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A SPECIAL CASE OF SELBERG’S INTEGRAL

A. J. ANDERSON

Abstract. We evaluate the integral
∫ ∞

0

· · ·

∫ ∞

0

∏

1≤i<j≤n

(xj − xi)
2
e
−x1dx1 · · · e

−xndxn

using orthogonal polynomials and techniques from linear algebra.

1. Introduction

The integral evaluated in this paper arose in the study of a class
of invariant differential operators of a matrix argument. Briefly, these
polynomials can be described by considering invariant polynomials on
a cross section of diagonal matrices that is essentially R

n ([BHR1]
[BHR2]). The way in which the relevant measure is pushed down to
this cross section can be determined by computing the integral

(1.1)

∫ ∞

0

· · ·

∫ ∞

0

∏

1≤i<j≤n

(xj − xi)
2e−x1dx1 · · · e

−xndxn.

Since the integrand is a polynomial, and using the fact that, for k ∈ N,
the Euler Gamma function satisfies

Γ(k + 1) =

∫ ∞

0

xke−xdx = k!

we see that the value of this integral must be an integer that depends
on n. We denote the value of the integral (1.1) by I(n).

Somewhat later we discovered that the above integral is a special
case of Selberg’s integral ([AAR], hence the title of this paper) and can
be evaluated using published formulae with α = 1 and γ = 1.

The author was supported by a Philip S. Zivnuska scholarship and the Summer
Research Experience for Undergraduates program at the University of Wisconsin-
Eau Claire under the supervision of R. Michael Howe.
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Specifically,
∫ ∞

0

· · ·

∫ ∞

0

n
∏

i=1

xα−1
i

∏

1≤i<j≤n

|xj − xi|
2γe−x1dx1 · · · e

−xndxn

=
n

∏

j=1

(

Γ(α + (j − 1)γ)Γ(1 + jγ)

Γ(1 + γ)

)

The direct computation of this integral demonstrates the use of alge-
braic techniques to answer a question that at first appears to be strictly
analytic.

2. Preliminaries

We first computed this integral for manageable values of n using a
computer algebra system and obtained the following results:

n I(n)
2 2
3 24
4 3465
5 9953280

After some consideration we realized that we could write these values
as:

n I(n)
2 2!
3 3! (2!)2

4 4! (3! 2!)2

5 5! (4! 3! 2!)2

This led us to conjecture that, for n ∈ N

I(n) = n![(n − 1)!(n − 2)! · · · (2)(1)]2.

It was then suggested that we consider Laguerre polynomials. The
Laguerre polynomial in the variable x of degree k can be defined using
Rodrigues’ formula by

Lk(x) = ex dk

dxk
(xke−x).

Note that the leading term will be xk. Direct computation using inte-
gration by parts shows that

∫ ∞

0

Lk(x)Lm(x)e−xdx =

{

(k!)2 k=m

0 k 6= m
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so that the Laguerre polynomials are orthogonal with respect to the
inner product

〈f , g〉 =

∫ ∞

0

f(x)g(x)e−xdx.

It is well known that the Laguerre polynomials are an orthogonal basis
for the vector space of polynomials in x.

Note also that products of Laguerre polynomials in the variable x and
Laguerre polynomials in the variable y will be a basis for the vector
space of polynomials in the two variables x and y, orthogonal with
respect to the inner product given by

〈f , g〉 =

∫ ∞

0

∫ ∞

0

f(x, y) g(x, y) e−x e−y dx dy.

In particular, by Fubini’s Theorem we have

〈Ln(x)Lm(y) , Ln(x)Lm(y)〉 = 〈Ln(x) , Ln(x)〉 〈Lm(y) , Lm(y)〉 = (n!)2(m!)2.

This idea extends to polynomials in n variables. The products of
Laguerre polynomials in the variables x1 · · ·xn form a basis for the
vector space of polynomials in these variables, orthogonal with respect
to the inner product

〈f , g〉 =

∫ ∞

0

· · ·

∫ ∞

0

f(x1, · · · , xn)g(x1, · · · , xn)e−x1dx1 · · · e
−xndxn

with

〈Lk1
(x1) · · ·Lkn

(xn) , Lk1
(x1) · · ·Lkn

(xn)〉

= 〈Lk1
(x1) , Lk1

(x1)〉 · · · 〈Lkn
(xn) , Lkn

(xn)〉

= (k1!)
2 · · · (kn!)2.

Our first step will be to expand the integrand of (1.1) using Laguerre
polynomials.

3. Expansion of the integrand using Laguerre

polynomials

Making further investigations using a computer algebra system, we
expanded

∏

1≤i<j≤n(xj−xi) for n = 3 and then subtracted off successive
Laguerre polynomials in x1, x2, and x3 by matching the highest order
terms. For example, we have

(x2 − x1)(x3 − x1)(x3 − x2) = x2x
2
3 − x2

2x3 + x2
2x1 − x1x

2
3 + x2

1x3 − x2
1x2.

Since the first term in the left hand side is x2x
2
3, we first subtract

L1(x2)L2(x3). We then continue in this manner until the result is zero
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(this is guaranteed to occur since the products of Laguerre polynomials
form a basis) and obtain

(x2 − x1)(x3 − x1)(x3 − x2) =L1(x2)L2(x3) − L1(x3)L2(x2)

+L1(x1)L2(x2) − L1(x1)L2(x3)

+L1(x3)L2(x1) − L1(x2)L2(x1).

This led us to conjecture the following formula:

(3.1)
∏

1≤i<j≤n

(xj − xi) =
∑

σ∈Sn

sgn(σ)L0(xσ(1))L1(xσ(2)) · · ·Ln−1(xσ(n))

where Sn is the symmetric group of degree n and sgn(σ) = ±1, de-
pending on whether the permutation σ is even or odd. We remark that
the left hand side is the well known Vandermonde determinant.

To prove (3.1), we first show that the polynomial defined by

P (x1, x2, · · · , xn) =
∑

σ∈Sn

sgn(σ)L0(xσ(1))L1(xσ(2))L2(xσ(3)) · · ·Ln−1(xσ(n)).

is alternating. That is, we show that the polynomial changes sign when-
ever two variables are interchanged. Let (i.j) be a transposition in Sn

and let (i, j).P (x1, x2, · · · , xn) denote the action of this transposition
that interchanges the ith and jth variables in P (x1, x2, · · · , xn). Then
we have

(i, j).P (x1, x2, · · · , xn) =
∑

σ∈Sn

sgn(σ)L0(x(i,j)σ(1))L1(x(i,j)σ(2)) · · ·Ln−1(x(i,j)σ(n)).

Now let τ = (i, j)σ, so that sgn(σ) = −sgn(τ). Then we have

(i, j).P (x1, x2, · · · , xn) =
∑

σ∈Sn

sgn(σ)L0(xτ(1))L1(xτ(2)) · · ·Ln−1(xτ(n))

=
∑

τ∈Sn

−sgn(τ)L0(xτ(1))L1(xτ(2)) · · ·Ln−1(xτ(n))

= − P (x1, x2, · · · , xn).

Therefore, P is alternating.
Now set Pn(xn) = P (x1, x2, · · · , xn). That is, consider Pn as a poly-

nomial in xn, with the coefficients being polynomials in x1, x2, · · · , xn−1.
Since P is alternating, we have Pn(xi) = 0 for i 6= n. Thus, by the
Fundamental Theorem of Algebra, each x1, x2, · · · , xn−1 is a root of
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Pn(xn) and so for each i 6= n, (xn −xi) is a factor of Pn(xn). Therefore

Pn(xn) = (xn − xn−1)(xn − xn−2) · · · (xn − x1)An−1(x1, · · · , xn−1)

=
n−1
∏

i=1

(xn − xi)An−1(x1, · · · , xn−1)(3.2)

for some polynomial An−1(x1, · · · , xn−1). Note that An−1(x1, · · · , xn−1)
is the coefficient of xn−1

n in Pn(xn).
Next we split the sum (3.1) over those elements of Sn which leave n

fixed (a subgroup of Sn isomorphic to Sn−1), and those which do not.

Pn(xn) =
∑

σ(n)=n

sgn(σ)L0(xσ(1))L1(xσ(2)) · · ·Ln−1(xσ(n))

+
∑

σ(n) 6=n

sgn(σ)L0(xσ(1))L1(xσ(2)) · · ·Ln−1(xσ(n))

=
∑

σ∈Sn−1

sgn(σ)L0(xσ(1))L1(xσ(2)) · · ·Ln−2(xσ(n−1))Ln−1(xn)

+ (lower degree terms)

=Ln−1(xn)





∑

σ∈Sn−1

sgn(σ)L0(xσ(1))L1(xσ(2)) · · ·Ln−2(xσ(n−1))





+ (lower degree terms).

Equating the leading coefficient of xn−1
n above with that in (3.2) we

see that

An−1(x1, x2, · · · , xn−1) =
∑

σ∈Sn−1

sgn(σ)L0(xσ(1))L1(xσ(2)) · · ·Ln−2(xn−1)

= Pn−1(xn−1).

Combining these results we have

Pn(xn) = (xn − xn−1)(xn − xn−2) · · · (xn − x1)An−1(x1, · · · , xn−1)

=
n−1
∏

i=1

(xn − xi)An−1(x1, · · · , xn−1)

=
n−1
∏

i=1

(xn − xi)Pn−1(xn−1).
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Now by the same argument used earlier, we have that x1, x2, · · · , xn−2

are roots of Pn−1(xn−1), so

Pn(xn) =
n−1
∏

i=1

(xn − xi)Pn−1(xn−1)An−2(x1, x2, · · · , xn−2)

=
n−1
∏

i=1

(xn − xi)
n−2
∏

j=1

(xn−1 − xj)An−2(x1, x2, · · · , xn−2)

where An−2 is the coefficient of xn−2
n−1.

Now, for n = 2 we can show that
∑

σ∈S2

sgn(σ)L0(xσ(1))L1(xσ(2)) = L0(x1)L1(x2)−L0(x2)L1(x1) = x2−x1

and so the result follows by induction. Namely,
∏

0≤i<j≤n

(xj − xi) =
∑

σ∈Sn

sgn(σ)L0(xσ(1))L1(xσ(2)) · · ·Ln−1(xσ(n))

as required.

4. evaluating the integral as an inner product

Recall that we have an inner product on the vector space of polyno-
mials on R

n given by

〈f , g〉 =

∫ ∞

0

· · ·

∫ ∞

0

f(x1, · · · , xn)g(x1, · · · , xn)e−x1dx1 · · · e
−xndxn.

Therefore we can treat our integral

(4.1) I(n) =

∫ ∞

0

· · ·

∫ ∞

0

∏

1≤i<j≤n

(xj − xi)
2e−x1dx1 · · · e

−xndxn

as the inner product

I(n) = 〈
∏

1≤i<j≤n

(xj − xi) ,
∏

1≤i<j≤n

(xj − xi)〉.

By (3.1), we have

I(n) =

〈
∑

σ∈Sn

sgn(σ)L0(xσ(1)) · · ·Ln−1(xσ(n)) ,
∑

σ∈Sn

sgn(σ)L0(xσ(1)) · · ·Ln−1(xσ(n))〉.
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But each of the terms in the above sums are mutually orthogonal, i.e.

〈L0(xσ(1)) · · ·Ln−1(xσ(n)) , L0(xτ(1)) · · ·Ln−1(xτ(n))〉

=

{

(0!)2(1!)2(2!)2 · · · (n − 1!)2 σ = τ ,

0 σ 6= τ .

Evaluating our integral in this context yields the required result:

I(n) =

〈
∑

σ∈Sn

sgn(σ)L0(xσ(1)) · · ·Ln−1(xσ(n)) ,
∑

σ∈Sn

sgn(σ)L0(xσ(1)) · · ·Ln−1(xσ(n))〉

=
∑

σ∈Sn

〈 sgn(σ)L0(xσ(1)) · · ·Ln−1(xσ(n)) , sgn(σ)L0(xσ(1)) · · ·Ln−1(xσ(n))〉

=
∑

σ∈Sn

(0!)2(1!)2(2!)2 · · · (n − 1!)2

= n![(n − 1)! · · · (2)!(1)!]2.
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