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TIGHT SUBDESIGNS OF THE HIGMAN-SIMS DESIGN

STEVEN KLEE AND LEAH YATES

Abstract. The Higman-Sims design is an incidence structure of 176 points and 176 blocks of
cardinality 50 with every two blocks meeting in 14 points. The automorphism group of this
design is the Higman-Sims simple group. We demonstrate that the point set and the block set

of the Higman-Sims design can be partitioned into subsets X1, X2, . . . , X11 and B1, B2, . . . , B11,
respectively, so that the substructures (Xi, Bi), i = 1, 2, . . . , 11, are isomorphic symmetric (16, 6, 2)-
designs.

1. Introduction

One of the most basic concepts in the theory of combinatorial designs is that of an incidence
structure. Essentially, it indicates two finite sets and indicates how they are related.

Definition 1.1. A (finite) incidence structure is a triple D = (X,B, I), where X and B are nonempty
finite sets and I ⊆ X×B. The sets X and B are called the point set and block set of D, respectively,
and their elements are called points and blocks. The set I is called the incidence relation. If
(x,B) ∈ I, we will say that point x and block B are incident and that (x,B) is a flag. The number
of points incident with a block B is called the size or the cardinality of B and denoted by |B|. The
number of blocks incident with a point x is called the replication number of x and denoted by r(x).
For distinct points x and y, λ(x, y) denotes the number of blocks incident with both x and y. An
incidence matrix of D is a (0, 1) matrix whose rows are indexed by the points of D, columns are
indexed by the blocks of D, and the (x,B)-entry is equal to 1 if and only if (x,B) ∈ I.

Imposing certain conditions on an incidence structure yields a (v, b, r, k, λ)-design.

Definition 1.2. A (v, b, r, k, λ)-design is an incidence structure D = (X,B, I) satisfying the following
conditions: (i) |X| = v; (ii) |B| = b; (iii) r(x) = r for all x ∈ X; (iv) |B| = k for all B ∈ B; (v)
λ(x, y) = λ for all distinct x, y ∈ X, (vi) if I = ∅ or I = X × B, then v = b.

The following result is well known from [6].

Proposition 1.3. Let D = (X,B, I) be an incidence structure satisfying conditions (i)-(iv) and (vi)
of Definition 1.2. Suppose further that there exists a nonnegative integer λ such that (v − 1)λ =
r(k − 1). If any two points of D are contained in at most λ blocks or any two points of D are
contained in at least λ blocks, then D is a (v, b, r, k, λ)-design.

When a (v, b, r, k, λ)-design has certain symmetric properties, we have a symmetric (v, k, λ)-design.
Two examples of symmetric designs are the Fano Plane and the (16, 6, 2)-design.

Example 1.4. The Fano Plane is a (7, 3, 1) design, and is the smallest non-trivial example of a
symmetric design. It is shown in Figure 1 at the end of the paper.
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2 S. KLEE AND L. YATES

Example 1.5. The following matrix is an incidence matrix of a symmetric (16, 6, 2)-design.

(1)





































































0000 1100 1010 1001
0000 1100 0101 0110
0000 0011 1010 0110
0000 0011 0101 1001

1100 0000 1001 1010
1100 0000 0110 0101
0011 0000 0110 1010
0011 0000 1001 0101

1010 1001 0000 1100
0101 0110 0000 1100
1010 0110 0000 0011
0101 1001 0000 0011

1001 1010 1100 0000
0110 0101 1100 0000
0110 1010 0011 0000
1001 0101 0011 0000





































































Remark 1.6. There are three non-isomorphic (16, 6, 2)-designs which may be distinguished by the
rank of their incidence matrices over the field of two elements. All designs we study are isomorphic
to the one whose incidence matrix is presented in (1).

Definition 1.7. A (v, b, r, k, λ)-design where v = b and r = k is referred to as a symmetric (v, k, λ)-
design.

Another incidence structure that will be considered in this paper is a 5-(v, k, λ) design. In a
t-(v, k, λ) design, there are v points, all blocks have size k, and every subset of t points is incident
with exactly λ blocks. The Witt design on 24 points, W24, is a 5-(24, 8, 1) design. It is interesting
to study W24 because its automorphism group is one of the 26 sporadic simple groups. It is also
known that any two designs W24 are isomorphic.

Definition 1.8. The Witt design on 24 points, W24, is an incidence structure W24 = (Q,S)
satisfying the following conditions:

(i)|Q| = 24;
(ii) |B| = 8 for every B ∈ S;
(iii) every set of 5 points is incident with exactly one block.

The following two theorems are known from [1].

Theorem 1.9. Let λi denote the number of blocks of W24 containing a given set of i points. Then
we have the following:

λ5 = 1, λ4 = 5, λ3 = 21, λ2 = 77, λ1 = 253, λ0 = 759.

Definition 1.10. An intersection number of an incidence structure is the size of the intersection of
two distinct blocks.
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Theorem 1.11. The intersection numbers of W24 are 0, 2, and 4; given a block A of W24, there
are 30 blocks that are disjoint from A, 448 blocks that meet A in two points, and 280 blocks that
meet A in four points.

The list of blocks for W24 can be found in [3].
For the following theorem, refer to [8].

Theorem 1.12. Let a and b be distinct points of W24. Let A be the set of all blocks of W24 that
contain a and do not contain b, and let B be the set of blocks of W24 that contain b and do not
contain a. Let H denote the incidence structure (A,B, I) with (A,B) ∈ I if and only if |A∩B| = 2.
Then H is a symmetric (176, 126, 90)-design.

The design constructed in this theorem, along with its complementary design are called the
Higman-Sims designs. The automorphism group of the Higman-Sims design is also a sporadic simple
group, known as the Higman-Sims simple group. Throughout this paper, we refer to the symmetric
(176, 126, 90)-design, H, as the Higman-Sims design.

When studying an incidence structure, it may be useful to look at its substructures. Some of
these substructures are themselves symmetric designs referred to as tight subdesigns.

Definition 1.13. A subdesign of a symmetric design D = (X,B, I) is a symmetric design D1 =
(X1,B1, I1) such that X1 ⊆ X,B1 ⊆ B, and, for x ∈ X1 and B ∈ B1, the point x and the block B
are incident in D1 if and only if they are incident in D. If D1 is a symmetric (v1, k1, λ1)-design, we
will refer to it as a (v1, k1, λ1)-subdesign of D.

Further, a (v1, k1, λ1)-subdesign D1 = (X1,B1, I1) of a symmetric (v, k, λ)-design D = (X,B, I)
is called a tight subdesign if v1 < v and there is an integer k2 such that |B ∩ X1| = k2 for all blocks
B ∈ B \ B1.

We have the following theorem from [7]:

Theorem 1.14. Let D1 be a (v1, k1, λ1)-subdesign of a symmetric (v, k, λ)-design D with v1 < v

and let k2 = v1(k−k1)
(v−v1)

. Then D1 is tight if and only if k − λ = (k1 − k2)
2.

Corollary 1.15. A (16, 6, 2)-subdesign of the Higman-Sims design is a tight subdesign.

Remark 1.16. The notion of a tight subdesign was introduced by Haemers and M.S. Shrikhande
[4]. The original concept and definition of tight subdesigns uses the technique of interlacing of
eigenvalues developed earlier by Haemers [5]. The original definition and the definition presented in
this paper were proved equivalent by Jungnickel [7].

Throughout the paper, we fix two points a and b of W24 = (Q,S) and assume that H is the
Higman-Sims design described in Theorem 1.12.

2. The (16, 6, 2)-subdesign

Theorem 2.1. Let c and d be distinct points of W24 other than a or b. Let A0 ⊆ A be the set
of all blocks of W24 which contain a, c, and d and do not contain b; and let B0 ⊆ B be the set of
all blocks of W24 which contain b, c, and d and do not contain a. Let H0 denote the substructure
(A0,B0) of H. Then H0 is a tight (16, 6, 2) subdesign of H.

We prove this theorem through a series of lemmas.

Lemma 2.2. |A0| = |B0| = 16; each element of A0 is incident with exactly 6 elements of B0, and
each element of B0 is incident with exactly 6 elements of A0.
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Proof. The cardinality of A0 and the cardinality of B0 are each equal to λ3 − λ4 = 16.
Fix C ∈ A0 and let X = C \ {c, d}. For i = 0, 2, let ni denote the number of blocks D ∈ B0 such

that |D ∩ X| = i. Then

n0 + n2 = 16,

Counting pairs (D,x) where x ∈ C ∩ D yields:

2n2 = 5(λ4 − λ5) = 20.

Therefore n2 = 10 and n0 = 6. So each element of A0 is incident with exactly 6 elements of B0. A
similar argument shows that each element of B0 is incident with exactly 6 elements of A0. ¤

Remark 2.3. For the purposes of the following lemmas, we will allow C,D ∈ A0 with C 6= D. Notice
that C and D each contain the points {a, c, d} by construction. Since the intersection numbers of
W24 are 0, 2, and 4 by Theorem 1.8, we must have |C ∩ D| = 4. Let C ∩ D = {a, c, d, e}. Let
C \ D = {t1, t2, t3, t4} and D \ C = {u1, u2, u3, u4}.

There are exactly λ4 − λ5 = 4 blocks in W24 which contain {b, c, d, e} and do not contain
{a, b, c, d, e}. Denote such blocks as B1, B2, B3, B4. We know |Bi ∩ C| = |Bi ∩ D| = 4, so without
loss of generality we may assume that Bi ∩C = {c, d, e, ti} and Bi ∩D = {c, d, e, ui} for i = 1, 2, 3, 4.
Since |Bi ∩ Bj | = 4 for distinct i, j ∈ {1, 2, 3, 4}, we may assume that Bi = {b, c, d, e, ti, ui, vi, wi}.

Lemma 2.4. If C and D are distinct blocks of A0 containing a, c, and d, then there are at most six
blocks B ∈ B0 such that |B ∩ C| = |B ∩ D| = 4.

Proof. Let m denote the number of blocks B ∈ B0 which contain two elements of the set {t1, t2, t3, t4}
and two elements of the set {u1, u2, u3, u4}. Begin by noting that if ti ∈ B then ui /∈ B and vice
versa. This is because there is a unique block in W24 which contains {b, c, d, e, ti, ui} (as λ5 = 1)
and this block is the block Bi described above.

We will assume that m > 2 and let B5, B6, and B7 be distinct blocks, each of which contains
two elements of the set {t1, t2, t3, t4} and two elements of the set {u1, u2, u3, u4}. By the pigeonhole
principle, two of these blocks share a common point from {t1, t2, t3, t4}, say, without loss of generality,
B5 and B6. Also without loss of generality assume that B5 ∋ t1, t2 and B6 ∋ t1, t3. This implies that
B5, B6 ∋ u4 for the reasons stated at the beginning of this proof. But this means that B5 ∩ B6 =
{b, c, d, t1, u4}, a contradiction to the intersection numbers of W24. So m ≤ 2.

Recall from Remark 2.3 that there are four blocks B1, B2, B3, B4 ∈ B0 which contain {b, c, d, e}.
For each of these blocks, we have |Bi ∩ C| = |Bi ∩ D| = 4. Now we consider the remaining blocks
in B0 which contain {b, c, d} but do not contain {a, e}. If there is a block B among these remaining
blocks such that |B ∩ C| = |B ∩ D| = 4, B must contain two elements of the set {t1, t2, t3, t4} and
two elements of the set {u1, u2, u3, u4}. We have just shown that there are no more than two such
blocks. This completes the proof. ¤

Lemma 2.5. Let C,D be distinct blocks of A0 containing a, c, and d. Then there are exactly two
blocks B ∈ B0 such that |B ∩ C| = |B ∩ D| = 2.

Proof. There are λ3 − 2λ4 + λ5 = 12 blocks B ∈ B0 such that B contains {b, c, d} and B is disjoint
from {a, e}. We classify these blocks with the help of Lemma 2.4.

For i, j = 2, 4, let kij denote the number of blocks B ∈ B0 such that |B ∩C| = i and |B ∩D| = j.
We obtain the following equations by simple observation and from Lemma 2.2:

k22 + k24 + k42 + k44 = 16,

k22 + k24 = 6,

k22 + k42 = 6.
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Solving this system gives the equation

(2) k22 + 4 = k44.

Lemma 2.4 tells us that k44 ≤ 6. This means k22 ≤ 2 from Eq. (2). From Proposition 1.3, k22 ≤ 2
implies k22 = 2, which concludes the proof. ¤

3. Another (16, 6, 2) Subdesign

Definition 3.1. For two disjoint sets X,Y ⊆ Q, we define the following set:

P(X,Y ) = {B ∈ S|X ⊆ B and Y ∩ B = ∅}

Theorem 3.2. Consider a block B = {a, b, x, x′, y, y′, z, z′} of W24. Let A1 = P({a, x, x′}, {b, z, z′})∪
P({a, y, y′}, {b, z, z′}) and B1 = P({b, x, x′}, {a, z, z′}) ∪ P({b, y, y′}, {a, z, z′}). Let H1 denote the
substructure (A1,B1) of H. Then H1 is a tight (16, 6, 2)-subdesign of H.

We prove this theorem through a series of lemmas.

Lemma 3.3. The cardinalities of A1 and B1 are each 16.

Proof. For any distinct u, u′, v, v′, w, w′ such that there is a block D ∈ W24 with
D = {a, b, u, u′, v, v′, w, w′}, we have |P({u, v, v′}, {u′, w, w′})| = λ3 − 3λ4 + 3λ5 − 1 = 8. Therefore,
|A1| = |B1| = 16. ¤

We will prove that each element of A1 is incident with exactly 6 elements of B1, and each element
of B1 is incident with exactly 6 elements of A1 with the help of several lemmas.

Lemma 3.4. For any block A ∈ P({a, x, x′}, {b, z, z′}), there are two blocks B ∈ P({b, x, x′}, {a, z, z′})
such that |A ∩ B| = 2.

Proof. For i = 2, 4, let ni denote the number of blocks B ∈ P({b, x, x′}, {a, z, z′}) such that |B∩A| =
i. Then

n2 + n4 = 8

Counting pairs (B, s) where s ∈ A ∩ B and s 6= y, y′ yields:

2n4 = 5(λ4 − λ5) − 2(λ4 − λ5) = 12

Therefore n4 = 6 and n2 = 2. ¤

Lemma 3.5. For any block A ∈ P({a, x, x′}, {b, z, z′}), there are four blocks B ∈ P({b, y, y′}, {a, z, z′})
such that |A ∩ B| = 2.

Proof. For i = 2, 4, let mi denote the number of blocks B ∈ P({b, y, y′}, {a, z, z′}) such that |B∩A| =
i. Then

m2 + m4 = 8

Counting pairs (B, t) where t ∈ A ∩ B and t 6= x, x′ yields:

2m4 = 4(λ4 − λ5) − 2(λ4 − λ5) = 8

Therefore m4 = 4 and m2 = 4. ¤

From Lemmas 3.4 and 3.5, we see that every block A ∈ A1 is incident with n2 + m2 = 6 blocks
in B1. A similar argument shows that every block B ∈ B1 is incident with 6 blocks in A1.

Lemma 3.6. The substructure (P({a, x, x′, y}, {b, z, z′}),B1) of (A1,B1) admits the following inci-
dence matrix:



6 S. KLEE AND L. YATES









0000 1100 1010 1001
0000 1100 0101 0110
0000 0011 1010 0110
0000 0011 0101 1001









Proof. We begin by only considering the blocks in P({a, x, x′, y}, {b, z, z′}). We may assume without
loss of generality that the four blocks in this set have the following form:

A1 = {a, x, x′, y} ∪ T

A2 = {a, x, x′, y} ∪ U

A3 = {a, x, x′, y} ∪ V

A4 = {a, x, x′, y} ∪ W

where T = {t1, t2, t3, t4}, U = {u1, u2, u3, u4}, V = {v1, v2, v3, v4}, and W = {w1, w2, w3, w4}; and
T,U, V, and W are pairwise disjoint.

None of the blocks in P({b, x, x′, y}, {a, z, z′}) are incident to the blocks in P({a, x, x′, y}, {b, z, z′}).
Now we consider the blocks {B1, B2, B3, B4} = P({b, x, x′, y}, {a, z, z′}). Each of these blocks con-
tains two points each from two of the sets T,U, V, and W . If this is not the case, we have a
contradiction to the intersection numbers with A1, A2, A3 and A4. Without loss of generality we
may assume these blocks have the following form:

B1 = {b, x, x′, y′, t1, t2, w3, w4}

B2 = {b, x, x′, y′, u1, u2, v3, v4}

B3 = {b, x, x′, y′, v1, v2, u3, u4}

B4 = {b, x, x′, y′, w1, w2, t3, t4}

Now we consider the blocks in P({b, x, y, y′}, {a, z, z′}) = {B5, B6, B7, B8} and
P({b, x′, y, y′}, {a, z, z′}) = {B9, B10, B11, B12}. We know that each Ai is incident to two blocks from
each of these sets from Lemmas 3.4 and 3.5. We may assume without loss of generality that t1, t3 ∈
B5 and t2, t4 ∈ B6. This implies that w2, w4 ∈ B7, w1, w3 ∈ B8, and without loss of generality that
t2, t4 ∈ B9 and t2, t3 ∈ B10. Further, this implies that wi /∈ B5, B6, B9, B10 for i ∈ {1, 2, 3, 4}.
So we may conclude that w2, w4 ∈ B7, w1, w3 ∈ B8, w2, w3 ∈ B11, and w1, w4 ∈ B12. So now
we may assume without loss of generality that u1, u3 ∈ B5 and v1, v3 ∈ B6. This implies that
u2, u4 ∈ B7 and v2, v4 ∈ B8. Since wi /∈ B9, B10, we may assume u1, u4 ∈ B9 and v1, v4 ∈ B10. This
implies that u2, u3 ∈ B11 and v2, v3 ∈ B12. This construction gives the desired incidence matrix as
stated above. ¤

In a similar manner, one can show that the substructures

(P({a, x, x′, y′}, {b, z, z′}),B1),

(P({a, x, y, y′}, {b, z, z′}),B1), and

(P({a, x′, y, y′}, {b, z, z′}),B1)

have the following incidence matrices:








1100 0000 1001 1010
1100 0000 0110 0101
0011 0000 0110 1010
0011 0000 1001 0101











TIGHT SUBDESIGNS OF THE HIGMAN-SIMS DESIGN 7









1010 1001 0000 1100
0101 0110 0000 1100
1010 0110 0000 0011
0101 1001 0000 0011









and








1001 1010 1100 0000
0110 0101 1100 0000
0110 1010 0011 0000
1001 0101 0011 0000









respectively.

Corollary 3.7. The incidence structure (A1,B1) admits matrix (1) as an incidence matrix, and
therefore it is a tight (16, 6, 2)-subdesign of the Higman-Sims design.

Proof. We need only consider the following substructures:

(P({a, x, x′, y′}, {b, z, z′}),B1)

(P({a, x, y, y′}, {b, z, z′}),B1)

(P({a, x′, y, y′}, {b, z, z′}),B1).

Since

A1 =P({a, x, x′, y}, {b, z, z′})

∪ P({a, x, x′, y′}, {b, z, z′})

∪ P({a, x, y, y′}, {b, z, z′})

∪ P({a, x′, y, y′}, {b, z, z′}),

we have the stated result. ¤

4. Finding Independent (16, 6, 2) Subdesigns

Definition 4.1. Two subdesigns (X1,B1) and (X2,B2) of a symmetric designs are said to be inde-
pendent if X1 ∩ X2 = ∅ and B1 ∩ B2 = ∅.

Now that we have constructed a (16, 6, 2)-subdesign of the Higman-Sims design, we would like to
find 11 independent (16, 6, 2)-subdesigns, which use each point and each block of the Higman-Sims
design exactly once. In order to do this, we will first rename the points in Q by partitioning the 22
points of W24 other than a or b into the following pairs:

Q = {a, b, 1, 1′, 2, 2′, . . . , 10, 10′, 11, 11′}.

Remark 4.2. We would like to construct these pairs such that each pair of pairs is contained
in a unique block which also contains a and b. For example, if there is a block B such that
{a, b, 1, 1′, 2, 2′} ⊆ B, then P({a, 1, 1′, 2, 2′}, {b}) = ∅, and we may use Theorem 2.1 to construct two
independent subdesigns: (P({a, 1, 1′}, b),P({b, 1, 1′}, a)) and (P({a, 2, 2′}, b),P({b, 2, 2′}, a)).

The following theorem constructs seven independent subdesigns.

Theorem 4.3. It is possible to construct seven pairwise independent tight (16, 6, 2)-subdesigns of
the Higman-Sims design as described in Theorem 2.1.
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Proof. There are λ4 = 5 blocks B ∈ W24 such that a, b, 1, 1′ ∈ B. We may call these blocks
C1, C2, . . . , C5. Without loss of generality we may assume these blocks are as follows:

C1 = {a, b, 1, 1′, 2, 2′, 3, 3′}

C2 = {a, b, 1, 1′, 4, 4′, 5, 5′}

C3 = {a, b, 1, 1′, 6, 6′, 7, 7′}

C4 = {a, b, 1, 1′, 8, 8′, 9, 9′}

C5 = {a, b, 1, 1′, 10, 10′, 11, 11′}.

There are 4 remaining blocks which contain {a, b, 2, 2′}. Call these blocks D1,D2,D3,D4. Again
without loss of generality we may assume these blocks are as follows:

D1 = {a, b, 2, 2′, 4, 4′, 6, 6′}

D2 = {a, b, 2, 2′, 5, 5′, 7, 7′}

D3 = {a, b, 2, 2′, 8, 8′, 11, 11′}

D4 = {a, b, 2, 2′, 9, 9′, 10, 10′}.

There are 4 remaining blocks which contain {a, b, 3, 3′}. Call these blocks E1, E2, E3, E4. The
construction of blocks C1, . . . , C5 and D1, . . . ,D4 imply that these blocks are as follows:

E1 = {a, b, 3, 3′, 4, 4′, 7, 7′}

E2 = {a, b, 3, 3′, 5, 5′, 6, 6′}

E3 = {a, b, 3, 3′, 8, 8′, 10, 10′}

E4 = {a, b, 3, 3′, 9, 9′, 11, 11′}.

Now we claim that there is not another block which contains two or more pairs of pairs of points
as described above. Assume there is a block which contains {a, b, 4, 4′}. This block cannot contain
the pairs {5, 5′}, {6, 6′}, or {7, 7′}, because these contradict the sizes of the intersections with C2,
D1, and E1 respectively. Also, any pair of pairs from the sets {8, 8′}, {9, 9′}, . . . , {11, 11′} is already
contained in some Ci,Di, or Ei. Thus, there is no block which contains three pairs of pairs of points.
Further, note that if there is a block which contains {a, b, 4, 4′, 8, 8′}, the remaining two points
cannot be any of the following: {1, 1′, 2, 2′, 3, 3′, 5, 5′, 6, 6′, 7, 7′, 8, 8′, 9, 9′, 10, 10′, 11, 11′} because in
each of these cases we have a contradiction to the intersection sizes with previously constructed
blocks. A similar contradiction arises for blocks which contain {a, b, 4, 4′, 9, 9′}, {a, b, 4, 4′, 10, 10′},
or {a, b, 4, 4′, 11, 11′}. Thus, the blocks constructed above are the only blocks which contain {a, b}
and two pairs of points {1, 1′}, . . . , {11, 11′}.

Thus, by Theorem 2.1, we may construct the following tight subdesigns:

D1 = (P({a, 1, 1′}, {b}),P({b, 1, 1′}, {a}))

D2 = (P({a, 2, 2′}, {b}),P({b, 2, 2′}, {a}))

D3 = (P({a, 3, 3′}, {b}),P({b, 3, 3′}, {a}))

D4 = (P({a, 4, 4′}, {b}),P({b, 4, 4′}, {a}))

D5 = (P({a, 5, 5′}, {b}),P({b, 5, 5′}, {a}))

D6 = (P({a, 6, 6′}, {b}),P({b, 6, 6′}, {a}))

D7 = (P({a, 7, 7′}, {b}),P({b, 7, 7′}, {a})).

¤
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Theorem 4.4. The substructures D1,D2, . . . ,D7 of Theorem 4.3 and the following two substruc-
tures are nine independent tight (16, 6, 2)-subdesigns of H.

D8 =(P({a, 8, 8′}, {b, 1, 1′}) ∪ P({a, 9, 9′}, {b, 1, 1′}),

P({b, 8, 8′}, {a, 1, 1′}) ∪ P({b, 9, 9′}, {a, 1, 1′}))

D9 =(P({a, 10, 10′}, {b, 1, 1′}) ∪ P({a, 11, 11′}, {b, 1, 1′}),

P({b, 10, 10′}, {a, 1, 1′}) ∪ P({b, 11, 11′}, {a, 1, 1′}))

Proof. We will show that P({a, 8, 8′}, {b, 1, 1′}) is disjoint from the point set of the first seven
subdesigns, and the remaining cases follow by the same method.

Assume there is a block B ∈ P({a, 8, 8′}, {b, 1, 1′}) such that {x, x′} ⊆ B for x = 1, 2, . . . , 7.
We know x 6= 1, 2, 3 because of the blocks C4,D3, E3 of the proof of Theorem 4.3. Further, if
x = 4, any block containing {a, 4, 4′, 8, 8′} also contains one point each from {1, 1′}, {2, 2′}, {3, 3′}, a
contradiction to our assumption that 1, 1′ /∈ B. We arrive at the same contradiction for x = 5, 6, 7.
Thus, the points and blocks described above are independent from the points and blocks in previously
constructed designs.

By Theorem 3.2, D8 and D9 are independent (16, 6, 2)-subdesigns. ¤

At this point, we may classify the remaining points and blocks of the Higman-Sims design which
have not been used in any of D1,D2, . . . ,D9. The proofs of the following two theorems can be
found in [1].

Theorem 4.5. If A and B are blocks of W24 such that |A ∩ B| = 4, then A△B is a block of W24

Theorem 4.6. If A and B are disjoint blocks of W24, then Q \ {A ∪ B} is a block of W24.

Proposition 4.7. The following sets of blocks of the Higman-Sims design are disjoint from the point
sets of D1,D2, . . . ,D9:

i: Eight blocks B of W24 such that 8, 8′, 9, 9′, 10, 10′, 11, 11′ /∈ B and a ∈ B.
ii: Eight blocks C of W24 such that 4, 4′, 5, 5′, 6, 6′, 7, 7′ /∈ C and a ∈ C.
iii: Four blocks D of W24 such that a, 8, 8′ ∈ D.
iv: Four blocks E of W24 such that a, 9, 9′ ∈ E.
v: Four blocks F of W24 such that a, 10, 10′ ∈ F .
vi: Four blocks G of W24 such that a, 11, 11′ ∈ G

Proof. We consider each of the above items:

i: For this proof, we consider the set of blocks C = {C1, C2, C3,D1,D2, E1, E2} constructed in
the proof of Theorem 4.3. Also, we consider the block R = {8, 8′, 9, 9′, 10, 10′, 11, 11′}. Such
a block exists by considering blocks C4 and C5, and Theorem 4.5. From Theorem 1.11, we
know that there are 30 blocks in W24 which are disjoint from R. Seven of these blocks are
mentioned at the beginning of this proof in the set C. By Theorem 4.6, we know that for all
X ∈ C, the blocks Q \ (X ∪ R) are also blocks of W24 which are disjoint from R. Now we
show that there is not another block T such that T ⊃ {a, b} and R ∩ T = ∅.

Assume such a block T exists. T cannot contain any of the pairs of points {1, 1′}, . . . , {7, 7′}.
Assume T contains some pair y, y′ and consider some other point x ∈ T . Then T ∩ C ⊃
{a, b, y, y′, x}, a contradiction to the intersection numbers W24. Since T cannot contain any
of these pairs of points, by the pigeonhole principle, T must contain some 3 points other
than a and b which are contained in some block in C ∈ C, a contradiction to the intersection
numbers of W24.

Since there are seven blocks T such that T ⊃ {a, b} and T ∩ R = ∅, there are also seven
blocks U such that a, b /∈ U and U ∩R = ∅ by Theorem 4.6. Recall that there are 30 blocks
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in W24 that are disjoint from R. For any block V ∈ W24 such that a ∈ V , b /∈ V , and
V ∩ R = ∅, there is a block W = Q \ {V ∪ R} such that a /∈ W , b ∈ W , and W ∩ R = ∅ by
Theorem 4.6.

Thus, there must be eight blocks B ∈ W24 such that B ∩ R = ∅, a ∈ B, and b /∈ B.
ii: This result uses the same logic as in i.
iii: From the proof of Theorem 4.3, we know there is no block which contains the points

{a, b, 4, 4′, 8, 8′}, but we also know there is a unique block which contains the points {a, 4, 4′, 8, 8′}.
The same argument holds for blocks containing {a, 5, 5′, 8, 8′}, {a, 6, 6′, 8, 8′}, and {a, 7, 7′, 8, 8′}.
Further, we use eight blocks which contain {a, 8, 8′} in D8. Lemma 2.2 tells us there are 16
blocks in W24 which contain {a, 8, 8′} and do not contain b, and we have only used 12 of
them.

iv: Similar to the proof of iii.
v: Similar to the proof of iii.
vi: Similar to the proof of iii.

¤

Proposition 4.8. The following blocks of the Higman-Sims design are independent of the block sets
of D1,D2, . . . ,D9:

i: Eight blocks H of W24 such that 8, 8′, 9, 9′, 10, 10′, 11, 11′ /∈ H and b ∈ H.
ii: Eight blocks J of W24 such that 4, 4′, 5, 5′, 6, 6′, 7, 7′ /∈ J and b ∈ J .
iii: Four blocks K of W24 such that b, 8, 8′ ∈ K.
iv: Four blocks L of W24 such that b, 9, 9′ ∈ L.
v: Four blocks M of W24 such that b, 10, 10′ ∈ M .
vi: Four blocks N of W24 such that b, 11, 11′ ∈ N

Proof. The proof of this Proposition uses the same logic as the proof of Proposition 4.7. ¤

Using Propositions 4.7 and 4.8, we obtain the following result.
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Theorem 4.9. The following are the points and blocks of the Higman-Sims design which have not
been considered in D1, . . . ,D9:

A1 = {a, 1, 2, 3′, 4, 5′, 6, 7} A2 = {a, 1, 2, 3′, 4′, 5, 6′, 7′}

A3 = {a, 1, 2′, 3, 4, 5′, 6′, 7′} A4 = {a, 1, 2′, 3, 4′, 5, 6, 7}

A5 = {a, 1′, 2, 3, 8, 9′, 10, 11} A6 = {a, 1′, 2, 3, 8′, 9, 10′, 11′}

A7 = {a, 1′, 2′, 3′, 8, 9′, 10′, 11′} A8 = {a, 1′, 2′, 3′, 8′, 9, 10, 11}

A9 = {a, 1′, 4′, 5′, 8′, 9′, 11, 11′} A10 = {a, 1′, 4, 5, 8, 9, 11, 11′}

A11 = {a, 1′, 4′, 5′, 8, 9, 10, 10′} A12 = {a, 1′, 4, 5, 8′, 9′, 10, 10′}

A13 = {a, 1′, 6, 7′, 9, 9′, 10, 11′} A14 = {a, 1′, 6′, 7, 9, 9′, 10′, 11}

A15 = {a, 1′, 6′, 7, 8, 8′, 10, 11′} A16 = {a, 1′, 6, 7′, 8, 8′, 10′, 11}

A17 = {a, 1′, 2′, 3′, 4, 5, 6′, 7} A18 = {a, 1′, 2, 3, 4′, 5′, 6′, 7}

A19 = {a, 1′, 2, 3, 4, 5, 6, 7′} A20 = {a, 1′, 2′, 3′, 4′, 5′, 6, 7′}

A21 = {a, 1, 2, 3′, 8, 9, 10, 11′} A22 = {a, 1, 2′, 3, 8, 9, 10′, 11}

A23 = {a, 1, 2′, 3, 8′, 9′, 10, 11′} A24 = {a, 1, 2, 3′, 8′, 9′, 10′, 11}

A25 = {a, 1, 4′, 5, 8, 8′, 10′, 11′} A26 = {a, 1, 4, 5′, 8, 8′, 10, 11}

A27 = {a, 1, 4, 5′, 9, 9′, 10′, 11′} A28 = {a, 1, 4′, 5, 9, 9′, 10, 11}

A29 = {a, 1, 6′, 7′, 8′, 9, 10, 10′} A30 = {a, 1, 6, 7, 8, 9′, 10, 10′}

A31 = {a, 1, 6′, 7′, 8, 9′, 11, 11′} A32 = {a, 1, 6, 7, 8′, 9, 11, 11′},

and

B1 = {b, 1, 2, 3, 4′, 5′, 6, 7′} B2 = {b, 1, 2, 3, 4, 5, 6′, 7}

B3 = {b, 1, 2′, 3′, 4′, 5′, 6′, 7} B4 = {b, 1, 2′, 3′, 4, 5, 6, 7′}

B5 = {b, 1′, 2, 3′, 8, 9, 10′, 11} B6 = {b, 1′, 2, 3′, 8′, 9′, 10, 11′}

B7 = {b, 1′, 2′, 3, 8′, 9′, 10′, 11} B8 = {b, 1′, 2′, 2, 8, 9, 10, 11′}

B9 = {b, 1′, 4, 5′, 8, 8′, 10′, 11′} B10 = {b, 1′, 4′, 5, 8, 8′, 10, 11}

B11 = {b, 1′, 4, 5′, 9, 9′, 10, 11} B12 = {b, 1′, 4′, 5, 9, 9′, 10′, 11′}

B13 = {b, 1′, 6, 7, 8′, 9, 10, 10′} B14 = {b, 1′, 6′, 7′, 8, 9′, 10, 10′}

B15 = {b, 1′, 6′, 7′, 8′, 9, 11, 11′} B16 = {b, 1′, 6, 7, 8, 9′, 11, 11′}

B17 = {b, 1′, 2, 3′, 4, 5′, 6′, 7′} B18 = {b, 1′, 2′, 3, 4′, 5, 6′, 7′}

B19 = {b, 1′, 2′, 3, 4, 5′, 6, 7} B20 = {b, 1′, 2, 3′, 4′, 5, 6, 7}

B21 = {b, 1, 2′, 3′, 8, 9′, 10, 11} B22 = {b, 1, 2, 3, 8′, 9, 10, 11}

B23 = {b, 1, 2, 3, 8, 9′, 10′, 11′} B24 = {b, 1, 2′, 3′, 8′, 9, 10′, 11′}

B25 = {b, 1, 6′, 7, 8, 8′, 10′, 11} B26 = {b, 1, 6, 7′, 8, 8′, 10, 11′}

B27 = {b, 1, 6′, 7, 9, 9′, 10, 11′} B28 = {b, 1, 6, 7′, 9, 9′, 10′, 11}

B29 = {b, 1, 4′, 5′, 8′, 9′, 10, 10′} B30 = {b, 1, 4, 5, 8, 9, 10, 10′}

B31 = {b, 1, 4, 5, 8′, 9′, 11, 11′} B32 = {b, 1, 4′, 5′, 8, 9, 11, 11′}.

From Theorem 4.9, we obtain the following result:

Theorem 4.10. Consider the following sets of points and blocks from Theorem 4.9:
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A10 = {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16}

A11 = {A17, A18, A19, A20, A21, A22, A23, A24, A25, A26, A27, A28, A29, A30, A31, A32}

B10 = {B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15, B16}

B11 = {B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31, B32}

The substructures (A10,B10) and (A11,B11) form tight (16, 6, 2)-subdesigns of the Higman-Sims
Design.

Proof. This theorem is easily verified by constructing the incidence matrices of the two designs. ¤

5. Designs with Tight (16, 6, 2) Subdesigns

In this section, we wish to classify all (v, k, λ)-designs D which have the (16, 6, 2)-design as a tight
subdesign.

The following proposition is known from [6].

Proposition 5.1. If a non-trivial symmetric (v1, k1, λ1)-design with λ1 6= 0 is a tight subdesign of
a symmetric (v, k, λ)-design, then there exist positive integers d, t, u, and u1 such that du1 = v1,
d ≥ 2, t ≤ d − 1,

(3) u =
(v1 − 1)((k1 − tu1)

2 − (k1 − λ1))

tu1(d − t)

(4) v = d(u1 + u)

(5) k = k1 + tu

and

(6) λ = k − (k1 − tu1)
2

Proposition 5.1 gives us the following:

Theorem 5.2. If a symmetric (v, k, λ)-design has a tight (16, 6, 2)-subdesign, then
(v, k, λ) = (64, 36, 20), (v, k, λ) = (176, 126, 90), or (v, k, λ) = (1248, 1161, 1080).

Proof. We manipulate (3) to obtain the following:

(7) tu =
15(tu1 − 8)(tu1 − 4)

16 − tu1

and

(8) tu =
15((tu1 − 16)(tu1 − 2) + 6tu1)

16 − tu1

Eq. (7) tells us 8 < tu1 < 16, and from (8) we have:

tu = 15(2 − tu1) +
90tu − 1

16 − tu1

We need 90tu1

16−tu1

∈ Z
+, and examining all possible values for tu1 gives tu1 ∈ {10, 11, 12, 13, 14, 15}.

Examining these values with respect to eqs. (7), (5), (6), and (4) shows that the only possible
values for (v, k, λ) with integer solutions are (64, 36, 20), (176, 126, 90), and (1248, 1161, 1080). ¤

Remark 5.3. There exists a symmetric (64, 36, 20)-design with a tight (16, 6, 2)-subdesign (see [6]),
and the (176, 126, 90)-design is the Higman-Sims design. We do not know whether a (1248, 1161, 1080)
design exists.
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6. Other Tight Subdesigns of the Higman-Sims Design

In this section, we would like to classify non-trivial tight subdesigns of the Higman-Sims design.

Theorem 6.1. If a symmetric (v1, k1, λ1)-design is a tight subdesign of the (176, 126, 90) Higman-
Sims design, then (v1, k1, λ1) = (16, 6, 2), (v1, k1, λ1) = (22, 21, 20), or (v1, k1, λ1) = (36, 21, 12).

Proof. We know from [6] that a tight (v1, k1, λ1)-subdesign of a (v, k, λ)-design has the property that

(9) k − λ = (k1 − k2)
2

where k2 = v1(k−k1)
v−v1

. Further, from [6] that if D is a symmetric (v, k, λ)-design, then

(10) λ(v − 1) = k(k − 1)

Manipulation of (9) gives the following equation:

(11)
176k1 − 126v1

176 − v1
= ±6

Now we must consider two cases:

Case 1:

176k1 − 126v1 = −6(176 − v1)

=⇒ 4(k1 + 6) = 3v1

This tells us that 3|k1, and we can easily check through all cases for k1 < 126 to verify
that the only integer solutions to (11) are (16, 6, 2), (36, 21, 12), and (76, 51, 34). However,
we may rule out the (76, 51, 34) design because [1] tells us that in a symmetric (v, k, λ)-design
in which v is even, k − λ must be a square.

Case 2:

176k1 − 126v1 = 6(176 − v1)

=⇒ 22(k1 − 6) = 15v1

This tells us that 22|v1. Again we check through all cases for v1 < 176 with respect to
the equations from Proposition 5.1 and (10) to verify that the only integer solution to (11)
is (22, 21, 20).

¤

Remark 6.2. We have already found a tight (16, 6, 2) subdesign of the Higman-Sims design; but,
although we know that there are designs with parameters (36, 21, 12) and (22, 21, 20), we cannot say
whether there are tight subdesigns of the Higman-Sims design with these parameters.
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