
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instead of
3

4
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+
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+
1

24
+
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+ � � �

The digits "i depend on t, so they are functions of t. Hence we write

t =
"1 (t)

2
+
"2 (t)

22
+
"3(t)

23
+ � � �

This idea can of course be generalized to any integer base g � 2, so in general
we can write

t =
!1 (t)

g
+
!2 (t)

g2
+
!3 (t)

g3
+ � � � (3)

where t 2 [0; 1] and !k 2 f0; 1; � � �; g � 1g.

3 Rademacher functions

In this section we introduce the functions rk (t) which are de�ned in terms of the
binary digits "k (t) as follows

rk (t) = 1� 2"k (t) k = 1; 2; 3; � � �. (4)

These functions were �rst introduced by Hans Rademacher (1892 - 1969) as a
system of orthogonal functions. He introduced them in a paper which was pub-
lished in 1922 (more information can be found in [4] ), and these functions are
now known as the Rademacher functions. For illustrative purposes, the graphs
of the �rst four functions r1 (t) ; r2 (t) ; r3 (t) ; r4 (t) are given below.

r1 (t) r2 (t)
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r3 (t) r4 (t)

Notice from the graphs above that rn (t), takes the values +1 or �1 alternatively
over the intervals ( s

2n
; s+1
2n
); s = 0; � � �; 2n � 1; and so the length of each small

interval is 1
2n
: Also we deduce that the function rn (t) has 2n intervals, half of

them have the value +1 and the other half have the value �1.
The Rademacher functions satisfy the independence property

� fr1 (t) = �1; r2 (t) = �2; � � �; rn (t) = �ng =
nY
k=1

�frk (t) = �kg (5)

where � stands for the measure (length) of the set de�ned inside the braces and
�1; � � �; �n is a sequence of +1 and �1: Thus the product in (5) is

�
1
2

�n
.

3.1 Generalization of the Rademacher functions

As we can have an expansion to any base for the numbers in the interval [0; 1],
we can also de�ne the Rademacher functions as

rk(t) = 1�
2!k(t)

g � 1 k = 1; 2; 3; � � � (6)

where !k 2 f0; 1; � � �; g � 1g and g is a positive integer greater than 1:
Moreover, the functions de�ned above can also be shown to be independent.

Therefore, we have

� fr1 (t) = �1; r2 (t) = �2; � � ��; rn (t) = �ng =
nY
k=1

�frk (t) = �kg =
�
1

g

�n
;

where �1; � � �; �n 2 f1; g�3g�1 ;
g�5
g�1 ; � � �;

1
g�1 ;

�1
g�1 ; � � �;

�(g�5)
g�1 ;

�(g�3)
g�1 ;�1g when g is an

even number and �1; � � �; �n 2 f1; g�3g�1 ;
g�5
g�1 ; � � �;

2
g�1 ; 0;

�2
g�1 ; � � �;

�(g�5)
g�1 ;

�(g�3)
g�1 ;�1g

when g is an odd number.
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4 The general formulas

The following theorem generalizes formula (2).

Theorem 4.1 Let g be a positive integer � 2: If g is even, then

sin x

x
=

1Y
k=1

2

g

0@ g
2X

m=1

cos

�
(2m� 1)x

gk

�1A : (7)

If g is odd, then

sin x

x
=

1Y
k=1

1

g

0@2
0@ g�1

2X
m=1

cos

�
2mx

gk

�1A+ 1
1A . (8)

Proof. Equality (8) can be proved by establishing the next �ve identities:

1� 2t
g � 1 =

1X
k=1

rk (t)

gk
(9)

Z 1

0

e(g�1)ix(
1�2t
g�1 )dt =

Z 1
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eix(1�2t)dt =
sin x

x
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�
2mx

gk

�
+ 1

1A (11)
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g�1 )dt =
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0

exp

"
(g � 1)ix lim

n!1
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k=1

rk (t)

gk

#
dt (12)
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0
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"
(g � 1)ix lim

n!1

nX
k=1

rk (t)
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#
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�
dt

= lim
n!1

nY
k=1
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0
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�
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gk

�
dt:

(13)

First, equation (9) can be proved as follows. From (3) and (6) we have

t =

1X
k=1

!k (t)

gk

=
1X
k=1

(g � 1)(1� rk (t))
2:gk

.

Thus,
2t
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1

gk
�
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rk (t)

gk
.
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But
1X
k=1

1
gk
is a geometric series and converges to 1

g�1 . Hence

2t

g � 1 =
1

g � 1 �
1X
k=1

rk (t)

gk

which proves equation (9). Then equation (10) can be obtained by a simple
integration and the identity

eix � e�ix
2i

= sinx:

Similarly, equation (11) can be derived by a simple integration and noticing that
the function rk (t) is integrable over the intervals ( sgk ;

s+1
gk
); s = 0; � � �; gk � 1

and has the values 1; g�3
g�1 ;

g�5
g�1 ; � � �;

2
g�1 ; 0;

�2
g�1 ; � � �;

�(g�5)
g�1 ;

�(g�3)
g�1 ;�1 alternatively

over these intervals: Therefore we have gk possible values and the set of points t
satisfying each value has a total length of 1

g
. Notice
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Therefore Z 1

0

exp

�
(g � 1)ixrk (t)
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�
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= gk�1

"
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gk

 
e
ix(g�1)
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�ix(g�1)
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ix(g�3)
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�ix(g�3)
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e
ix(g�5)
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!#
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1

g
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2X
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�
2mx

gk

�
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Equation (12) follows from a trivial substitution in equation (9), and �nally,
equation (13) is the where we use the independence property of the Rademacher
functions.
Since the exponential function is continuous, we haveZ 1

0

exp

"
(g � 1)ix lim

n!1

nX
k=1

rk (t)

gk

#
dt =

Z 1

0

lim
n!1

exp
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Also since exp

"
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rk(t)
gk

#
is a sequence of integrable functions on [0; 1]

and converges uniformly on [0; 1] to the function exp [ix(1� 2t)], we can inter-
change the limit with the integral. Therefore we haveZ 1

0
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n!1

exp

"
(g � 1)ix

nX
k=1

rk (t)

gk

#
dt = lim

n!1
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Now we show that
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�
(g � 1)ixrk (t)

gk

�
dt

by evaluating the integral over all possible values of the function rk (t) as we did
to prove equation (11) and using the independence property of the Rademacher
functions. Taking �1; � � �; �n to be the possible values of the function rk (t) we
have Z 1
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Simple calculations give

X
�1;���;�n

exp

"
ix

nX
k=1

(g � 1)�k
gk

#
nY
k=1

� frk (t) = �kg

=
X
�1;���;�n

nY
k=1

exp

�
ix(g � 1)�k

gk

�
� frk (t) = �kg

=
nY
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X
�k

exp

�
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�
� frk (t) = �kg

=
nY
k=1

Z 1

0

exp

�
(g � 1)ixrk (t)

gk

�
dt:

Now using equation (11) we obtain formula (8). The formula for the even case can
be proved using very similar steps as in the odd case. The only di¤erence is that
in step (3) we need to consider the values of the function rk (t) in f1; g�3g�1 ;

g�5
g�1 ; � �

�; 1
g�1 ;

�1
g�1 ; � � �;

�(g�5)
g�1 ;

�(g�3)
g�1 ;�1g:

If we take the value of g from 2 to 10 alternatively in formula (7) and formula
(8) we get

sin x

x
=

1Y
k=1

cos
x

2k

=
1Y
k=1

1

3

�
2 cos

2x

3k
+ 1

�
=

1Y
k=1

1

2

�
cos

x

4k
+ cos

3x

4k

�
=

1Y
k=1

1

5

�
2

�
cos

2x

5k
+ cos

4x
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�
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�
=

1Y
k=1

1

3

�
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x

6k
+ cos

3x
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+ cos

5x
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�
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1Y
k=1

1

7

�
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�
cos

2x
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+ cos

4x
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+ cos
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�
+ 1

�
=

1Y
k=1

1

4

�
cos

x

8k
+ cos

3x

8k
+ cos

5x

8k
+ cos

7x
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�
=
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1

9
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�
cos

2x

9k
+ cos

4x
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+ cos
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+ cos

8x
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�
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�
=

1Y
k=1

1

5

�
cos

x

10k
+ cos

3x

10k
+ cos

5x

10k
+ cos

7x

10k
+ cos

9x

10k

�
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We notice that in general the formulas are in�nite products of sum of cosines.
The main di¤erence is that in the odd case we have the term "1" which appears
due to the value 0 of rk (t) :
In the next section we are going to use these formulas to approximate the

value of � by setting x = �
2
:

5 Approximating the value of � using the gen-
eral formulas

The following table is obtained using a computer program written in C++. The
program uses formulas (7) and (8) to get approximations of the value of � up to
15 decimal places of di¤erent bases. In this table we report only the base value
from 2 to 13, but the program can give an approximation of the value of � up
to 15 decimal places to any base g � 2. The �rst row gives the base value to be
substituted in the formula. The second row gives the number of iterations needed
to compute � up to 15 decimal places. The third row gives the total number of
cosines needed to compute � up to 15 decimal places. The values of the third row
can be obtained by multiplying the number of cosines appearing in the formula
corresponding to the base value, by the number of iterations needed to compute
� up to 15 decimal places. For example, when we use g = 4 in the formula (7),
the number of cosines are 2; and from the second row, the number of iterations
needed to compute � up to 15 decimal places is 12: Therefore the number of
cosines needed to compute � up to 15 decimal places are 2� 12 = 24:

base value (g) 2 3 4 5 6 7 8 9 10 11 12 13
I(g) 24 15 12 11 10 9 8 8 8 7 7 7
C(g) 24 15 24 22 30 27 32 32 40 35 42 42

From the table we can observe the following:

1. As the base value g get larger, the number of iterations needed to compute
� up to 15 decimal places decreases. This seems to be clear from the formu-
las, since as the base value gets larger the number of operations increases.
Therefore we will need fewer iterations to reach the approximated value of
� up to 15 decimal places.

2. We see that among all base values appearing in the table, base 3 gives an
approximation to the value of � up to 15 decimal places with least number
of cosines. So, we can say that the formula for base 3 is the best since it
gives the value of � up to 15 decimal places with minimal cost in terms
of operations. Moreover, the odd base gives the approximation with fewer
number of cosines compared to the even base. In general, as we go higher
in the base (odd or even), the number of cosines increases.
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