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Small-worlds: Beyond social networking

Andrew R. Curtis∗

Abstract

Small-world phenomena were initially studied in the 1960s through a series of social network
experiments, and are, as evidenced by the game “The six degrees of Kevin Bacon,” even part
of our pop-culture. Recently, mathematicians and physicists have shown that most small-world
phenomena are expected consequences of the mathematical properties of certain networks–
known as small-world networks. In this paper, we survey some recent mathematical develop-
ments dealing with small-world networks, as well as present a new small-world network model
and discuss new ideas for decentralized searching. The goal is to give the reader a sense of
the importance of small-world networks, and some of the useful applications dealing with these
networks.

1 Orgins

In order to create an appropriate mathematical model of small-world phenomena, it is important
to understand the social network origination of this branch of mathematics.

We’ve all had experiences (e.g. sitting next to someone on an airplane who went to high school
with someone from your Uncle’s hometown) that made us say “it really is a small-world.” Such
a “coincidence” is an example of a small-world phenomenon. Sociologists were the first to study
small-world phenomena when they tried to explain everyday observation that any two individuals
in a social network are likely to be connected through a short chain of acquaintances. The study
consisted of a series of experiments by Stanley Milgram and colleagues in the 1960s [10, 17, 19].
A typical run of the experiment delivered a letter to a source person in Nebraska, with a target
in Massachusetts. The source was told relatively little information about the target (including his
name and address), with instructions to send the letter to a person he knew on a first name basis
whom he thought would know the target. The next person in the chain received the letter and the
same instructions. Thus the letter hopped across the country in this manner, eventually reaching
the target person. Many trials showed that an average of 6 steps were necessary for the letter to
pass from the source to the target. This is now known as the “six degrees of separation” principle
[12].

The existence of short paths between two persons is striking given the fact that there are over
260 million people in the United States alone, and that a person’s close acquaintances number in
the hundreds. If friendships were random (i.e. it’s just as likely that you know the governor of
Massachusetts, as you know your father), then one might expect short paths to exist. Indeed a
mathematical theory, known as random graph theory, shows that the diameter, or the expected
distance between a source and target, in a random network is relatively small [7]. If friendships
were highly structured (i.e you are only friends to those who live within 10 miles of you), then we
would expect it to take much more than 6 steps for a letter from Nebraska to reach Massachusetts.
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Social networks are neither random nor highly structured. Two friends are likely to have a third,
common friend, and social networks take geographic information into account. Two persons living
thousands of miles away are not likely, but occasionally are, friends. Thus, social networks are a mix
between random and highly structured networks. So why do short paths exist in social networks?

Even more startling is that the participants (working independently) in Milgram’s experiments
found short paths. The mere existence of short paths connecting persons through acquaintances
pales in comparison to the ability for these short paths to naturally manifest themselves through
individual choices. This suggests that the network stores latent structural cues, guiding members
to a short path. This is startling due the lack of knowledge individuals have about the network.
People know their own friends, and possibly have knowledge of their friends’ friends. Yet no one
has complete knowledge of the chain of individuals between themselves and an arbitrary target.

2 Modeling the Phenomenon

The natural question arising from Milgram’s experiments is how do we mathematically model small-
world networks? Several authors have investigated this question. We present their models here,
as well as our own geographic model. However before examining small-world models, we discuss
random and structured networks. The first small-world model examined is the original model of
Watts and Strogatz. Next, we will examine networks with power-law distribution of node degrees.
And finally, we will present our own small-world network model.

2.1 Random and Structured Networks

Before discussing models of small-world networks, we feel it is necessary to cover random and struc-
tured networks. A network is a collection of vertices or nodes connected by edges. In mathematics,
a network is typically referred to as a graph. A graph G = (V,E) consists of a (typically, finite) set
of vertices V and a subset E of pairs of vertices. Small networks are sometimes best understood
visually, see Figure 1 for an example.

edge

node

Figure 1: Example network with seven nodes and five edges.

Random networks are created by fixing a real number p with 0 ≤ p ≤ 1, then creating a set of
vertices V , and finally forming connections between any two vertices with probability p. Therefore
the probability that u is connected to v is the same for each v ∈ V . The expected diameter of a
random networks is low; that is, the longest path from any vertex to any other vertex is relatively
small [7]. But random graphs have a very low clustering coefficient. This means that if an edge
exists between two vertices u and v, then the probability that an edge exists from u to a neighbor
of v is low ((1− p)p(n−1) where n is the number of vertices).
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Structured networks are created as the name suggests, by forming connections between nodes in
a structured manner. For instance, one way to create a structured network is to place a collection
of n vertices on a line. Then, connect each vertex to the vertex closest on either side. This will
form a path of n vertices. Structured networks which only join close vertices together, will have
high clustering coefficient, but relatively large diameter. In our line example, the diameter of the
network is n− 1, since n− 1 steps are required to send a message from the vertices on either end of
the line to each other. Another simple method to build a structured network is to place n2 nodes
on an n× n lattice, then connect each node to the surrounding four nodes.

2.2 Basic Model

The small-world phenomenon was first modeled by Watts and Strogatz in their 1998 paper “Collec-
tive dynamics of small-world networks” [21]. Watts and Strogatz give a simple, yet novel method
to model several naturally arising and man-made small-world networks. Their model places a set
V of n network nodes in a circle, then connects the nearest k nodes together. For k = 1, this yields
a cycle, each node is able to directly communicate with its closest two neighbors, one on either
side. Then one adds a few connections between nodes in V at random. These edges serve to add
randomness to a structured network. This model creates networks with low diameter like random
networks, yet the nodes remain “clustered.” Each node in V has “local contacts,” eg. a neighbor
and long-range “weak links,” eg. a friend who has moved to another country. An example of a
network created with Watts and Strogaz’s model is drawn in Figure 2.

In addition to this model, Watts and Strogatz showed three naturally arising networks exhibit
the small-world phenomenon; that is, these networks have a low diameter and a high degree of
clustering. The networks examined were the neural network of the worm Caenorhabditis elegans,
the power grid of the United States, and the collaboration graph of film actors.

2.3 Power-Law Networks

Not all small-world networks are the same, however. Many networks with the small-world property
also have a power-law property, the distributions of the degrees of each node follow a power-law.
This means that a chart of how many connections each node in the network has looks like graphing
y = logγ x on the (x, y) plane, for some positive number γ. More precisely, the probability P (k) a
node will have connections to k other nodes follows P (k) ∼ k−γ . A model for generating power-law
networks is given by Barabási and Albert [5]. The model of Barabási and Albert creates a small,
random network then adds more nodes, forming connections between a new node and existing
nodes preferentially to nodes with higher degrees. A small power-law network is drawn in Figure
3.

This “rich-get-richer” network design paradigm is a common theme in many networks. For
instance, the link structure of the World Wide Web (WWW) is a power-law network. Let’s say a
person creates a personal web page for himself. He decides to put a few links to some of his favorite
pages on his personal web page. Most likely, this person will add links to popular web pages. If a
web site is already popular, it is more likely to receive another link. This uneven distribution of
links makes the structure of links between pages in the WWW a power-law network.

The model of Barabási and Albert begins by creating a small random network G = (V,E) of
m0 nodes. Then additional nodes are added to the network, forming connections preferentially
to nodes with high connectivity. The probability Π that a new vertex u will be connected to an
existing vertex v is

Π(u, v) =
deg(v)∑

w∈V deg(w)
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Figure 2: Watts and Strogatz example where k = 2. The random edges have been colored orange.

Figure 3: Power-law example. Note the uneven degree distributions, some nodes have many con-
nections, while most have few.
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so after t nodes are added, |V | = m0 + t. This network will scale from a small, random network to
a power-law network with γ = 2.9± 0.1.

We mentioned the WWW forms a power-law network, and much work has been done to model
the link structure of the WWW as a graph. This is done by allowing each online document to be a
vertex and each link from document u to document v to form a directed edge (u, v). Many authors
have modeled the degree distribution of nodes in the WWW [5, 6, 11, 13, 14]. In addition, authors
have estimated the diameter of the WWW [3]. The WWW is a particularly interesting example
since anyone can participate in its creation and its structure is constantly changing. Despite the
billions of pages in the WWW, the diameter has been estimated to be 19 by Albert, Jeong and
Barabási [3]. This means that if one was to start at a random page, they should be able to reach
any other page on the WWW by clicking at most 19 links. This is possible simply because of the
power-law structure of the WWW.

2.4 Geometric Networks

We now present our geometric model for constructing small-world networks. This model incorpo-
rates features of other models, but remains flexible. So flexible that we offer methods to modify
our model to create networks with a power-law degree distribution.

Our model uses geometric information to form connections between nodes. To begin, we place
n points randomly on an n× n plane. Then we form connections between nodes u and v that are
“close” with probability

Pclose(u, v) =
1

kclose

with kclose a small constant. We then add the notion of a “far” contact. We add a connection
between u and v with probability

Pfar(u, v) =
1

kfar

where kfar is a constant dependent on n and 1 ≤ kclose < kfar ≤ n. The notion of close and far
depend on n and how many connections per node one would like. We use a discrete relationship
for close and far. A node v is close to u if the distance d(u, v) is less than a positive real number
m. This distance is simply the Euclidean distance between the points representing u and v on the
plane. This relationship is described in Figure 4. Any node v close to u is then connected with
probability Pclose(u, v), and each node not close to v is connected with probability Pfar(u, v). So for
higher clustering, lower kclose; and for more random connections, lower kfar. This model naturally
extends to higher dimensions as well.

The resulting network has a low diameter due to the random, long-distance connections between
“far” nodes, while maintaining a high clustering coefficient because of the “close” connections. The
geometric implications of this network are also easily understood. A person is much more likely
to have many acquaintances near her home, however not all of her neighbors are necessarily her
acquaintances as in the model of Watts and Strogatz. This person is also likely to have some
acquaintances who geometrically live far away. However she is likely to have fewer acquaintances
who live hundreds or thousands of miles away then those who live close by. This geometric model
extends past social networks, however. When a person hooks a computer up to the Internet, it is
desirable to keep the physical cable connecting that computer to the Internet as short as possible
for expense reasons. Say one was to add a server to the Internet, and for robustness would like to
connect to four other servers. It makes sense to run cables to the three physically closest servers
and then one additional cable to a major, centrally located server. Our model works to encapsulate
this behavior.
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Figure 4: Geometric network. The highlighted area around the orange node represents the zone of
close nodes.

One interesting aspect of our geometric model is that it can be modified to create power-law
networks. Rather than placing the nodes randomly on a plane, arrange n nodes on a lattice. We
then modify the probability of forming an edge between two nodes. Instead of taking the Euclidean
distance between each nodes, we use the distance between a node and the center of the lattice.
Then the probability P an edge will be created between nodes u and v is

P (u, v) =
1

(dcenter(v))r

where r is a constant that can be modified to alter γ, the “slope” of degree distributions. For
instance, when γ = 2, the degrees distribution has a much steeper falloff then when γ = 1/2. Thus
the geometric method of constructing power-law networks is quite flexible.

3 Search Applications

In recent years, there has been considerably effort to develop local or decentralized search strategies
for networks. This method of searching has very little information at each step, knowing almost
nothing of the global topology of the network. We first cover the decentralized search model
of Kleinberg. Next we discuss search in power-law networks. And finally, we present our own
decentralized search model.

3.1 Decentralized Search

Recently the special properties of small-world networks have been exploited to find efficient search
strategies. The algorithmic aspect of small-world networks was examined by Jon Kleinberg when he
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showed an important theoretical result about decentralized search in small-world networks [15, 16].
Kleinberg’s basic results show how to build the long-range connections in a lattice network to
minimize delivery time of a message. He showed that a network constructed by placing nodes on
an n×n grid, then connecting each node to its four neighbors can have a logarithmic decentralized
search algorithm if a single long-range connection is added in a special manner to each node.
Kleinberg’s algorithm for sending a message across the network is very simple. A message starts at
node s, then moves to a node connected to s such that the distance to the target t is minimized.
Without long range contacts, it is easy to see that the expected delivery time of a message in an
n × n lattice network is Θ(n). Kleinberg showed how to add a single long-range contact to each
node to decrease this bound to a logarithmic one.

To examine Kleinberg’s results further, we need to formalize the notion of lattice distance. We
begin with a set of lattice points on an n× n square, V = {(i, j) : i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., n}}.
Then define the lattice distance between nodes (i, j) and (l, k) as d((i, j), (l, k)) = |k − i|+ |l − j|.
This is simply the number of steps on the lattice separating the two nodes and can be thought of
as “taxicab geometry.” Then to construct the lattice network, each node will have an edge to each
other node distance one away. That is, if d((i, j), (l, k)) = 1, then (i, j) and (l, k) are connected.
Now, a single, directed long-range contact is created from u to v with probability proportional to
d(u, v)−r. This must be normalized by dividing by the sum of the distances from u to each other
node in the graph. So, we add an edge from u to v with probability

Pr(u, v) =
d(u, v)−r∑

w∈V d(u, w)−r

So, if r = 0, we have a uniform random distribution of long-range contacts across the grid. However,
Kleinberg showed that only one value of r builds the long-range contacts in an optimal manner for
sending information through the network.

Figure 5: Kleinberg’s small-world model. Each node is connected to its neighbors distance one
away; the highlighted connection is a long-range contact.

Before stating Kleinberg’s main results, we need to discuss how a message will move across the
network. We wish to send a message in a decentralized manner, with the current message holder
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knowing as little global knowledge as possible. So we will allow the node u currently holding the
message to have knowledge of

1. the set of local contacts among all nodes; and

2. the location of the target node t.

With this minimal knowledge, the message will move from node to node, always minimizing the
distance to the target t (eg. the message will not move away from the target, only towards it).

We are now ready to present Kleinberg’s main result.

Theorem 1 (Kleinberg 2000) Using the decentralized algorithm described above, there is a con-
stant α, independent of n, so that when r = 2, the expected delivery time of a message is at most
α(log n)2.

The proof of Theorem 1 is too complicated to present here. We will comment, however, that
Kleinberg’s result is especially interesting, since r = 2 is the only value for which the decentralized
algorithm will deliver a message in logarithmic time. This shows that long-range contacts need to
be arranged in a very specific manner. When r < 2, the long-range contacts of a node u are too
far away to be useful, and when r > 2 the long-range contacts of u are too close. This result can
be extended to arbitrary dimensions, so if we have a k-dimensional lattice of nodes, the optimal
delivery time will be reached when r = k.

3.2 Power-Law Search

While Kleinberg’s results are for a very idealized network model, they can be applied to increase
the search speed in real world networks. Authors have applied Kleinberg’s search algorithms to
peer-to-peer (P2P) networks such as Gnutella [2, 9] and Freenet [8, 22]. In addition to showing
how the small-world model can speed up search in the Gnutella P2P network, Adamic et al. give
local search algorithms to find a message in sublinear time [1, 2]. The search strategy Adamic et
al. give will visit an entire power-law network with n nodes in approximately ln2(n) steps. This
result is quite promising, since many other networks (eg. the WWW) that one would like to search
also have a power-law degree distribution.

3.3 Searching with a Modified Degree

The search strategies in [2] give sublinear search methods for power-law networks, however the
current message holder u must have knowledge of its neighbors as well as its neighbors’ neighbors.
We have investigated a search strategy that doesn’t require as much information at each step, but
is still useful for non-ideal networks.

To do this, we propose a new idea for measuring the degree of a vertex u. The standard definition
for the degree of a node is the number of edges that include u. In [2], the search strategy sent
a message to nodes with continuously higher degrees, until the message had reached the node of
maximum degree. Our searching strategy modifies the notion of degree, so that the degree of a
vertex is dependent on the position of the message in the network.

Our notion of degree incorporates Euclidean geometry, so we begin with n nodes on a plane.
When node u has the message, only nodes adjacent to u will be assigned a degree. And then, only
those that are in the direction of the target node t will be assigned a degree. More precisely, define
d(w, t) to be the Euclidean distance between nodes w and t. Then if d(u, t) < d(w, t), w will not
be given a degree. This means that we only consider nodes closer to the target than the current
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message holder. Then the degree of w adjacent to u with d(w, t) < d(u, t) is the number of nodes
adjacent to w closer to t than w. Stated simply, the degree of w is the number of nodes connected
to w that could move the message closer to the target t. This notion of degree is shown in Figure 6.
If no nodes adjacent to u are closer to t than u, the message will be sent to the node of maximum
degree connected to u using the traditional notion of degree.

u

t0

x

x 2

1

Figure 6: Degrees of nodes connected to u for target t. In this case, the message would be sent to
the node with degree two, since that is maximal for nodes adjacent to u.

While this method of searching gives more information to the current message holder than
Kleinberg’s model, the assumption that a message holder would know something of its friends’
friends is reasonable. Consider the original experiments of Milgram. He asked the message holder
at any step to send the message to someone they thought would know the target person. Even
knowledge of where the target person lives helps the message holder decide who to send the letter
to next. Milgram’s original target lived in Massachusetts, so it’s reasonable that any person holding
the message would send it to someone they knew had connections in Massachusetts. The person
holding the message may not know her friends’ friends, but it’s likely she knows something about
her friends that would help her decide where to send the letter next. This knowledge could be
geographic knowledge, or even knowledge of the target’s career. If the target is a stock broker, it
makes sense for the current message holder to send the letter to a friend who is also a stock broker.
Our search model works to incorporate this limited knowledge. Our model sends the message to a
node with maximum knowledge of nodes related to the target, without actual knowledge of nodes
more than one step away.

We conjecture that an algorithm based off our search methods would deliver a message from a
source s to a target t in sublinear time in simple power-law network model. To deliver a message
quickly with our search method, we need to construct a power-law network with a geometrically
even spacing of nodes with many connections. From our empirical results, we theorize that our
search method can deliver a message in logarithmic time for a network with few connections per
node on average, however we have not been able to prove this yet.

4 Summary

In this paper, we have shown some recent developments concerning the small-world phenomenon,
presented new small-world models, and gave ideas to improve search in idealized networks. Our
geometric model improves upon existing models, while retaining a flexible average node degree and
an adaptable clustering coefficient. We believe our search ideas help to incorporate many of the
structural cues present in a social network.

While much of the work done with small-world networks has been motivated by empirical studies,
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much work remains to be done to explain these empirical results. The concept of the “small world”
originated in the social sciences, but has grown to an active area for mathematical research. Much
work is yet to be done on improved network models. Even more, decentralized search is an area
ripe for scientific investigation. For more on small-world networks, we recommend [4, 18, 20].
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