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Population Models with Diffusion and Constant Yield Harvesting

A. Collins, M. Gilliland, C. Henderson, S. Koone,

L. McFerrin, E. K. Wampler

July 9, 2004

Abstract

In this paper we discuss reaction-diffusion equations arising in population dynamics with constant

yield harvesting in one dimension. We focus on the mathematical models of the logistic growth, the

strong Allee effect, and the weak Allee effect and their influence on the existence of positive steady states

as well as global bifurcation diagrams. We analyze the equations using the quadrature method and the

method of sub-super solutions.

1 Introduction

First, we consider the steady state reaction diffusion equation with Dirichlet boundary conditions in popu-
lation dynamics: {

−u′′(x) = au− bu2 − ch(x) x ∈ (0, 1)
u(0) = 0 = u(1)

(1.1)

Here, u is the population density, au − bu2 represents the logistic growth where a and b are positive
constants, and ch(x) represents the constant yield harvesting rate. We assume h(x) is a smooth function
such that for x ∈ [0, 1], h(x) ≥ 0 and ‖h‖∞ = 1. In a recent paper [1] the authors studied the higher
dimensional case:

{
−4u(x) = au− bu2 − ch(x) x ∈ Ω
u(x) = 0 x ∈ ∂Ω

(1.2)

Here, 4 is the Laplacian operator, and Ω is a bounded domain of R
n ; n ≥ 1 with ∂Ω in class C2. They

established:

[A] If a ≤ λ1, where λ1 is the first eigenvalue of −4 with Dirichlet boundary conditions, then (1.2) has
no positive solutions.

[B] Let a > λ1. Then there exists c1(a, b) such that if c > c1 then (1.2) has no positive solutions.

[C] Let a > λ1. Then there exists c0(a, b) such that if c < c0 then (1.2) has a positive solution.

[D] There exists ε > 0 such that for a ∈ (λ1, λ1 + ε) the global bifurcation diagram of positive solutions
of (1.2) is exactly the following:
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Figure 1.1: Global Bifurcation Diagram

That is, for 0 < c < c∗ (1.2) has exactly two positive solutions, for c = c∗ (1.2) has a unique positive
solution, and for c > c∗ (1.2) has no positive solutions.

We will study the single dimensional case (n=1) of (1.2), which reduces to (1.1). In particular, in Section
2 we will discuss the case h(x) ≡ 1 using a modified version of the quadrature method obtained from [2],
whereas previously in [1] the solutions have been studied via sub-super solutions and bifurcation theory. By
the quadrature method we will reestablish [A], [B], [C], and extend [D] considerably. As depicted by Figure
1.1 above, the bifurcation diagrams developed by Mathematica computations persist for a ∈ (λ1, λ2) where
the λ1 = π2 and λ2 = 4π2 are the first and second eigenvalues respectively of the operator −u′′ with Dirichlet
boundary conditions on the domain (0,1). Also, for a ∈ (π2, 2π2) and small c, we prove analytically that
there exists at least two positive solutions as illustrated by Figure 1.2.

PSfrag replacements
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c

Figure 1.2: Bifurcation Diagram for a ∈ (π2, 2π2).

Relying again on the computational aide of Mathematica, we conjecture that for a > 4π2 and c small
there exists only one positive solution. Here the bifurcation diagram resembles:

PSfrag replacements
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c

Figure 1.3: Global Bifurcation Diagram for a > 4π2.
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We next analyze problems incorporating the strong and weak Allee effect. Namely,

Strong

{
−u′′(x) = u(u− a)(b− u)− c x ∈ (0, 1)
u(0) = 0 = u(1)

(1.3)

and

Weak

{
−u′′(x) = u(u+ a)(b− u)− c x ∈ (0, 1)
u(0) = 0 = u(1).

(1.4)

In each case, we assume 0 < a < b. Due to the complex nature of the cubics involved, we utilized
Mathematica to computationally analyze the equation via the quadrature method. Furthermore, we establish
sufficient conditions for the existence of positive solutions by means of the sub-super solutions method in
the weak Allee effect case. We will describe the quadrature method in Section 2, and the method of sub-
super solution in Section 3. We study the logistic growth case in Section 4, the strong Allee effect case in
Section 5, and the weak Allee effect in Section 6. We note that it is well documented that the study of
positive solutions to such classes of problems where the reaction term is negative at the origin (semipositone
problems) is nontrivial (see [3] - [4]). Also see [5] for a review on semipositone problems.

2 Quadrature Method

In this section we present a brief overview of the quadrature method, which we use extensively in the sections
that follow.

Suppose we have a two point boundary value problem of the form:

{
−u′′(x) = f(a, b, c, u(x)) x ∈ (0, 1)
u(0) = 0 = u(1)

(2.1)

where f is a positive continuously differentiable function.
Let u be a positive solution to (2.1) with the property that u′(x0) = 0 with x0 ∈ (0, 1). Observe that

both v(x) := u(x0 + x) and w(x) := u(x0 − x) satisfy the following initial value problem:

−z′′(x) = f(z(x))

z(0) = u(x0)

z′(0) = 0

for x ∈ [0, c) where c = min(x0, 1− x0). This implies that u(x0 + x) = u(x0 − x) ∀ x ∈ [0, c). Thus, since
u is a positive solution to (2.1), it must be symmetric around x = 1

2 , at which point it has a maximum. Let
this maximum of u(x) be denoted by ρ.

Multiplying (2.1) by u′(x):

−
(

[u′(x)]2

2

)′
= [F (u(x))]′ (2.2)

where F (s) =
∫ s

0
f(a, b, c, z)dz.

Integrate both sides twice to obtain:

u′(x)√
F (ρ)− F (u(x))

=
√

2; x ∈
[
0,

1

2

)
(2.3)

then

∫ u(x)

0

dt√
F (ρ)− F (t)

=
√

2x; x ∈
[
0,

1

2

]
. (2.4)

Since u( 1
2 ) = ρ, we have:
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G(ρ) :=

∫ ρ

0

dt√
F (ρ)− F (t)

=
1√
2
. (2.5)

Therefore, if there exists a solution u such that u( 1
2 ) = ρ, then ρ must be such that it satisfies the

equation G(ρ) = 1√
2
. If we have such a ρ, we can define u by

∫ u(x)

0

dt√
F (ρ)− F (t)

=
√

2x; x ∈
[
0,

1

2

]
.

By the Implicit Function Theorem, u is differentiable and hence

u′(x) =
√

2[F (ρ)− F (u(x))].

Differentiating again we obtain

−u′′(x) = f(a, b, c, u(x)).

Thus u is a positive solution to (2.1) with

u(
1

2
) = ρ iff G(ρ) =

1√
2
.

Note that in the above discussion, f is assumed to be always positive. However, in the following sections,
such is not the case. Therefore, in order to use the quadrature method we must work only within an interval
where f(ρ) is indeed positive and F (ρ) > F (z) ∀ z ∈ [0, ρ). In our discussion below, this interval is from the
first positive root of F to the next local maximum of F . For further literature on the quadrature method
refer to [2] and [6].

3 Sub-Super Solution Method

Consider the following differential equation:

{
−u′′(x) = f(u(x)) ∀x ∈ (0, 1)
u(0) = 0 = u(1)

(3.1)

where f is a continuously differentiable function.
First we define the terms sub-solution and super-solution.

A function, ψ, is said to be a sub-solution of (3.1) if it satisfies the following differential inequalities.

{
−ψ′′(x) ≤ f(ψ(x)) ∀x ∈ (0, 1)
ψ(0) ≤ 0, ψ(1) ≤ 0

(3.2)

A function, φ, is said to be a super-solution of (3.1) if it satisfies the reversed inequalities, namely:

{
−φ′′(x) ≥ f(φ(x)) ∀x ∈ (0, 1)
φ(0) ≥ 0, φ(1) ≥ 0.

(3.3)

Lemma. If there exists a sub-solution, ψ, and a super-solution, φ, satisfying ψ(x) ≤ φ(x) ∀x ∈ (0, 1), then
(3.1) has at least one solution, u such that ψ(x) ≤ u(x) ≤ φ(x) ∀x ∈ (0, 1). Here we assume that f is a
nondecreasing continuous function on [minψ,maxφ].

An outline of the proof is shown below. See [7] for more literature.
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Proof. Let G be Green’s function defined as follows:

G(x, y) =

{
(1− y)x if 0 ≤ x ≤ y ≤ 1
(1− x) y if 0 ≤ y ≤ x ≤ 1.

Define an operator T : C[0, 1] → C[0, 1], by T [u(x)] =
∫ 1

0
G(x, y) f(u(y)) dy. It can be shown that solving

(3.1) is equivalent to finding a fixed point of T. That is, a function u is a solution to (3.1) if and only if it

satisfies u(x) =
∫ 1

0
G(x, y) f(u(y)) dy.

Let ψ0 ≡ ψ. Now recursively define ψn by ψn(x) = T (ψn−1(x)) ∀ n ∈ N. Similarly φ0 ≡ φ and φn is
defined by φn(x) = T (φn−1(x)) ∀ n ∈ N. It can be shown via the Maximum Principle that ψ0 ≤ ψ1 ≤
...ψn−1 ≤ ψn ≤ ...φn ≤ φn−1 ≤ φ1 ≤ φ0 for each n ∈ N and every x ∈ (0, 1).

Let x0 ∈ (0, 1) be arbitrary. {ψn(x0)}∞n=1 is a bounded, monotone sequence in R, so it converges. Define
u : (0, 1) → R by letting {ψn(x0)}∞n=1 → u(x0) for each x0 ∈ (0, 1).

It can be shown that the operator T is completely continuous(compact). Therefore {T (ψn)}∞n=1 must have
a convergent subsequence {T (ψnk

)}∞k=1. Moreover, {T (ψnk
)}∞k=1 converges in C[0, 1], so call the limit function

v. Now by observing that {T (ψnk
)}∞k=1 is the sequence {ψnk+1}∞k=1, we see that u(x) = v(x) ∀ x ∈ (0, 1).

Finally we have that u = lim
k→∞

T (ψnk
) = T ( lim

k→∞
ψnk

) = T (u) by continuity of the operator T .

Remark: The method of sub-super solutions easily extends for nonautonomous equations of the form

{
−u′′(x) = f(x, u(x)); (0, 1)
u(0) = 0 = u(1)

(3.4)

where f is continuous and
∂f

∂u
is bounded from below on [0, 1]× [minψ,maxφ].

4 Logistic Growth

In this section we will refer to equation (1.1). To determine the number of positive solutions to our boundary
value problem. We utilize the following functions obtained from the quadrature method:

F (u, c) =

∫ u

0

f(s, c)ds (4.1)

G(ρ, c) =

∫ ρ

0

dz√
F (ρ, c)− F (z, c)

(4.2)

and

G′(ρ, c) =

∫ 1

0

H(ρ, c)−H(ρv, c)

[F (ρ, c)− F (ρv, c)]
3

2

(4.3)

where
H(ρ, c) = F (ρ, c)− ρ

2
f(ρ, c) (4.4)

and
f(u, c) = au− bu2 − c. (4.5)

We will then find the values of ρ such that G(ρ, c) = 1√
2
. This will give us the range of a, b, and c, for

which there are positive solutions to (1.1).
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4.1 Range of ρ within Set S

As stated within section 2, there are certain conditions necessary for the quadrature method to apply, which
may be defined by the following set S.

S = {ρ|f(ρ, c) > 0 & F (ρ, c) > F (z, c)∀ z ∈ [0, ρ)}
To find the region for which f(u, c) is positive we obtain the roots at

u =
a±

√
a2 − 4bc

2b
where c <

a2

4b
. (4.6)

Since the function is concave down, f(u, c) > 0 between these two points.
Next we must find the values of u such that F (u, c) > F (z, c) ∀ z ∈ [0, u). The real roots of this function are

u =
3a±

√
9a2 − 48bc

4b
and u = 0 where c <

3a2

16b
. (4.7)

Throughout this section we will assume c <
3a2

16b
.

From the roots and its derivative, the general shape of F (u, c) as shown in Figure 4.1.

X1 X2PSfrag replacements

F (u, c)

u

Figure 4.1: General shape of F (u, c)

Clearly

S = (X1, X2) =

(
3a−

√
9a2 − 48bc

4b
,
a+

√
a2 − 4bc

2b

)
with c <

3a2

16b
.

Note that when c satisfies this condition, it may be easily shown that X1 < X2.

4.2 Behavior of G(ρ, c)

Now that we know the range of values for ρ, we now analyze G(ρ, c). From the above equation for G′(ρ, c)
we may see that it relies heavily on the function H(ρ, c). For our specific function f(u, c),

H(u, c) =
bu3 − 3cu

6

H ′(u, c) =
bu2 − c

2

Note that this function does not depend on the parameter a. The roots of H(u, c) are u = ±
√

3c

b
,

and the roots of H ′(u, c) are u = ±
√
c

b
. By looking at the graph of H(u, c) in Figure 4.2 we may further

understand the graph of G(ρ, c).
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H(u, c)

u√
c
b

√
3c
b

Figure 4.2: General shape of H(u, c)

Clearly H(u, c) decreases until the value

√
c

b
and increases beyond

√
c

b
. Further, H(u, c) is positive

beyond

√
3c

b
. This means that for

ρ ∈ (0,
√

c
b
] G′ < 0

ρ ∈ (
√

c
b
,
√

3c
b

] G′ uncertain

ρ ∈ (
√

3c
b
, X2] G′ > 0 where

√
3c < X2.

Thus we are assured that G(ρ, c) will be initially decreasing and will eventually reach a turning point

where it will increase to the value of X2. Here X2 >

√
3c

b
when c <

3a2

16
.

4.3 Bifurcation Diagrams when a > π2 and b = 1

We found for values of a close to the first eigenvalue π2, c must be very small for there to exist positive zeros
of

G̃(ρ, c) = G(ρ, c)− 1√
2
. (4.8)

As shown in Figure 4.3, the values of both ρ and c are very close to zero. Note that when the birth rate
is small, a ≤ π2, the system is not able to support harvesting. We will later establish this analytically. To
see the progression of the values of c, refer to Figures 4.3-4.8 where c0 is the maximum value of c such that
G̃(ρ, c) still has a zero contained within set S. These values increase from .0043 up to 52.64.
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Figure 4.3: ρ vs. c such that G̃(ρ, c) = 0
with a = 10
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Figure 4.4: ρ vs. c such that G̃(ρ, c) = 0
with a = 12
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Figure 4.5: ρ vs. c such that G̃(ρ, c) = 0
with a = 15
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Figure 4.6: ρ vs. c such that G̃(ρ, c) = 0
with a = 17
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Figure 4.7: ρ vs. c such that G̃(ρ, c) = 0
with a = 20
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Figure 4.8: ρ vs. c such that G̃(ρ, c) = 0
with a = 25



4.4 Upper and Lower Bounds for G̃(ρ, c)

We can find upper and lower bounds for G̃(ρ, c), namely,

L(ρ, c) ≤ G̃(ρ, c) ≤ U(ρ, c)

where

L(ρ, c) =
π

2
√

a
2 −

bρ
3 − c

2ρ

− 1√
2

G̃(ρ, c) =

∫ ρ

0

dz√
(ρ− z)[a

2 (ρ+ z)− b
3 (ρ2 + ρz + z2)− c]

− 1√
2

and

U(ρ, c) =
π

2
√

a
2 −

2bρ
3 − c

ρ

− 1√
2
.

To find the lower bound, we may do the following calculations:

G̃(ρ, c) ≥
∫ ρ

0

dz√
(ρ− z)[a

2 (ρ+ z)− bρ
3 (ρ+ z)− c( ρ+z

2ρ
)]
− 1√

2

=

∫ ρ

0

dz√
(ρ2 − z2)[a

2 −
bρ
3 − c

2ρ
]
− 1√

2
=

π

2
√

a
2 −

bρ
3 − c

2ρ

− 1√
2
.

Likewise, we may find the upper bound by:

G̃(ρ, c) ≤
∫ ρ

0

dz√
(ρ− z)[a

2 (ρ+ z)− b
3 (ρ2 + ρz + ρz + z2)− c(ρ+z

ρ
)]
− 1√

2

≤
∫ ρ

0

dz√
(ρ2 − z2)[a

2 − b
3 (ρ+ z)− c

ρ
]
− 1√

2

≤
∫ ρ

0

dz√
(ρ2 − z2)[a

2 −
2bρ
3 − c

ρ
]
− 1√

2
=

π

2
√

a
2 −

2bρ
3 − c

ρ

− 1√
2
.

As shown by Figure 4.9, when the upper and lower bounds exist and both have zeros within our range
of set S, we can show that G̃(ρ, c) has two zeros.

2 4 6 8 10 12 14

-0.4

-0.2

0.2

0.4

Figure 4.9: top = U(ρ, c),middle = G̃(ρ, c),bottom = L(ρ, c) for a = 17 and c = 4
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4.5 Main Analysis

Our next result establishes [A] by means of the quadrature method.

Theorem 1. If a ≤ λ1(= π2) then (1.2) has no positive solutions.

Proof. Consider

G(ρ, c) =

∫ ρ

0

dz√
(ρ− z)[a

2 (ρ+ z)− b
3 (ρ2 + ρz + z2)− c]

where the values of F (ρ, c) and F (z, c) have been substituted and factored. Then

G̃(ρ, c) = G(ρ, c)− 1√
2
>

∫ ρ

0

dz√
(ρ− z)[a

2 (ρ+ z)]
− 1√

2

=

√
2

a

∫ ρ

0

dz√
(ρ2 − z2)

− 1√
2

=

√
2

a

ρ2

ρ

∫ 1

0

dz√
(ρ2 − ρ2z2)

− 1√
2

≥
√

2

a

∫ 1

0

dz√
(1− z2)

− 1√
2

=

√
2

a

π

2
− 1√

2
≥ 0 when a ≤ π2.

So when a ≤ π2, G̃(ρ, c) is always positive. This means that G̃(ρ, c) will have no zeros and therefore (1.1)
has no solutions.

Through the maximum principle we also establish [B].

Theorem 2. There exists c0 = c0(a, b) such that if c > c0 then (1.2) has no positive solutions.

Proof. There exist c0 for a given a and b such that f(u, c) < 0 for all u > 0. Thus, by the maximum principle,
(1.2) can have no solutions for c > c0.

Next by comparing the zeros of L(ρ, c) and U(ρ, c) to the bounds of S = (X1, X2) in Theorem 3, we
prove the existence of a solution to (1.2) and establish [C] via the quadrature method. Further, in Theorem
4, we establish the existence of a second positive solution for small c and a ∈ (π2, 2π2).

Theorem 3. Let a ∈ (π2, 3π2) and c < c1 = min

{
3 (a− π2)2

32 b
,
3 (3a+ π2) (a− π2)

64 b
,
6π4

b

}
. Then (1.2) has

at least one positive solution.

Proof. Step 1: We will first show that G̃(ρ, c) becomes negative at some point within the interval (X1, X2).

It is sufficient to show that U(ρ, c) has a zero within set S, thereby forcing G̃(ρ, c) to become negative
because it is strictly less than U(ρ, c). Since it can be shown that U(ρ, c) is concave up over the entire
domain, it is only necessary to show that U(ρ, c) = 0 at one point within the interval. First note that

U(ρ, c) = 0 when ρ =
3(a− π2)±

√
−96bc+ 9(a− π2)2

8b
. These zeros are real when c <

3 (a− π2)2

32 b
. Define

Uavg to be the average of the zeros of U(ρ, c), namely Uavg =
3(a− π2)

8b
. Finally, define

r(a,C) = 8b(Uavg −X1) = −3a− 3π2 + 2
√

9a2 − 48bc where C = bc.

The zeros of this function occur when a =
π2 + 2

√
π4 + 16bc

3
. But c <

3(3a+ π2)(a− π2)

64b
implies that

a >
π2 + 2

√
π4 + 16bc

3
.
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The first derivative of r(a,C) with respect to a is

ra(a,C) = −3 +
18a√

9a2 − 48bc
≥ −3 +

18a√
9a2

= 3 > 0.

Hence r(a,C) ≥ 0, i.e. Uavg ≥ X1 .
Also, Uavg ≤ X2 since

3(a− π2)

8b
≤ 3a

8b
≤ a

2b
≤ a+

√
a2 − 4bc

2b
.

Therefore, if c < c1, Uavg is in S, forcing G̃(ρ, c) to be negative within S.

Step 2: Now we must prove that G̃(ρ, c) becomes positive within S and thus has a zero. Since G̃(ρ, c) is
strictly greater than L(ρ, c), it is sufficient to show that the upper zero of L(ρ, c), L2, is within the interval

(X1, X2) and thus forces G̃(ρ, c) to be positive.
For L2 to lie within the interval, it is necessary that

X2 − L2 =
a+

√
a2 − 4bc

2b
− 3(a− π2) +

√
9(a− π2)2 − 24bc

4b
=
r(a,C)

4b
> 0

where
r(a,C) = −a+ 2

√
a2 − 4C + 3π2 −

√
9(a− π2)2 − 24C with C = b c.

We first show that a =
C + 9π4

3π2
is a zero of r.

r

(
C

3π2
+ 3π2, C

)
= − C

3π2
− 3π2 + 3π2 + 2

√(
C

3π2
+ 3π2

)2

− 4C −

√

9

(
C

3π2
+ 3π2 − π2

)2

− 24C

= − C

3π2
+ 2

√(
3π2 − C

3π2

)2

−

√(
6π2 − C

π2

)2

= 0 for C < 6π4.

To show that r(a,C) is positive for values of a up to 3π2, it is sufficient to show that the derivative ra is

negative when a <
C + 9π4

3π2
. The derivative of r(a,C) is

ra(a,C) =
2a√

a2 − 4C
− 9(a− π2)√

9(a− π2)2 − 24C
− 1.

But since C <
3

16
a2, we have

ra(a,C) <
2a√

a2 − 3a2

4

− 9(a− π2)

3(a− π2)
− 1 = 4− 3− 1 = 0

Hence, since the upper zero of L(ρ, c) is contained within our interval, G̃(ρ, c) has a zero when a ∈ (π2, 3π2).

Theorem 4. Let a ∈ (π2, 2π2) and c < c1 = min

{
3 (a− π2)2

32 b
,
3 (3a+ π2) (a− π2)

64 b
,
3π4

2 b

}
. Then (1.2) has

at least two positive solutions.

Proof. Define a function r(a,C) = 4b(L1 −X1) with C = bc where L1 is the lower zero of the lower bound
function and X1 is the lower bound of set S. So

r(a,C) = −3π2 +
√

9a2 − 48bc−
√

9(a− π2)2 − 24bc > 0.

11



The zero of this function occurs at a =
2(bc+ 3π4)

3π2
which is proven analytically below.

r

(
2(bc+ 3π4)

3π2
, C

)
= −3π2 −

√

9

(
2(bc+ 3π4)

3π2
− π2

)2

− 24bc+

√

9

(
2(bc+ 3π4)

3π2

)2

− 48bc

= −3π2 −

√(
2bc

π2
+ 3π2

)2

− 24bc+

√(
2bc

π2
+ 6π2

)2

− 48bc

= −3π2 −

√(
3π2 − 2bc

π2

)2

+

√(
6π2 − 2bc

π2

)2

= 0 for bc <
3π4

2

Then for r(a,C) to be positive prior to this zero, it is sufficient to prove that the derivative of r(a,C) is

negative for values of a <
2(bc+ 3π4)

3π2
. Now

ra(a,C) =
9a√

9a2 − 48bc
− 9(a− π2)√

9(a− π2)2 − 24bc

=
9a
√

9(a− π2)2 − 24bc− 9(a− π2)
√

9a2 − 48bc√
9a2 − 48bc

√
9(a− π2)2 − 24bc

=

√
81a2(9(a− π2)2 − 24bc)−

√
81(a− π2)2(9a2 − 48bc)√

9a2 − 48bc
√

9(a− π2)2 − 24bc
, and

for a ∈
(
π2,

2(bc+ 3π4)

3π2

)
,

81a2(9(a− π2)2 − 24bc)− 81(a− π2)2(9a2 − 48bc)

= 81a2(−24bc)− 81(a− π2)2(−48bc)

= 81[−24a2bc− (a− π2)2(−48bc)]

= 81[24bc(−a2 + 2(a− π2)2)]

= 81[24bc(−a(4π2 − a) + 2π4)] ≤ 0.

Hence r(a,C) > 0 when a ∈ (π2, 2π2). This tells us that for a ∈ (π2, 2π2) our lower limit has a zero
within our set S. Combining this with the previous result gives the theorem.

Conjecture: Theorem 4 establishes that there exists two solutions for logistic equation (1.1) when a ∈
(π2, 2π2) for c small enough. We conjecture that this will persist for a ∈ (π2, 4π2).

5 Strong Allee Effect

Here we discuss the positive solutions to the Strong Allee effect problem (1.3) where

f(u, c) = u(u− a)(b− u)− c = −u3 + (b+ a)u2 − abu− c.

Then it follows that

F (u, c) = −u
4

4
+

(b+ a)u3

3
− abu2

2
− cu,

and,

G̃(ρ, c) =

∫ ρ

0

dz√
(ρ2 − z2)

(
−ρ2+z2

4 + (b+a)(ρ2+ρz+z2)
3(ρ+z) − ab

2 − c
ρ+z

) −
1√
2
.

12



5.1 Bifurcation Diagrams for Strong Allee Effect

In this section we will present several bifurcation diagrams for the equation (1.3) developed by computational
analysis via Mathematica and the quadrature method. The bifurcation diagrams will represent the ρ vs c
values when G̃(ρ, c) = 0. Notice that our computations indicate the existence of two positive solutions for
small c. Also notice that the bifurcation curves for positive solutions are not connected for certain values of
a, b, and c.
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Figure 5.1: ρ vs. c such that G̃(ρ, c) = 0
with a = 10 and b = 1
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Figure 5.2: ρ vs. c such that G̃(ρ, c) = 0
with a = 15 and b = 1
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Figure 5.3: ρ vs. c such that G̃(ρ, c) = 0
with a = 15 and b = 2
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Figure 5.4: ρ vs. c such that G̃(ρ, c) = 0
with a = 15 and b = 3
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Figure 5.5: ρ vs. c such that G̃(ρ, c) = 0
with a = 15 and b = 4
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Figure 5.6: ρ vs. c such that G̃(ρ, c) = 0
with a = 20 and b = 3

5.2 Non-Existence Results

Here we establish non-existence results similar to [A] and [B] in Theorems 5 and 6 respectively.

Theorem 5. Let a and b satisfy b(b+ a) ≤ 3
4π

2. Then (1.3) does not have a positive solution.

Proof.

G̃(ρ, c) >

∫ ρ

0

dz√
(ρ2 − z2)( (b+a)(ρ2+ρz+z2)

3(ρ+z) )
− 1√

2

>

∫ ρ

0

dz√
(ρ2 − z2)( (b+a)(ρ+z)

3 )
− 1√

2

>

∫ ρ

0

dz√
(ρ2 − z2)( 2(b+a)ρ

3 )
− 1√

2

≥ π

2
√

2(b+a)ρ
3

− 1√
2
.

Observe that ρ(= ‖u‖∞) < ρ via the maximum principle, and so G̃(ρ, c) > 0 when
b(b+ a) ≤ 3

4π
2. Hence there are no positive solutions.

Theorem 6. There exists c0 = c0(a, b) such that if c > c0 then (1.3) has no positive solution.

Proof. Clearly we can choose c0 such that f(u) = u(u − a)(b − u) − c0 < 0 ∀ u > 0. Thus, by the
maximum principle, (1.3) cannot have positive solutions for c > c0.

6 Weak Allee Effect

Here we discuss the positive solutions to the weak Allee effect problem (1.4) where

f(u, c) = u(u+ a)(b− u)− c = −u3 + (b− a)u2 + abu− c.
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Then it follows that

F (u, c) = −u
4

4
+

(b− a)u3

3
+
abu2

2
− cu

and

G̃(ρ, c) =

∫ ρ

0

dz√
(ρ2 − z2)(−ρ2+z2

4 + (b−a)(ρ2+ρz+z2)
3(ρ+z) + ab

2 − c
ρ+z

)
− 1√

2
.

6.1 Bifurcation Diagrams for Weak Allee Effect

In this section we present several bifurcation diagrams for the equation (1.4). These graphs represent values

of c and ρ such that G̃(ρ, c) = 0. In these cases, unlike the strong Allee effect case, we do not always get
two solutions for small c. Again notice that at some points the bifurcation curve of positive solutions are
not connected for certain values of a, b, and c.
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Figure 6.1: ρ vs. c such that G̃(ρ, c) = 0
with a = 1 and b = 10
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Figure 6.2: ρ vs. c such that G̃(ρ, c) = 0
with a = 1 and b = 12
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Figure 6.3: ρ vs. c such that G̃(ρ, c) = 0
with a = 1 and b = 15
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Figure 6.4: ρ vs. c such that G̃(ρ, c) = 0
with a = 1 and b = 20
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Figure 6.5: ρ vs. c such that G̃(ρ, c) = 0
with a = 5 and b = 12
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Figure 6.6: ρ vs. c such that G̃(ρ, c) = 0
with a = 0.5 and b = 12

6.2 Non-existence Results

Here we establish nonexistence results similar to [A] and [B] in Theorems 7 and 8 respectively.

Theorem 7. Let a and b satisfy b(4b− a) ≤ 3π2. Then (1.4) does not have a positive solution.

Proof. We approximate G̃(ρ, c) from below:

G̃(ρ, c) ≥ π

2
√

2(b−a)ρ
3 + ab

2

− 1√
2
,

and find that if
2ρ(b− a)

3
+
ab

2
≤ π2

2

then G̃(ρ, c) > 0. We observe via the maximum principle that ρ < b, and thus if

b(4b− a) ≤ 3π2,

there can be no positive solution as G̃(ρ, c) has no zeros.

Theorem 8. There exists c0 = c0(a, b) such that if c > c0 then (1.4) has no positive solution.

Proof. Again we can choose c0 such that f(u) = u(u+a)(b−u)−c0 < 0 ∀ u > 0. Thus, by the maximum
principle, (1.4) cannot have positive solution for c > c0.

6.3 Existence via Sub- Super- Solutions Method

Consider the following differential equation under the assumptions a, b, c > 0 and ab > π2.

{
−u′′ = u(a+ u)(b− u)− ch(x)
u(0) = 0 = u(1)

(6.1)

We will show that equation (6.1) has a positive solution, for a sufficiently small values of c, using the method
of sub-super solutions.
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Theorem 9. Let a, b > 0 with ab > π2. There exists c0 = c0(a, b) > 0, such that (6.1) has at least one
positive solution whenever c < c0.

Proof. First a non-negative sub-solution will be established. Choose λ∗ ∈ (π2,min {ab, 4π2}) and consider
the boundary value problem:

{
−z′′ = λ∗z − 1
z(0) = 0 = z(1)

(6.2)

Solving (6.2) we see that

z(t) =
cos(

√
λ∗)− 1

λ∗ sin(
√
λ∗)

sin(t
√
λ∗)− 1

λ∗
cos(t

√
λ∗) +

1

λ∗
.

This is clearly positive on (0, 1) since π2 ≤ λ∗ ≤ 4π2 (see also [8]).
Let ψ(x) = k c z. For ψ to be a sub-solution, k and c must be found such that:

k c (−z′′) ≤ k c z(a+ k c z)(b− k c z)− c

k c (λ∗ z − 1) ≤ a b (k c z) + (b− a) (k c z)2 − (k c z)3 − c

0 ≤ (a b− λ∗) (k c z) + (b− a) (k c z)2 − (k c z)3 + c (k − 1)

(6.3)

Let H(y) = (a b−λ∗) y+(b− a) y2− y3 + c(k− 1) with k > 1. Since H(0), H ′(0), and H ′′(0) are all positive
and the second derivative changes sign only once. It follows that H must have exactly one positive zero.
Hence if H(β) > 0 for some β > 0, then H(y) > 0 for all y ∈ (0, β).

Let α = ‖z‖∞. If k and c are chosen such that H(k cα) > 0, then (6.3) is satisfied for all x ∈ (0, 1) and
hence, ψ(x) = k c z is a sub-solution. But

H(kcα) = (a b− λ∗) (k cα) + (b− a) (k cα)2 − (k cα)3 + c (k − 1) ≥ 0

provided
(a b− λ∗) (k α)− (k α)3 + (k − 1) ≥ 0. (6.4)

Let c0 = sup
k>1

{
(a b− λ∗) (k α) + (k − 1)

(k α)3

} 1

2

.

Then for c < c0 there exist k > 1 such that (6.4) is satisfied. Hence H(k cα) > 0 and ψ is a sub-solution.
Observe that any large positive constant is a super-solution. Hence for c < c0, (6.1) has a positive

solution.
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