
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal 

Volume 7 
Issue 1 Article 11 

Human Face Recognition Technology Using the Karhunen-Loeve Human Face Recognition Technology Using the Karhunen-Loeve 

Expansion Technique Expansion Technique 

Anthony Giordano 
Regis University, giord199@regis.edu 

Michael Uhrig 
Regis University 

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj 

Recommended Citation Recommended Citation 
Giordano, Anthony and Uhrig, Michael (2006) "Human Face Recognition Technology Using the Karhunen-
Loeve Expansion Technique," Rose-Hulman Undergraduate Mathematics Journal: Vol. 7 : Iss. 1 , Article 
11. 
Available at: https://scholar.rose-hulman.edu/rhumj/vol7/iss1/11 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Rose-Hulman Institute of Technology: Rose-Hulman Scholar

https://core.ac.uk/display/268182268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol7
https://scholar.rose-hulman.edu/rhumj/vol7/iss1
https://scholar.rose-hulman.edu/rhumj/vol7/iss1/11
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol7%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol7/iss1/11?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol7%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages


Human Face Recognition Technology Using the
Karhunen-Loéve Expansion Technique

Anthony Giordano & Michael Uhrig
Regis University
Denver, Colorado

Abstract

We will explore the area of face recognition using the partial singular value decomposi-
tion of a matrix and test some of its successes and limitations. We constructed a database
consisting of 130 pictures of 65 individuals, and then used the Karhunen-Loéve (KL) Ex-
pansion method to relate pictures from outside the database to those in the database.
While this method was generally very successful, we were able to test and define several of
its limitations.

1 Introduction

The Karhunen-Loéve (KL) Expansion technique for face recognition is a widely used method
using a portion of the singular value decomposition of a matrix from linear algebra. Turk and
Pentland in 1991 were the first to conduct significant tests using this technique in the area of
face recognition [1], however Sirovich and Kirby used this technique as early as 1987 [2]. Using
a large database the authors were able to test the robustness of the system over variations in
lighting, orientation of the head, and size [3] and [4]. The goal of this project was to construct
a system in MATLAB using the KL expansion to further test potential limitations of this
technique.

The KL expansion relies on our Proposition 2.8, which states that given a matrix A, the
first j eigenvectors corresponding to the largest j eigenvalues of the covariance matrix of A
provide the best j-dimensional approximation to the rows of A [5]. The KL expansion then
takes each image in the database (all of which must have the same pixel dimensions) and
reshapes them so that each image corresponds to a row of a very large matrix A. Using our
theorem we can then create a j-dimensional approximation by orthogonally projecting each
picture vector onto the space spanned by the first j eigenvectors. The pictures outside the
database are then reshaped in the same way and projected onto the same subspace. At this
point, it is a simple matter of taking the Euclidean distance between the coefficients of the
orthogonal projections of these outside pictures and the images inside the database and finding
which picture is the closest match.

Using MATLAB, we were able to automate the importing of images to form the database,
reshape the images, and construct our j-dimensional approximation. By taking multiple pic-
tures of each person, we were able to test the robustness of the system to changes in the
pictures, such as presence of glasses, hairstyle, facial expression, and head tilt. We found that
the presence or lack of glasses in the pictures had little to no effect on the results. Hairstyle,

1



however, was very influential on the results, in fact in our first database the presence or lack of
long hair was determined to be the most influential characteristic in the recognition process.
Contorted facial expressions and a head tilt of ±5◦ or more also had a significantly negative
impact on the results.

2 Linear Algebra Applications to Face Recognition

The KL Expansion relies on properties of the Singular-Value Decomposition (SVD) of a matrix.
The SVD of any matrix A provides us with a way to decompose that matrix to the form

A = UΣV T

where if A is p× n then U is a p× p orthogonal matrix whose columns provide a basis for the
columnspace of A and V is an n × n matrix whose columns provide a basis for the rowspace
of A. For our purposes only a portion of the SVD will be used.

We should note here that the following propositions are all well established already. How-
ever, for the sake of completeness and to provide the reader with a greater understanding of
this area we decided to include all of the proofs. Most of the following proofs can be found in
[7], although for proof of Proposition 2.5 a good source would be [6]. The purpose of the first
six propositions is to establish certain properties of the n× n matrix ATA, namely that it has
a set of eigenvectors which form a basis for Rn. The way that we will prove this is by showing
that this matrix is diagonalizable. This will suffice as it is a commonly known fact from linear
algebra that a diagonal matrix has a set of eigenvectors which form a basis for Rn.

Proposition 2.1. Given any matrix A, the matrix ATA is symmetric.

Proof. Define the matrix A as the set of vectors

A =

 v1 v2 · · · vn


and

AT =


vT1
vT2
...

vTn

 .

Then the ijth entry of ATA is
vTi vj = vi · vj .

Similarly, the jith entry is
vTj vi = vj · vi.

Since the dot product of two vectors is commutative, vi · vj = vj · vi.

2



Proposition 2.2. For any symmetric matrix A, the eigenvectors from different eigenspaces
are always orthogonal.

Proof. Let xa and xb be two eigenvectors of A corresponding to two distinct eigenvalues λa
and λb, respectively. Then,

λaxa · xb
= (Axa)Txb

= xTaA
Txb

= xTaAxb

= xTa λbxb

λaxa · xb = λbxa · xb
(λa − λb)xa · xb = 0.

Since λa and λb are distinct, λa − λb 6= 0 and xa · xb must equal zero. Therefore, the vectors
xa and xb are orthogonal.

Proposition 2.3. The eigenvalues of ATA are all non-negative and real.

Proof. Let xa be a normalized eigenvector of ATA and λa be the corresponding eigenvalue.
Then,

‖Axa‖2

= (Axa)T (Axa)

= xTaA
TAxa

= xTa (λaxa)

‖Axa‖2 = λa.

Therefore, the eigenvalues (λa) that are produced by ATA are all non-negative and real since
the length of a vector squared is always nonnegative and real.

Definition 2.4. The singular values of a matrix A are equal to the length of Ax, where x is
an eigenvector of ATA. The set of singular values is denoted by σ1, . . . , σn. From Proposition
2.3 we also know that the singular values are equivalent to the square root of the eigenvalues
of ATA.

For the remainder of this paper it will be assumed that the singular values are arranged
such that σ1 ≥ σ2 ≥ · · · ≥ σn. It will also be assumed that the corresponding eigenvalues are
arranged in decreasing order as well, such that λa = σa

2.

3



Proposition 2.5. If A(n × n) has n real eigenvalues then there exists a matrix U with or-
thonormal columns such that UTAU is upper triangular.

Proof. Since A has n real eigenvalues (λ1 . . . λn) we know that each eigenspace has at least
one corresponding eigenvector. Take any one of these normalized vectors and let it be v1

with corresponding eigenvalue λ1. It is possible to use this vector to create an orthonormal
basis for Rn. To do this, create n− 1 vectors that are linearly independent of v1 and use the
Gram-Schmidt process to create an orthonormal basis for Rn. Call this set of new vectors
{w1 . . .wn−1}, and use this set of vectors in tandem with the eigenvector of A to create the
following n× n matrix.

U1 =

 v1 w1 · · · wn−1


For notation purposes it is also necessary to define the set of w vectors.

W =

 w1 · · · wn−1


The initial step in the formation of an upper triangular matrix is to multiply A and U1 together
to produce the matrix B, such that B = UT1 AU1.

B =


vT1
wT

1
...

wT
n−1


 A

 v1 w1 · · · wn−1



=


vT1
wT

1
...

wT
n−1


 Av1 Aw1 · · · Awn−1



=


vT1
wT

1
...

wT
n−1


 λ1v1 Aw1 · · · Awn−1



=


λ1v1 · v1 v1 · (Aw1) · · · v1 · (Awn−1)
λ1w1 · v1

... W TAW
λ1wn−1 · v1


Since v1 is a normal vector and is orthogonal to the columns of W we can simplify this matrix
to

B =


λ1 vT1 AW

0 W TAW

 .

4



At this point it is important to note that the matrix B has the same eigenvalues as the original
matrix A, this can be easily proven through the use of the characteristic polynomial.

char(UT1 AU1) = det(UT1 AU1 − λI)
= det(UT1 AU1 − UT1 λU1)
= det(UT1 (A− λI)U1)
= det(UT1 ) det(A− λI) det(U1)
= det(UT1 U1) det(A− λI)
= det(I) det(A− λI)
= det(A− λI)
= char(A)

Since B has the same eigenvalues as A (λ1 . . . λn) then the lower right partition of B, the
n − 1 × n − 1 matrix W TAW , has n − 1 eigenvalues (λ2 . . . λn). Now define v2 as being the
normalized eigenvector of W TAW , which corresponds to the eigenvalue λ2. This vector is used
to create an orthonormal basis for Rn−1, {v2, y1, . . . ,yn−2}. Use this set of vectors to create
the matrix U2.

U2 =


1 0

0 v2 y1 · · · yn−2


It will also become convenient later to define the n−1×n−2 matrix Y whose columns are the
set {y1, . . . ,yn−2}. Multiply U2 and B in the same manner as previously conducted, which
provided us with B.

UT2 BU2 =


1 0

vT2
0 yT1

...
yTn−2




λ1 vT1 AW

0 W TAW




1 0

0 v2 y1 · · · yn−2



=


λ1 vT1 AW

0


vT2
yT1
...

yTn−2

 W TAW




1 0

0 v2 y1 · · · yn−2



5



=

 λ1 vT1 AW
λ2vT2

0 Y TW TAW




1 0

0 v2 y1 · · · yn−2


=

 λ1 vT1 AWv2 vT1 AWY

0
λ2 λ2vT2 Y

Y Tλ2v2 Y TW TAWY


=

 λ1 vT1 AWv2 vT1 AWY

0
λ2 λ2vT2 Y
0 Y TW TAWY


The bottom right partition of this result Y TW TAWY has eigenvalues λ3, . . . , λn Using

this knowledge, the same process can be repeated once again, using v3, the eigenvector of
Y TW TAWY to create an orthonormal basis for Rn−2. This matrix will be placed in the
bottom right partition of an n× n matrix U3, which will be filled in with 1’s along the two
blank diagonal entries and zeroes in all other blank entries. If this process is repeated n times,
then the result will be in the form

UTn . . . U
T
1 AU1 . . . Un.

Since all of the Ui matrices are orthonormal, the results of the matrix multiplication U1 . . . Un
and UTn . . . U

T
1 are orthonormal. Furthermore, if we define U = U1 . . . Un, then UT = UTn . . . U

T
1 .

Therefore, U is in the form that we desire, and the matrix multiplication UTAU yields an upper
triangular matrix with the eigenvalues of A in the diagonal entries.

Proposition 2.6. If A is symmetric then UTAU is symmetric.

Proof. To prove UTAU is symmetric, we simply need to prove that (UTAU)T = UTAU .

(UTAU)T = UTATUT
T

= UTAU

An easy corollary to the last two propositions is that any symmetric matrix A is diagno-
lizable, since a symmetric, upper triangular matrix will necessarily be diagonal.

In the next proposition we will use the preceding conclusions, which established a basis for
R
n from the eigenvectors of ATA, to derive a basis for the columnspace of A. Before we begin

the next section, recall that the columnspace of a p × n matrix A, denoted ColA, is defined
as the subspace of Rp spanned by the columns of A. Similarly, the rowspace of A, denoted
Row A, is the subspace of Rn spanned by the rows of A.

6



Proposition 2.7. Define {x1,x2, . . . ,xn} as an orthonormal basis for Rn consisting of eigen-
vectors of ATA. These vectors also correspond to the eigenvalues of ATA; λ1, λ2, . . . , λn. Now,
suppose that ATA has r nonzero eigenvalues, then the set of vectors {Ax1, Ax2, . . . , Axr} is
an orthogonal basis for the columnspace of A.

Proof. For any a 6= b, xa is orthogonal to xb.

(Axa) · (Axb) = (Axa)T (Axb) = xTaA
TAxb = xTa λbxb = λbxa · xb = 0

Therefore, {Ax1, Ax2, . . . , Axr} is an orthogonal set. From Proposition 2.3 the eigenvalues of
ATA are equivalent to the lengths of the vectors squared. Since there are r nonzero eigenval-
ues, Axa 6= 0 if and only if 1 ≤ a ≤ r, which means that {Ax1, Ax2, . . . , Axr} is a linearly
independent set in Col A. Any vector z in Col A can be written as z = Av and v can be
written as a linear combination of x1, . . .xn with coefficients c1 . . . cn.

z = Av = Ac1x1 + · · ·+Acrxr + · · ·+Acnxn

= Ac1x1 + · · ·+Acrxr + 0 + · · ·+ 0

Therefore, z is in Span {Ax1, Ax2, . . . , Axr}, which means that this set is a basis for Col A.

Finally we are in a position to understand how the Karhunen-Loéve method will work. In
the interest of clarity, let’s first consider a very simple example of how the method works.

EXAMPLE
Consider the matrix

Q =
(

2 3 5 6
5 7 8 10

)
.

In this case, Col Q is simply R2, and the vectors that form the columns can actually be plotted,
as in Figure 1.

Figure 1: Vectors formed by the Columns of Q Plotted as Points in the Euclidean Plane

7



At this point, we can take the mean vector

M =
1
4

(
2+3+5+6
5+7+8+10

)
=
(

4
7.5

)
and subtract it from each of the columns of Q to obtain our new mean-subtracted matrix,

Qsub =
(

-2 -1 1 2
-2.5 -.5 .5 2.5

)
the plot of which is now centered around the origin. Now we can calculate the small matrix

Qsub ∗QsubT =
(

10 11
11 13

)
.

If we calculate the eigenvalues and corresponding eigenvectors, we get {22.6, .398} for the
eigenvalues and (

.6576

.7534

)
,

(
.7534
-.6576

)
for the corresponding eigenvectors. If we view the graph of the space spanned by the first
eigenvector corresponding to the larger eigenvalue, then we see it creates a nice “line of best
fit” for the points in Qsub (see Figure 2).

Figure 2: The Columns of Qsub Plotted as Points with the One-Dimensional Subspace Spanned
by the First Eigenvector of Qsub ∗QsubT

In fact, what the following proposition will establish is that this vector spans the best
one-dimensional approximation of the data that we can find. For the purpose of maintaining
consistency with the literature, we will define the matrix Qsub ∗ QsubT as the covariance
matrix of Qsub, though QsubTQsub is also given the same title. It is important to note that
in the literature, it is much more typical to define the covariance matrix as 1

pQsub
TQsub or

1
nQsub ∗ Qsub

T . However, for our purposes the presence of the fraction at the beginning is
unimportant, as it does not affect the eigenvectors and only scales the eigenvalues by 1

p or 1
n .

8



Therefore, leaving it out will not effect our final result and in the interest of simplicity we have
left it out.

Furthermore, in the proposition we contend that this method provides the “best” j-
dimensional approximation of the rowspace of a matrix. While the word “best” may seem
imprecise at first, it actually means we are minimizing the orthogonally projected distance. So
in our previous example, if all of our four points were projected onto the one-dimensional sub-

space spanned by the vector
(

.6576

.7534

)
, then total of the distances that each point would have

to travel to get to that line would be the smallest possible distance for any one-dimensional
subspace. We must also note that although we used the term “line of best fit” earlier, this
was simply an analogous comparison. The process we are using minimizes the orthogonal
distance, whereas the least squares line of best fit from elementary statistics minimizes the
vertical distance.

Proposition 2.8. Given any p × n matrix X, define its covariance matrix C = XTX. If
the eigenvalues of C are (λ1, . . . , λn) with corresponding eigenvectors are {v1, . . . ,vn}, then
the first j eigenvectors of C provide the best j-dimensional approximation to the rows of X iff
λ1 ≥ λ2 ≥ · · · ≥ λn.

Proof. Given a matrix X, we name the rows {x1, . . . ,xp} and write

X =

 x1 · · · xp

T

.

Every xi is a vector in Rn. Additionally, define Φ as the matrix whose columns consist of
the set of vectors {φ1, . . . , φn} which form an orthonormal basis for Rn. Therefore, any xi is
contained within the span of Φ and can be written as a linear combination of the columns:

xi =
n∑
k=1

αkφk.

Since the φ′s form an orthonormal basis for Rn, the coefficients αk are easy to calculate;

αk = xi · φk = 〈xi, φk〉.

Although the matrix Φ provides the full orthonormal basis for Rn, in our application we will
not be using the full basis. If we use, for example, only the first j vectors in Φ, then it is
possible to split up the summation and write it as

xi =
j∑

k=1

αkφk +
n∑

k=j+1

αkφk.

When it is written this way, the first term
(∑j

k=1 αkφk

)
is the j-dimensional approximation

of xi and the second term can be thought of as the error. For notation purposes, define

x(err)
i =

n∑
k=j+1

αkφk.

9



At this point we can also define the total error of the orthogonal projection of X onto the
linear subspace of Rn spanned by the first j vectors of Φ.

Error =
p∑
t=1

‖ x(err)
t ‖2

=
p∑
t=1

‖

 n∑
k=j+1

αkφk

 n∑
k=j+1

αkφk

 ‖
=

p∑
t=1

‖ (αj+1φj+1 + · · ·+ αnφn) (αj+1φj+1 + · · ·+ αnφn) ‖

Since φm · φn = 0 for all m 6= n and φm · φm = 1 for all m, the previous equation can be
simplified.

Error =
p∑
t=1

‖
(
α2
j+1 + · · ·+ α2

n

)
‖

=
p∑
t=1

 n∑
k=j+1

(αk)
2


=

p∑
t=1

 n∑
k=j+1

(xt · φk)2


=

p∑
t=1

 n∑
k=j+1

(xt · φk) (xt · φk)


=

p∑
t=1

 n∑
k=j+1

(φk · xt) (xt · φk)


=

p∑
t=1

 n∑
k=j+1

φTk xtxTt φk


Since both of the summation functions are finite sums, it is possible to commute the order.

Error =
n∑

k=j+1

(
p∑
t=1

φTk xtxTt φk

)

=
n∑

k=j+1

((
φTk x1xT1 φk + · · ·+ φTk xpxTp φk

))
=

n∑
k=j+1

(
φTk
(
(x1xT1 + · · ·+ xpxTp )

)
φk
)

=
n∑

k=j+1

〈φk,

(
p∑
t=1

xtxTt

)
φk〉

10



In order to proceed at this point, it is necessary to define some new notation. ψ(a)
t is equal to

the ath entry in the vector xt. Therefore,

p∑
t=1

xtxTt =

 ψ
(1)
1 ψ

(1)
1 · · · ψ

(1)
1 ψ

(n)
1

...
. . .

...
ψ

(n)
1 ψ

(1)
1 · · · ψ

(n)
1 ψ

(n)
1

+ · · ·+

 ψ
(1)
p ψ

(1)
p · · · ψ

(1)
p ψ

(n)
p

...
. . .

...
ψ

(n)
p ψ

(1)
p · · · ψ

(n)
p ψ

(n)
p



=

 ψ
(1)
1 ψ

(1)
1 +. . . +ψ(1)

p ψ
(1)
p · · · ψ

(1)
1 ψ

(n)
1 +. . .+ψ(1)

p ψ
(n)
p

...
. . .

...
ψ

(n)
1 ψ

(1)
1 +. . .+ψ(n)

p ψ
(1)
p · · · ψ

(n)
1 ψ

(n)
1 +. . .+ψ(n)

p ψ
(n)
p



=

 x1 · · · xp

 x1 · · · xp

T

= XTX.

Substituting this into the equation for the error yields

Error =
n∑

k=j+1

〈φk,

(
p∑
t=1

xtxTt

)
φk〉

=
n∑

k=j+1

〈φk,
(
XTX

)
φk〉

=
n∑

k=j+1

〈φk, Cφk〉.

This provides a simple way to look at the error produced by the j-dimensional approxi-
mation of X. Now let’s just assume for a moment that j = 0. In this case, the error can be
expressed as

Error =
p∑
t=1

‖x(err)
t ‖2

and x(err)
t can be expressed as

x(err)
t =

n∑
k=1

αkφk = xt.

Since x(err)
t = xt when j = 0, we can substitute into the previous equation to obtain

Error =
p∑
t=1

‖xt‖2 = Constant.

This is the same as saying
n∑
k=1

〈φk, Cφk〉

11



is also a constant and can be split up in the following manner:

〈φ1, Cφ1〉+
n∑
k=2

〈φk, Cφk〉.

Notice now that the second term (
∑n

k=2〈φk, Cφk〉) is equal to the error for the 1-dimensional
approximation of X, so minimizing the error in this case is equivalent to maximizing

〈φ1, Cφ1〉.

Recall that the set of eigenvectors of the covariance matrix form an orthogonal basis for Rn

(which we will assume has been normalized). If we define V as

V =

 v1 · · · vn


then any of the columns of Φ can be written as a linear combination of the columns of V . In
other words

φi = γ1v1 + · · ·+ γnvn = V Γ

for

Γ =

 γ1
...
γn

 .

Furthermore, if

Λ =

 λ1 0
. . .

0 λn


CV =

 λ1v1 · · · λnvn

 = V Λ.

Putting these two equalities together and applying it to our problem allows us to put the inner
product in a different form:

〈φ1, Cφ1〉 = φTCφ

= ΓTV TCV Γ
= ΓTV TV ΛΓ
= ΓTΛΓ

=
(
γ1 · · · γn

) λ1γ1
...

λnγn


= λ1γ

2
1 + · · ·+ λnγ

2
n.

At this point, it is relatively easy to prove that

〈φ1, Cφ1〉 = λ1γ
2
1 + · · ·+ λnγ

2
n ≤ λ1.

12



First we show that, since φ1 is a normal vector

〈φ1, φ1〉 = ‖φ1‖2

= φT1 φ1

= ΓTV TV Γ
= ΓTΓ
= γ2

1 + · · ·+ γ2
n.

Since this sum is equal to ‖φ1‖2 = 1, we can simply multiply it into our previous equation to
get

λ1γ
2
1 + · · ·+ λnγ

2
n ≤ λ1(γ2

1 + · · ·+ γ2
n).

Since the eigenvalues are organized such that λ1 ≥ · · · ≥ λn, the first term on the left and
right sides of the equation will be equal, and each of the subsequent terms on the left side of
the equation will always be less than or equal to its corresponding term on the right side since
all γ2

i ≥ 0. This proves that
〈φ1, Cφ1〉 ≤ λ1,

and since we want to maximize the left side of the equation, we want

〈φ1, Cφ1〉 = λ1.

This result is easily obtained by setting φ1 equal to v1. Finally we can conclude that the
best 1-dimensional approximation to the rows of X is the eigenvector corresponding to the
largest eigenvalue of the covariance matrix of X. This exact same argument can be applied
to higher dimensional approximations, so that we can conclude that the best j-dimensional
approximation to the rows of X is given by the first j sorted eigenvectors of the covariance
matrix.

This provides a good way to find the best basis for the rowspace of X, however, it requires
calculating C, which is a n × n matrix. If n is significantly larger than p (as it will be in our
application) and you still want to find the best j-dimensional approximation of the rowspace
without calculating the large matrix C, it is possible to approach the problem from a slightly
different angle. Consider the (not quite finished) SVD of the matrix X,

X = UΣV T ,

where Σ is k × k and k is the rank of X. By definition, we know that V is determined by the
eigenvectors of the covariance matrix of X, so the best j-dimensional approximation to the
rows of X is given by the right singular vectors of X, or the columns of V . Now consider the
transpose of the singular value decompostion of X:

XT = V ΣUT .

In this case, the covariance matrix of XT is defined as XXT , which is the much smaller p× p
matrix, and the singular vectors of XX are related to those of X by

13



viσi = XTui

vi =
1
σi
XTui.

This useful trick gives us an easy way to calculate the columns of V without having to
calculate the large n× n matrix C.

3 Face Recognition Programming Using MATLAB

In order to apply the mathematical processes to face recognition, a method to express the
database of faces as a matrix is needed. The computer program MATLAB can be used to
import images from a text file list of filenames and then convert each grayscale image into a
h × w matrix, where w is the width (in pixels) of the image and h is the height. Once each
image is imported and converted to the proper MATLAB format, it is then reshaped into a
vector that is (w ∗ h) × 1, simply by placing the first column on the top and each successive
column below its predecessor. Each vector now corresponds to a picture, and these vectors
become the columns of a new matrix A, which is (w ∗ h) × p, where p is the total number of
images used. MATLAB is then used to calculate the mean vector of the columns of A and
subtracts this mean vector M from each of the columns in A to create the mean-subtracted
matrix L. For a detailed explanation of this process, including the MATLAB code that we
used, see Appendix A.

It is now possible to perform a simplified version of SVD calculations. The initial step
is to calculate the covariance matrix G = ATA. At this point the eigenvalues and their
corresponding eigenvectors are calculated and sorted. They are sorted in descending order
according to the size of the eigenvalues and the corresponding eigenvectors are placed in the
same order. These eigenvectors become the columns of the p × p matrix V . In order to
create a set of basis vectors for the columnspace of L the matrix U is created such that
U = L∗V . The span of the first column of U provides the best one-dimensional approximation
of the column space of L. Similarly, the span of the first two columns provides the best two-
dimensional approximation, and this line of thinking can be continued to obtain the best
desired j − dimensional approximation. It is then possible to calculate what percentage of the
variance is used by the j − dimensional approximation. This percentage (Per) is calculated
using the sorted eigenvalues of the covariance matrix {λ1 . . . λn} in the equation

Per =

j∑
i=1

λi

n∑
i=1

λi

∗ 100%.

In order to test an image from outside the database, MATLAB imports and reshapes the
image in the same manner as that used for the images of the database. The mean vector M
is then subtracted from the test image vector (T ) and the coefficients of the first j bases are

14



Figure 3: Average Face from First Database

calculated using the formula

Ct =
Ut · T
Ut · Ut

.

Where Ct is the tth coefficient for T and Ut is the tth column of U . From here, MATLAB
simply calculates the Euclidean distance between the first j coefficients of T and the first j
coefficients of all the pictures in the database. Once these distances are sorted (in ascending
order) it allows for us to determine which image is the closest approximation of the test image.
From that point onward, it is up to interpretation by human eyes to determine whether or not
a match truly exists. The MATLAB code for testing an image from outside the database can
be found in Appendix B.

4 First Database

The first database that we tested had 130 pictures of 65 different people. Each picture was
400 × 500 pixels and none of the pictures contained people wearing glasses. We chose to
use images of people without their glasses to eliminate a “glasses” variable, which would
potentially limit the amount of accuracy in the system. We used 15 of the 130 basis vectors in
the computations, which retained 81.229% of the variance. The computer took 90 minutes (on
a 2.8GHz processor with 512MB RAM) to load all 130 images into its memory and perform
the required calculations. One output that is initially interesting to look at is the average face.
This is simply the mean vector of the columns of A reshaped into a 400 × 500 picture. This
yielded the image in Figure 3.

Another image that is output by MATLAB is informally called the eigenface. Mathemat-
ically, however, this image is one of the basis vectors that is reshaped into a 400 × 500 (or
whatever the dimensions of the original picture was) image. The following figure is the first
basis vector (first eigenface) for the database.

Each picture in the database, as has already been stated, has a coefficient that corresponds

15



Figure 4: First Eigenface from Database 1

to this particular basis vector. Graphing the coefficients of this basis vector in terms of gender
is very revealing to what facial feature this vector accentuates (See Figure 5).

Figure 5: Coefficients of Eigenface 1 for each Face based on Gender

Most women have negative coefficients and the large majority of the males have positive
coefficients. Furthermore, when we went back and examined the pictures of men with negative
coefficients we noted that they all had long hair. Also, when the images of females were
examined, those with a negative coefficient had long hair, while those with a more positive
coefficient had shorter hair length. This fact is slightly troublesome because it indicates that
the most important aspect of a person’s face was the length/amount of hair, which is also the
easiest feature of one’s face to change. This fact could potentially be a weakness for the system

16



since any major change in hair length or shape would likely cause failure in the system.
When examining the second eigenface it was less clear which features the system was

identifying as important. We hypothesized that one of the possible features the eigenface may
be identifying is the difference between a person’s hair color and the darkness/lightness of
a person’s skin tone. We arrived at this conclusion by analysis similar to that used for the
previous eigenface. We found it relatively difficult to determine which features were being
distinguished in the eigenfaces that followed. Clearly, the program was differentiating between
some features, but it was a failure of human perception to determine what those features were.

The next step was to take the first fifteen coefficients of each face and place them in a
vector. The formula for the Euclidean length of a vector was used to determine the length of
the vector. This allowed us to discover which face had the overall largest magnitude. Thus, the
vector with the highest magnitude corresponded to the face that can be best approximated.
Figure 6 shows the original face that could be best approximated (had the largest coefficient
vector length) and the fifteen vector approximation of this face. This approximated image was
obtained by taking the first fifteen vectors multiplying by their corresponding coefficients and
adding the resulting vectors together. It is clear from these two images that using only 15 of
the 130 basis vectors produces a readily recognizable approximation. In contrast, the face with
the worst approximation is also shown in Figure 6.

Figure 6: The top two are the original face and the fifteen vector approximation of the face
that can be best approximated. Similarly, the bottom two are the original face and the fifteen
vector approximation of the face that is most inaccurately approximated.

It is now possible to look at the actual face recognition applications. As has already been
stated, this was performed by taking the Euclidean distance between the coefficients of the

17



orthogonal projection of the outside image with the coefficients of each image in the database.
The image that had the smallest distance from the test image was identified by the program
as being the closest match, and all the remaining images were ranked from closest to farthest
away (in terms of Euclidean distance) from the test image. The results from this series of tests
were very positive and indicated that the system worked well overall. Yet, it became clear very
quickly that consistency in the orientation of the faces was needed so that proper recognition
can occur. When all of the faces were facing forward, with minimal head tilt, the system
identified the correct person as being the closest match 83.78% of the time. Furthermore,
97.30% of the trials identified at least one correct match in the top three closest matches. It is
important to note that many of the test images that were used had people wearing glasses. We
determined that the presence of glasses had little to no influence on the outcome of the results.
On the contrary, facial expression did have an impact on the results. This was indicated by
several trials where the person had a significantly contorted facial expression compared to the
expression in the database. In these cases the system had a more difficult time identifying the
proper faces as being a match. We also noticed that several of the failed trials most likely
resulted from the tilt of the person’s head. Thus, tilt and orientation of the person’s face were
the two most significant factors that negatively affected the outcome.

Since we noticed that the first eigenface identified long hair as being one of the most
significant factors in making a correct match, we tested how well it would match a person
when significant changes to their hair occurred. First, we used Photoshop to take one of the
female subjects with black hair and change the color to blonde. Despite the color change, the
system was still able to correctly identify her in the database (little to no influence on results
occurred). Next, we took some of the pictures with long hair (people who had a large value for
the first eigenface) and used Photoshop to remove a large portion of their hair. We found that
the system was unable to recognize the correct person as the best match when large changes
to hair were performed.

Another interesting test that we conducted involved placing a set of twins in the database.
We tested two images of each person and in each case the system picked out both pictures in
the database as being one of the top 3 matches. Yet, interestingly enough the other brother
never appeared in the top three closest matches. This is especially important because even to
the human eye it is particularly difficult to differentiate between the two brothers. This can
be demonstrated by Figure 7.

5 Second Database

We thought at this point that it would be important to see how well another database would
work by using smaller image files (fewer pixel dimensions). The use of such downsized images is
desirable because the amount of computer processing time greatly decreased with smaller image
files. Thus, we used the same pictures, but reduced the size to 350×438 pixels. This reduced
the processing time to approximately nine minutes, which is a tenth of the previous database’s
processing time. Again, we used 15 basis vectors, which retained 70.90% of the variance. As
in the previous database, none of the subjects had glasses. However, we did use Photoshop
to remove long hair around the neck and lower part of the face, which we hypothesized would
reduce the overall amount of influence hair has in the system. Consequently, the average face
for this database looked essentially the same, but the outline of hair around the lower half of
the face is removed (See Figure 8). The lack of hair greatly influenced the outcome of the first

18



Figure 7: The top two images are the original face and the fifteen vector approximation of one
of the brothers. The bottom two are the original face and the fifteen vector approximation of
the other brother.

eigenface, as can also be seen in Figure 8.
In this eigenface, there appears to be a contrast between a person’s facial color and the

color of their hair, as opposed to the first eigenface from the first database, which focused on
whether or not a person had long hair. The subsequent eigenfaces were somewhat difficult
to determine what was being differentiated. Yet, the second eigenface seemed to be detecting
differences in skin tone, and the third eigenface seemed to be looking at how much hair was at
the top of a person’s head.

We noticed, again, that this system was very sensitive to the rotation of a person’s head.
Consequently, we decided to test how much tilt could be present before the system started
to fail. We began with a different picture of a person who was already in the database and
rotated it 25◦. When this rotation was used the correct face was the 51st closest match. We
then made the rotation progressively closer to center in 5◦ increments. When the face was 20◦

from center the closest matching face was number 34. When there was a 15◦ offset from center
the closest match appeared in the 11th position. When the rotation was 10◦ the fifth match
was correct. Once the rotation was both 5◦ and straight up and down the first match was the
correct face.

When we tested images from outside the database we also removed the long hair using the
same method to create the database. This experiment yielded a 70.00% success rate. There
are several factors that contributed to the decrease in success. The most likely scenario is that
the removal of the hair in Photoshop was not performed in a completely controlled/automated

19



Figure 8: The image on the left is the average face from the second database, and the image
on the right is the first eigenface from this database.

manner. Instead the human eye was used to judge how much excess hair needed to be removed.
Another possible factor for the decreased success rate originates from the fact that smaller
image files were used. These smaller images resulted in less of the variance being retained
(compared to the first database) even though the same number of basis vectors were used as in
the first database. In order to correctly determine which factor was most influential we needed
to run more tests, which will be discussed shortly. We also tested images with the long hair
left in the picture and the success rate was 30.00%.

The next test we ran was with people who already had short hair. This produced a 93.75%
success rate, in that at least one of the correct images from the database was chosen as one of
the top three matches. Furthermore, 83.38% were selected as the number one closest match.
These results indicate that in the previous consideration of whether or not human error or the
decreased variance contributed most to the smaller success rate, human error was the largest
contributing factor. We drew this conclusion on the basis that in the the test where human
error was not a factor the success rate only decreased slightly from that of the first database.

Conclusion

The technique is extremely successful and requires a minimal amount of data input. Although
it is extremely important for all of the faces to be oriented in the same manner, and once this
is achieved, the technique works very well. Although we decreased the size of the images in
the second database by over 23% and the processing time by approximately 90%, we were still
able to obtain a success rate comparable to that of the first database.

Further research in this area could focus on testing a larger number of variables in the
pictures. Another great consideration would be further research on the most effective method
to use for the preprocessing of images that are placed in the database. We would also like to
pursue greater automation of the entire system so that more tests with a greater amount of
images can be performed more efficiently.

20



Acknowledgements

We would like to extend a special thank you to Dr. Jim Seibert for his continual guidance and
support throughout the course of the project. We also wish to thank Dr. Suzanne Caulk for
the use of her computer and office during the research process, as well as for listening to our
ideas over the summer. We also want to acknowledge the Office of Academic Grants at Regis
University for funding the research project.

A Code for Database Formation

The following code was used to load all of the images in the database from a textfile. This
textfile was generated using the command line within Windows. For more information regard-
ing how to change directories and produce a bare format filelist see [8].

In general this MATLAB function loads all of the images, converts them to the proper
(“double”) format and reshapes them all into vectors. Then, the function performs all of
the computations on the database which are necessary to create the best basis as described
by Proposition 2.8. Please see our explanations throughout the code (denoted with the %
symbol). Before considering the code, however, we must note it is necessary to define two
other functions which were used within this image loading function. The first is defined as
“linecount” and its purpose is to count the number of lines within the filelist to determine how
many images we will be loading. The code is as follows.

function lc=linecount(filename)

fid=fopen(filename,’r’); if fid < 0
lc=0;

else
lc=0;
while 1

ln=fgetl(fid);
if ~isstr(ln) break; end;
lc=lc+1;

end;
fclose(fid);

end;

The second function which is needed to execute the “load images” function is known as
“sorteig”. This function simply sorts the eigenvalues of our covariance matrix in descending
order and then sorts the corresponding eigenvectors in the same order.

function[V1,L1]=sorteig(V,L)
lambda=diag(L);
n=length(lambda);
[val,idx]=sort(lambda);
val=val(n:-1:1);
idx=idx(n:-1:1);
L1=diag(val);

21



V1=V(:,idx);

Now, with all the previous m-files loaded into the work folder of MATLAB we can define
our “load images” function.

function [Images, w, h, Meanimage, Meanface, Meansub, V, S, Basis,
SmallBasis, SmallV, Percent] =load_images(filelist,b)
numimgs=linecount(filelist); fid=fopen(filelist,’r’);

for i=1:numimgs
imgname=fgetl(fid);
if ~isstr(imgname)

break;
end;

fprintf(1, ’loading JPG file %s\n’, imgname);

Img=imread(imgname);

Img=double(Img)+1;

if i==1
[w,h]=size(Img);

end;

Images(1:w*h,i)=reshape(Img,w*h,1);
end;
fclose(fid);

fprintf(1, ’Read %d images.\n’, numimgs);
%All of these lines up to now have simply loaded the images,
%converted them to the proper format, reshaped them into
%vectors and printed out a running list as it loaded each file

Meanimage=mean(Images’);

Meanface=reshape(Meanimage, w, h);
imagesc(Meanface); figure(gcf);
colormap(gray); %Displays the average face

Meanimage=Meanimage’;

Meansub=Images-repmat(Meanimage, 1, numimgs);

Covar=Meansub’*Meansub; %Calculates the covariance matrix

[V, S]=eig(Covar);

22



[V, S]=sorteig(V,S);

Basis=Meansub*V; %Calculates basis from eigenvectors

for g=1:b
SmallBasis(:,g)=Basis(:,g);
SmallV(:,g)=V(:,g);

end

for t=1:b
Per=sum(diag(S(1:t,1:t)));
Percent=(Per/(sum(diag(S))))*100;

%This calculates the percent of the variance retained by
%our b basis vectors

end

B Code for Testing Image Outside the Database

This code begins in basically the same way as the database formation by loading the outside
image into the MATLAB workspace. The test image is then mean subtracted and projected
onto the subspace spanned by our chosen number of basis vectors. The distance from each of
the images in the database is then calculated. These vectors, which are the database images,
are then sorted from smallest to greatest distance. The final aspect of the code displays the
test image alongside the top three closest matches from within the database.

function [RTest, Coeff, Dist, B, Index, best1, best2,
best3]=outside_image(testimage,SmallBasis, Meanimage, SmallV, Image,
k) numimgs=linecount(testimage); fid=fopen(testimage,’r’);

for i=1:numimgs
imgname=fgetl(fid);
if ~isstr(imgname)

break;
end;

Img=imread(imgname);

Img=double(Img)+1;

if i==1
[w,h]=size(Img);

end;

RTest(1:w*h,i)=reshape(Img,w*h,1);
end;

fclose(fid);

23



RTest=RTest-Meanimage; %Mean-subtract the test image

for i=1:k
Coeff(1,i)=(dot(SmallBasis(:,i),RTest))/(dot(SmallBasis(:,i),SmallBasis(:,i)));

end
%Projects the test image onto the space spanned by the chosen basis vectors

[r, c]=size(SmallV);

for i=1:r
Dist(i,1)=norm(SmallV(i,:)-Coeff);

end
%Calculates the distance of this projection from all the database images

[B,Index]=sortrows(Dist);
%Sorts the database images from least to greatest distance from the test image

m1=Index(1,1);
m2=Index(2,1);
m3=Index(3,1);

best1=Image(:,m1);
best2=Image(:,m2);
best3=Image(:,m3);

best1=reshape(best1, w, h);
best2=reshape(best2, w, h);
best3=reshape(best3, w, h);

figure(1);
imagesc(Img);
colormap(gray);

figure(2)
imagesc(best1);
colormap(gray);

figure(3);
imagesc(best2);
colormap(gray);

figure(4);
imagesc(best3);
colormap(gray);

%Displays the test image and three closest matches from the database

24



References

[1] R. Chellappa, C.L. Wilson, and S. Sirohey. “Human and Machine Recognition of Faces:
A Survey.” Proceedings of the IEEE. Vol. 83, No. 5. May 1995. Pp. 709-40.

[2] L. Sirovich and M. Kirby. “Low dimensional procedure for the characterization of human
faces.” Journal of the Optical Society of America A, Optics and Image Science. Vol. 4,
No. 3. March 1987. Pp. 519-24.

[3] M.A. Turk and A.P. Pentland. “Face Recognition Using Eigenfaces.” International Con-
ference on Pattern Recognition. 1991. Pp. 586-91.

[4] M. Turk and A. Pentland. “Eigenfaces for Recognition.” Journal of Cognitive Neuro-
science. Vol. 3, No. 1. 1991. Pp. 71-86.

[5] D. Hundley. Chapter 6: The Best Basis. 2004. Whitman College. 20 June 2005.
<http://marcus.whitman.edu/∼hundledr/courses/M350/Ch5-Ch7.ps>.

[6] R.A. Horn and C.R. Johnson. Matrix Analysis. New York: Cambridge University Press,
1992.

[7] D.C. Lay. Linear Algebra And Its Applications. 3rd ed. Boston: Addison Wesley, 2003.

[8] S. Dutch. “Capturing File Lists.” 28 March 2002. University of Wisconsin-Green Bay. 5
July 2005. <http://www.uwgb.edu/dutchs/CompTips/FileLists.HTM>.

25


	Human Face Recognition Technology Using the Karhunen-Loeve Expansion Technique
	Recommended Citation

	tmp.1484505366.pdf.d9ibd

