
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal 

Volume 6 
Issue 2 Article 8 

A Modified Lotka-Volterra Competition Model with a Non-Linear A Modified Lotka-Volterra Competition Model with a Non-Linear 

Relationship Between Species Relationship Between Species 

Austin Taylor 
University of Alabama, taylo170@bama.ua.edu 

Amy Crizer 
James Madison University, vessal@jmu.edu 

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj 

Recommended Citation Recommended Citation 
Taylor, Austin and Crizer, Amy (2005) "A Modified Lotka-Volterra Competition Model with a Non-Linear 
Relationship Between Species," Rose-Hulman Undergraduate Mathematics Journal: Vol. 6 : Iss. 2 , Article 
8. 
Available at: https://scholar.rose-hulman.edu/rhumj/vol6/iss2/8 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Rose-Hulman Institute of Technology: Rose-Hulman Scholar

https://core.ac.uk/display/268182254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol6
https://scholar.rose-hulman.edu/rhumj/vol6/iss2
https://scholar.rose-hulman.edu/rhumj/vol6/iss2/8
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol6%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol6/iss2/8?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol6%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


A Modified Lotka-Volterra Competition Model

with a Non-Linear Relationship Between Species

Austin Taylor1 and Amy Crizer2∗

1Department of Mathematics, University of Alabama
Tuscaloosa, AL 35487

2Department of Mathematics and Statistics
James Madison University, Harrisonburg, VA 22807

Abstract

In this article, we consider a modified Lotka-Volterra competition model, which
incorporates a non-linear relationship representing the interaction between species.
We study the qualitative properties of this new system and compare them to
the qualitative properties of the classical Lotka-Volterra equations, obtaining
results suggesting that the modified model is a better representation of some
biological situations.

1 Introduction

Population dynamics is a widely studied field in the area of mathematical bi-
ology. Many models have been developed in order to predict or describe the
long-term growth or decline of species. Improving these models in order to
make better predictions is often a topic of research. The Lotka-Volterra com-
petition model describes two populations that affect each other in a negative
fashion; for instance, they may compete for a limited shared resource. The
model uses the equation,

x′(t) = β1x(K1 − x− µ1y),
y′(t) = β2y(K2 − y − µ2x),
x(0) > 0 and y(0) > 0,

(1)

where βi, Ki, µi, i = 1, 2, are positive constants [2].
Research has been conducted on many modifications of this model. For

instance, one modification of the model incorporates a time-delay between birth
and maturity and assumes that only adult members of each species compete [1].

∗This work was done by Austin Taylor and Amy Crizer under the supervision of Dr. James
Liu during the 2005 NSF REU at James Madison University.
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Research has also been done on a spatial stochastic version of the Lotka-Volterra
equations [3].

Our research has to do with the assumption of the linear relationship between
the interaction of two species in the classical model, that is, between x′ and the
linear function -µ1y, and between y′ and the linear function -µ2x. What if this
interaction between species is in fact non-linear? Can the model be modified to
incorporate such a biological situation?

2 The Classical Model

The classical Lotka-Volterra competition model describes two populations, x
and y, that compete for a limited shared resource using the equation (1).

According to the qualitative theory of differential equations we need to find
and analyze the critical points, or points where x′(t) = y′(t) = 0. These points
are used in determining the stability of equation (1). The critical points of
equation (1) are (0, 0), (K1, 0), (0,K2), as well as the solution to the following
equation, {

x + µ1y = K1,

y + µ2x = K2.
(2)

Since x and y represent populations, we are only concerned with solutions x and
y to equation (2) that are confined to the first quadrant. Four possible cases,
shown in Figure 1, arise based on the straight lines defined by x + µ1y = K1

and y + µ2x = K2.
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Figure 1: Four cases based on the lines defined by x + µ1y = K1 and
y + µ2x = K2.
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In case 1, (K1, 0) is the stable equilibrium which biologically implies popu-
lation x will survive and population y will become extinct. In case 2, (0,K2) is
the stable equilibrium which means population y will survive and population x
will become extinct. In case 3, the stable equilibrium is the solution to equation
(2). Biologically this implies that both populations will coexist. In case 4, both
(K1, 0) and (0,K2) are stable equilibria and the solution to equation (2) is a
saddle point, meaning the initial population values determine which population
survives. The phase portraits for each case are shown in Figure 2.
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Figure 2: Phase portraits for classical Lotka-Volterra competition model.

3 Modification of the Classical Model

The classical model assumes that x′ is negatively affected by the linear function
-µ1y, and y′ is negatively affected by the linear function -µ2x, that is, population
y interferes with population x in a linear fashion and vice versa. Biologically it
makes sense that this relationship could be non-linear, and we suppose that as
the population size of x grows the population is more efficient at gathering the
resource that is shared with population y thus resulting in population x having
a larger effect on population y. On the other hand, if population x is very small
it may be very inefficient at gathering the shared resource and hence population
x has a smaller effect on population y.

Consider the graphs of x and x2. When 0 < x < 1, x2 < x and when x > 1,
x2 > x. The equation below is a modification of the classical Lotka-Volterra
model which suggests a non-linear effect of population y on population x and
vice versa,
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x′(t) = β1x(K1 − x− µ1y

2),
y′(t) = β2y(K2 − y − µ2x

2),
x(0) > 0 and y(0) > 0,

(3)

where again βi, Ki, µi, i = 1, 2, are positive constants. The modified model is
more realistic than the classic model because in the modified model, if popula-
tion x is very small (less than 1) then it has a smaller effect on population y
and if population x is greater than 1 then it has a larger effect on population
y and vice versa, where 1 is regarded as some ”threshold” in a certain biology
application.

We will see that making a change from having a linear relationship between
species to having a nonlinear relationship between species creates difficulties
in studying this new model. However, by using some advanced results in the
qualitative theory of differential equations along with a geometric argument, we
can still provide a complete analysis for the modified model and derive phase
portraits.

4 Analysis of the Modified Model

Lemma 1. If a solution to equation (3) starts in the first quadrant it must stay
in the first quadrant.

Proof. On the y = 0 line y′(t) = 0, therefore a solution of equation (3) cannot
cross the y = 0 line. Similarly on the x = 0 line x′(t) = 0, therefore a solution
of equation (3) cannot cross the x = 0 line. �

Now (K1, 0), (0,K2), and (0, 0) are critical points of equation (3) along with
the non-negative solutions of the equation,{

x + µ1y
2 = K1,

y + µ2x
2 = K2.

(4)

Comparatively to the original model there are four cases that follow based on
the curves defined by x + µ1y

2 = K1 and y + µ2x
2 = K2. See figure 3.

In cases 3 and 4, the fourth critical point, denoted (xc, yc), occurs in the first
quadrant. Finding this critical point requires solving a fourth degree polynomial
that can be derived by using equation (4),

µ2
1µ2y

4
c − 2K1µ1µ2y

2
c + yc + µ2K

2
1 −K2 = 0. (5)

Equation (5) cannot be solved for yc using the coefficients. Therefore we use the
relationships given in equation (4) for the fourth critical point. This is different
from the classical Lotka-Volterra model where the fourth critical point can be
solved from linear equation (2).
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Figure 3: Four cases based on the curves defined by x + µ1y
2 = K1 and

y + µ2x
2 = K2.

We now shift the critical points to the origin (0, 0) in order to apply the
available results in the qualitative theory of differential equations concerning
the stability of the origin. This is done by denoting one of the four critical
points as (xc, yc) and changing the variables x = x−xc and y = y−yc to derive
the equation {

x′(t) = β1(x + xc)(K1 − (x + xc)− µ1(y + yc)2),
y′(t) = β2(y + yc)(K2 − (y + yc)− µ2(x + xc)2).

(6)

After expanding equation (6) the following equation is derived,

{
x′(t) = β1(K1 − 2xc − µ1y

2
c )x− 2β1µ1xcycy − β1(x2 + µ1xy2 + 2µ1ycxy + µ1xcy

2),
y′(t) = β2(K2 − 2yc − µ2x

2
c)y − 2β2µ2xcycx− β2(y2 + µ2yx2 + 2µ2xcxy + µ2ycx

2),
(7)

where (0,0) is a critical point for equation (7) which corresponds to the critical
point (xc, yc) for equation (3).

To show that equation (7) is an almost linear system, let{
f(x, y) = −β1(x2 + µ1xy2 + 2µ1ycxy + µ1xcy

2),
g(x, y) = −β2(y2 + µ2yx2 + 2µ2xcxy + µ2ycx

2),
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and show that f(x,y)√
(x2+y2)

→ 0 and g(x,y)√
(x2+y2)

→ 0 as
√

(x2 + y2)→ 0.

To do this we will show that each term in f(x,y)√
(x2+y2)

goes to zero. The

first term, x2√
(x2+y2)

, goes to zero because as
√

(x2 + y2) → 0, x → 0 and

0 ≤ x2√
x2+y2

≤ x2
√

x2 = x, so x2√
x2+y2

→ 0. The second term, xy2√
x2+y2

, goes

to zero because as
√

(x2 + y2) → 0, xy → 0, and 0 ≤ xy2√
x2+y2

≤ xy2√
y2

= xy,

which implies that xy2√
x2+y2

→ 0. Analyzing the third term, xy√
x2+y2

, goes to

zero because as
√

(x2 + y2) → 0,
√

xy√
2
→ 0, and 0 ≤ xy√

x2+y2
≤ xy√

2xy
=

√
xy√
2

,

which implies that xy√
x2+y2

→ 0. Similarly it can be shown that the last term of
f(x,y)√
(x2+y2)

and all of the terms of g(x,y)√
(x2+y2)

go to 0 as
√

(x2 + y2)→ 0. Therefore

the system is almost linear and so, for our purposes, stability properties of the
linear system can be extended to the non-linear system.

We obtain the matrix of linearization for equation (7) by finding the Jacobian
matrix of the system, which is(

β1(K1 − 2xc − µ1y
2
c ) −2β1µ1xcyc

−2β2µ2xcyc β2(K2 − 2yc − µ2x
2
c)

)
.

The local qualitative properties at each critical point can be found by evaluating
the matrix of linearization at each critical point and finding the eigenvalues of
the resulting matrix.

Evaluating the matrix of linearization at the critical point (xc, yc) = (0, 0)
gives the following matrix, (

β1K1 0
0 β2K2

)
.

This matrix is a diagonal matrix whose eigenvalues are on the diagonal. Since
each parameter is always positive this results in two positive eigenvalues. Thus,
the critical point occuring at (0, 0) is always unstable.

At the critical point (xc, yc) = (K1, 0) the matrix of linearlization becomes(
−β1K1 0

0 β2(K2 − µ2K
2
1 )

)
,

which is a diagonal matrix with one eigenvalue, namely −β1K1, always being
negative. When K2−µ2K

2
1 < 0 the second eigenvalue is negative and therefore

(K1, 0) is a stable equilibrium. When K2 − µ2K
2
1 > 0 the second eigenvalue is

positive and therefore (K1, 0) is a saddle point. In the case that K2−µ2K
2
1 = 0,

x → 0 and y is constant which implies that x → xc = K1 and y is constant.
This case is not interesting biologically since y is constant.

When the critical point (xc, yc) = (0,K2) is used the matrix of linearization
becomes
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(
β1(K1 − µ1K

2
2 ) 0

0 −β2K2

)
.

This matrix is also diagonal with one eigenvalue, namely −β2K2, always being
negative. When K1−µ1K

2
2 < 0 the second eigenvalue is negative and therefore

(0,K2) is a stable equilibrium. When K1 − µ1K
2
2 > 0 the second eigenvalue is

positive and therefore (0,K2) is a saddle point. In the case that K1−µ1K
2
2 = 0,

x is constant and y → 0 which implies that x is constant and y → yc = K2.
This case is not interesting biologically since x is constant.

The analysis of the fourth critical point will be given later.

4.1 Case by Case Analysis

In the analysis of the modified model the following theorems will be useful:

Theorem 1 [2] Every periodic orbit in <2 has a critical point inside its interior.

Theorem 2 (Poincaré-Bendixson Theorem) [2] If a trajectory x(t, p) of
the equation,

x′(t) = f(x(t)), x(t0) = x0,

is bounded in <2 for t ≥ 0 (the corresponding results for t ≤ 0 are also true),
then one of the following three things must happen.

1. there exists a sequence of points on the trajectory as t → ∞ that ap-
proaches a critical point,

2. x(t, p) is a periodic orbit,

3. ω(t) is a periodic orbit, and x(t, p) approaches ω(p) spirally as t → ∞,
where ω(t) is the set such that each point of ω(t) is a limit of some sequence
of points on the trajectory as t → ∞.

Theorem 3 (Bendixson-Dulac’s Criterion) [2] Let P (x, y), Q(x, y), and
B(x, y) have continuous first partial derivatives in a simply connected domain
D ⊂ <2 and assume that ∂(PB)

∂x + ∂(QB)
∂y is not identically zero and does not

change sign in any open set of D. Then the equation,{
x′(t) = P (x(t), y(t)),
y′(t) = Q(x(t), y(t)), x, y, t ε <.

has no periodic orbit in D.

Case 1. (see figure (3) )
√

K2
µ2

< K1 and
√

K1
µ1

> K2. Now, (K1, 0) is a
stable equilibrium and (0,K2) is a saddle point. In this case, the critical point
that is the solution to equation (4) is not in the first quadrant. Using theorem
1, since there is no critical point in the interior of the first quadrant then a
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periodic orbit cannot exist in the first quadrant. Furthermore, if a point (x, y)
is in the first quadrant and above the curves defined by x + µ1y

2 = K1 and
y + µ2x

2 = K2 then one has x + µ1y
2 > K1 and y + µ2x

2 > K2. From these
inequalities we obtain x′ < 0 and y′ < 0 at the point (x, y) above the curves.
Therefore, the solutions in the first quadrant must be bounded. Furthermore,
since solutions started in the first quadrant must remain in the first quadrant by
Lemma 1, every trajectory started in the first quadrant, except those starting
with x = 0, will tend toward the stable node (K1, 0) by using the Poincaré-
Bendixson theorem (Theorem 2). Thus population x survives and population y
becomes extinct: limt→∞ x(t) = K1 and limt→∞ y(t) = 0.

Case 2. (see figure (3) )
√

K2
µ2

> K1 and
√

K1
µ1

< K2. For this case, (K1, 0)
is a saddle point and (0,K2) is a stable equilibrium. Similarly to case 1, there
is no periodic orbit in the first quadrant and the solutions in the first quadrant
are bounded. Therefore, every trajectory started in the first quadrant, except
those that initially have y = 0, will tend to the stable equilibrium (0,K2). Thus
population y survives and population x becomes extinct: limt→∞ y(t) = K2 and
limt→∞ x(t) = 0.

Case 3. (see figure (3))
√

K2
µ2

> K1 and
√

K1
µ1

> K2. Now (K1, 0) and
(0,K2) are both saddle points. The fourth critical point, (xc, yc), that is the
solution to equation (4) is now in the first quadrant. To show that there is
no periodic orbit in the first quadrant we use the Bendixson-Dulac’s criterion
(Theorem 3).

Choose the domain to be the interior of the first quadrant and let B(x, y) =
1
xy . Then with P (x, y) = β1x(K1−x−µ1y

2) and Q(x, y) = β2y(K2−y−µ2x
2):

∂(PB)
∂x = −β1

y ,
∂(QB)

∂y = −β2
x ,

∂(PB)
∂x + ∂(QB)

∂y = −(β1
y + β2

x ) < 0 ∀ (x, y) ε D,

therefore by the Bendixson-Dulac’s criterion (Theorem 3), there are no periodic
orbits in the first quadrant. As in case 1, every trajectory started within the
first quadrant must stay in the first quadrant and is bounded.

The critical point located in the interior of the first quadrant satisfies the
conditions in equation (4) and the matrix of linearization evaluated at this
critical point simplifies to(

−β1xc −2β1µ1xcyc

−2β2µ2xcyc −β2yc

)
.

This matrix has the characteristic polynomial

λ2 + (β1xc + β2yc)λ + β1β2xcyc(1− 4µ1µ2xcyc), (8)

8



whose roots are the eigenvalues

λ =
−(β1xc + β2yc)±

√
(β1xc + β2yc)2 − 4β1β2xcyc(1− 4µ1µ2xcyc)

2

=
−(β1xc + β2yc)±

√
(β1xc − β2yc)2 + 16β1β2µ1µ2x2

cy2
c

2
. (9)

Since (β1xc − β2yc)2 + 16µ1µ2x
2
cy

2
c > 0 there are two distinct, real eigenvalues.

Using the quadratic form (9) or Descarteś Rule of Signs for the roots of (8),
we see that the sign of 1 − 4µ1µ2xcyc determines the signs of the eigenvalues.
However, it seems that the sign of 1− 4µ1µ2xcyc cannot be determined directly
using

√
K2
µ2

> K1 and
√

K1
µ1

> K2 in case 3. This is a significant difference
from the classical model, where the signs of the eigenvalues are immediate con-
sequences of the corresponding cases. Therefore, in the following analysis we
will use some advanced results in the qualitative theory of differential equations
to determine the sign of 1− 4µ1µ2xcyc indirectly.

If 1− 4µ1µ2xcyc = 0 then the characteristic equation becomes

λ2 + (β1xc + β2yc)λ = 0. (10)

Equation (10) gives eigenvalues of λ1 = 0 and λ2 = −(β1xc + β2yc). To find
the solutions to x(t) and y(t) we use the theory of differential equations and
transform the linearization of equation (7) to(

v
w

)′
=

(
λ1 0
0 λ2

) (
v
w

)
=

(
0 0
0 −β1xc − β2yc

) (
v
w

)
, (11)

which gives the solution {
v = v0,

w = w0e
−(β1xc+β2yc)t.

(12)

The solution of the simpler system (11), which is given in (12), along with the
transformation matrix P can be used to give the solution through the rela-
tionship [x(t), y(t)]T = P [v(t), w(t)]. The tranformation matrix P is made up of
eigenvectors that correspond to λ1 and λ2. An eigenvector for λ1 is [1,−2µ2xc]T

and an eigenvector for λ2 is [1, 2µ2β2yc
β1

]T . These eigenvectors give the matrix

P =
(

1 1
−2µ2xc

2µ2β2yc
β1

)
.

P [v(t), w(t)] gives the solution{
x(t) = v0 + w0e

−(β1xc+β2yc)t,

y(t) = −2µ2xcv0 + ( 2µ2β2yc
β1

)w0e
−(β1xc+β2yc)t.

(13)

As t → ∞, x(t) will go to v0 and y(t) will go to −2µ2xcv0. Thus since
x = x + xc and y = y + yc, x(t) → v0 + xc and y(t) → −2µ2xcv0 + yc. By the
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Poincaré-Bendixson theorem, there exists a sequence of points on the trajectory
(x(t), y(t)) that approaches a critical point, since scenarios 2 and 3 are ruled out
because there is no periodic orbit. Since all other critical points are unstable this
particular critical point must be (xc, yc). So there exists tm such that as tm →
∞, x(tm) → xc and y(tm) → yc. Therefore as tm → ∞, x(tm) → v0 + xc = xc

and y(tm) → −2µ2xcv0 + yc = yc, which implies v0 = 0. The initial value of
v, v0, does not have to be 0, so we have reached a contradiction and therefore
1− 4µ1µ2xcyc 6= 0.

Suppose 1 − 4µ1µ2xcyc < 0, which by Descarteś Rule of Sign’s gives one
positive and one negative root of polynomial (8), and thus there is one positive
and one negative eigenvalue. Using similar analysis as the case 1−4µ1µ2xcyc =
0, the origin of the transformed system behaves as a saddle point, so there exists
a trajectory (x(t), y(t)) that goes away from (xc, yc) for large t values. As before,
by the Poincaré-Bendixson theorem there exists a sequence of points on the
trajectory (x(t), y(t)) that approach a critical point. But the other two critical
points, (K1, 0) and (0,K2), are saddle points that attract only the trajectories
on the x-axis and y-axis respectively, so this critical point must be (xc, yc). This
is a contradiction to the critical point (xc, yc) behaving as a saddle point and
therefore 1− 4µ1µ2xcyc 6< 0.

Since 1 − 4µ1µ2xcyc 6= 0 and 1 − 4µ1µ2xcyc 6< 0, 1 − 4µ1µ2xcyc must be
greater than 0. Using Descarteś Rule of Signs again this gives two negative
roots of polynomial (8), or two negative eigenvalues and thus the fourth critical
point is stable.

This result can also be seen geometrically in Figure 4.

K2

K1

K1

µ1

K2

µ2

x

y

I

IV III

II

Curve 1

Curve 2

Figure 4: Case 3.

For a point (x,y) in region I of figure (4) we have the relationships x+µ1y
2 <

K1 and y+µ2x
2 < K2. These inequalities imply that for any point in this region

x′(t) > 0 and y′(t) > 0. For a point (x,y) in region II we have the relationships
x+µ1y

2 > K1 and y +µ2x
2 < K2, which imply that x′(t) < 0 and y′(t) > 0 for

any point in this region. For a point (x,y) in region III we have the relationships
x + µ1y

2 > K1 and y + µ2x
2 > K2, consequently for any point in this region,

x′(t) < 0 and y′(t) < 0. For a point (x,y) in region IV we have the relationships
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x + µ1y
2 < K1 and y + µ2x

2 > K2, and thus for any point in this region,
x′(t) > 0 and y′(t) < 0.

Note that in figure (4) curve 1 is a null cline where x′(t) = 0 and curve 2 is
a null cline where y′(t) = 0. The equilibrium point (xc, yc) is the intersection of
curve 1 and curve 2. If a trajectory crosses curve 1 it must cross it vertically.
For any trajectory that crosses curve 1 where y > yc, the trajectory must
cross curve 1 vertically in the downward direction and for any trajectory that
crosses curve 1 where y < yc, the trajectory must cross curve 1 vertically in
the upward direction. Similarly curve 2 must be crossed horizontally. For
any trajectory that crosses curve 2 where x < xc, curve 2 must be crossed
horizontally going toward the positive x direction and for any trajectory that
crosses curve 2 where x > xc, curve 2 must be crossed horizontally going toward
the negative x direction.

This implies that solutions that start in regions II or IV are bounded in the
region they originated and flow to (xc, yc). Depending on initial conditions, a
solution that starts in region I can either remain in region I or go into regions
II or IV. If it remains in region I it must tend toward (xc, yc). If it crosses
into region II or IV, then once in those regions they can be regarded as started
from those regions so the trajectories flow to (xc, yc). Similar analysis leads to
trajectories beginning in region III flowing to (xc, yc) as well, suggesting that the
critical point (xc, yc) is a stable equilibrium. Therefore any trajectory started
in the first quadrant, except those in which x = 0 or y = 0, will go to (xc, yc).
This gives rise to the coexistence of both populations.

Case 4. (see figure (3))
√

K2
µ2

< K1 and
√

K1
µ1

< K2. Now (K1, 0) and
(0,K2) are both stable equilibria. Similarly to case 3 it can be shown by
Bendixson-Dulac’s criterion that there are no periodic orbits inside of the first
quadrant. If 1−4µ1µ2xcyc > 0 the critical point inside of the first quadrant is a
stable equilibrium and if 1− 4µ1µ2xcyc < 0 the critical point inside of the first
quadrant is a saddle point. We could not use the conditions on the parameters
for this case to determine which of these scenarios would occur so we will resort
to looking at it geometrically, as we did in the supporting geometric argument
for case 3. See Figure 5.
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IIIIV

II

Curve 1

Curve 2

Figure 5: Case 4.
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Similarly to case 3, it can be shown that in region I of figure (5), x′(t) > 0
and y′(t) > 0; in region II x′(t) > 0 and y′(t) < 0; in region III x′(t) < 0 and
y′(t) < 0; and in region IV x′(t) < 0 and y′(t) > 0. Note that solutions that
start in regions II and IV flow away from the equlibrium point (xc, yc). This
implies that the critical point (xc, yc) is an unstable point. Biologically since
(K1, 0) and (0,K2) are both stable equilibria, this means that depending on
initial population values either population x will survive and population y will
become extinct or vice versa.

The phase portraits for the four cases are similar to those in Figure 2.
Trajectories are given in Figure 6 using Maple, which match our analysis.
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Figure 6: Phase Portraits and sample trajectories for each case created by
the Maple 9.5 software package using paramters β1 = 0.2, β2 = 0.3 and:

Case 1: K1 = 1.1, K2 = 0.4, µ1 = 0.4, µ2 = 0.5
Case 2: K1 = 0.4, K2 = 1.1, µ1 = 0.4, µ2 = 0.5
Case 3: K1 = 0.9, K2 = 0.8, µ1 = 0.4, µ2 = 0.5
Case 4: K1 = 1.2, K2 = 1.3, µ1 = 1.3, µ2 = 1.2
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5 Conclusions

The analysis of the modified Lotka-Volterra model reveals similar qualitative
properties to the classic Lotka-Volterra model. Both models share (0, 0), (K1, 0),
and (0,K2) as critical points and the stability of these points is also the same
in all cases.

The major difference between the classical model and the modified model
is how the stability of the fourth critical point was determined. In the clas-
sic model, the stability of the fourth critical point depends on whether the
expression 1 − µ1µ2 is positive or negative which is easy to determine using
linear equation (2) for cases 3 and 4 of the classical model. In the modified
model, the stability of the fourth critical point depends on whether the expres-
sion 1− 4µ1µ2xcyc is positive or negative which we were not able to determine
using non-linear equation (4). For case 3 we used a transformed differential
equation and corresponding transformation matrix together with the Poincarè-
Bendixson theorem to rule out 1 − 4µ1µ2xcyc being equal to zero or negative
so the expression must be positive which implies the fourth critical point is a
stable equilibrium in case 3. In case 4 we turned to geometry to show the fourth
critical point is a saddle point.

One qualitative difference in the models is the conditions for each case. The
original model uses the relationships between K2

µ2
and K1 and between K1

µ1
and

K2 whereas the modified model uses the relationships between
√

K2
µ2

and K1 and

between
√

K1
µ1

and K2. Therefore it is possible for the models to predict different
outcomes. For example if K1 = 0.9, K2 = 1.1, µ1 = 0.4, and µ2 = 1.3, the classic
model predicts case 1 (population x survives and population y becomes extinct)
but the modified model predicts case 3 (coexistence).

If in a biological situation the population had a non-linear effect on each
other (i.e. as the population grows it becomes more efficient at gathering the
shared resource) then the prediction of the modified model would be better than
that of the classical model.
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