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An Array of Disjoint Maximal Constant
Weight Codes

Christine Berkesch

April 21, 2004

Abstract

We show that when gcd(n, w) = 1, the set of binary words of length n and weight w can be partitioned

to give n maximal w-weight codes. It follows that under the same hypothesis, the least cardinal of a

maximal constant weight code is at most 1
n

`
n
w

´
.

1 Introduction

Communication plays a vital role in the world today. With rapid advances in

technology, an increasing amount of information must be exchanged between the

individual and machines. When a message is sent through a channel, interference,

called noise, can cause errors. The noise includes human error, crosstalk, lightning,

thermal noise, or impulse noise. Whether this information is being saved to a

computer disk, sent via FAX, or transmitted in radio or mobile communication,

the presence of inaccuracies can have massive consequences. Fortunately, these

errors can be overcome when an initial language, or code, is constructed with

certain error-detecting or correcting features. Coding theory is a relatively new

branch of mathematics devoted to discovering languages, called codes, which are

being successfully employed to transmit messages accurately and in a most efficient
manner.

Coding theory began in 1948 after Claude Shannon, an employee at Bell Lab-

oratories in the USA, showed that it was possible to encode messages so that the

number of extra bits was as small as possible. This resulted in the publication

of the classic paper The Mathematical Theory of Communication in the Bell Sys-

tem Technical Journal. Two years later, Richard Hamming, another employee at

Bell Labs, devised a family of single error-correcting codes in order to enhance the

performance of a computer [1].

A popular example which demonstrates the value of coding theory is the com-

munication of Mariner 9 with NASA. This was a probe sent to Mars in 1971. In
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order to transmit gray-scale pictures of that planet, individual pixels were sent on

a scale from 0 to 63. To send these numbers, NASA implemented a Reed-Muller

code capable of correcting up to 7 errors in a single 32-bit word (consisting of 6

data bits and 26 check bits). Mariner 9 was able to transmit over 16,000 bits per

second back to Earth.

An everyday example of error-correcting codes can be found in the compact

disc. On CDs, the signal is encoded digitally. To prevent skips from scratches,

two “interleaved” codes are used which can correct up to 4,000 consecutive errors

(about 2.5 mm of track) [4].

2 Definitions

Let F2 denote the finite field of order 2, and F
n
2 the n-dimensional vector space over

F2. The elements of F
n
2 are called binary words of length n. The weight of a word

x = (x1, x2, . . . , xn), denoted ||x||, is defined to be |{i : xi �= 0}|. The Hamming

distance H between words x and y ∈ F
n
2 is the number of positions in which they

differ. In other words

H(x,y) := |{i : 1 ≤ i ≤ n, xi �= yi}| = ||x − y||.
A non-empty subset C of F

n
2 is called a binary code, and the elements of C

are binary codewords. C is called an (n, d) binary code if d ≤ H(x,y) for all

x,y ∈ C,x �= y. The minimum distance in a code C is defined to be min{H(x,y) :

x,y ∈ C,x �= y}.
The codewords of length n in a binary code are sometimes referred to as n-bit

codewords. When dealing with such codes, 0 and 1 denote the n-bit words of all

0’s and 1’s, respectively.

Let P be a property of binary codes. A code C is said to be maximal P provided

C has P and no code having P properly contains C. A code C is optimal P provided

C has property P and for any code D having P , |D| ≤ |C|.
Let X denote the set {1, 2, 3, . . . , n}, and P (X) the power set of X. The function

r : F
n
2 → P (X), defined by r(x) = {i : xi = 1} is a one-to-one correspondence

between F
n
2 and P (X). Thus, each binary word of length n will be identified with

a subset of X. Let
(

X
w

)
denote the set of subsets associated with binary words of

weight w.

For two sets A and B, their symmetric difference is A�B := (A−B)∪(B−A).

Observe that H(x,y) = |r(x) � r(y)|.
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3 Constant Weight Binary Codes

An (n, d) code C is said to have constant weight w, and is called an (n, d, w) code,

if every word in C has weight w. A(n, d) and A(n, d, w) respectively denote the

cardinality of an optimal (n, d) and an optimal (n, d, w) code. Similarly, a(n, d) and

a(n, d, w) respectively denote the least possible cardinality of a maximal (n, d) code

and a maximal (n, d, w) code. In general, the values of all four of these functions

are unknown.

In an exhaustive study of the lower bounds for A(n, d, w), A. E. Brouwer, et al.

[2] found an elegant method to partition the set of binary words of length n and

weight w into n (n, 4, w) codes, thus proving that A(n, 4, w) ≥ 1
n

(
n
w

)
. The purpose

of this paper is to show that if gcd(n,w) = 1, then each of the n codes defined in

[2] is, in fact, maximal (n, 4, w). Before proving this result, we first briefly sketch

the construction given in [2].

Theorem 1. A(n, 4, w) ≥ 1
n

(
n
w

)

Proof. Let Zn be the group of integers modulo n, and consider the function

f :
(

X
w

) → Zn, defined by f(A) = (
∑

a∈A a) (mod n). For an i, 0 ≤ i ≤ n − 1,

let Ci = f−1(i). Let A,B ∈ Ci, A �= B. We will show that |A � B| ≥ 4. Clearly

|A � B| = 2w − 2|A ∩ B|, a positive even integer. Now if |A � B| = 2, then there

exist a0 ∈ A and b0 ∈ B such that A � B = {a0, b0}. Since
∑

a∈A a =
∑

b∈B b = i

(mod n), we have that a0 = b0 (mod n). But that is impossible because a0 �= b0

and both a0 and b0 belong to the set X = {1, 2, . . . , n}. It follows that |A�B| ≥ 4;

thus, each Ci is an (n, 4, w) code. As the collection {C0, C1, . . . , Cn−1} is obviously

a partition of
(

X
w

)
and |(X

w

)| =
(

n
w

)
, therefore some Ci must have at least 1

n

(
n
w

)

elements. �

Theorem 2. If 2 ≤ w < n and gcd(n,w) = 1, then
(

X
w

)
can be partitioned into n

maximal (n, 4, w) codes.

Proof. We will prove that under the given hypothesis, each of the sets Ci, 0 ≤
i ≤ n − 1, defined in the proof of Theorem 1 is a maximal (n, 4, w) code. We

do this by showing that for each i and for any A ∈ (
X
w

)
, if A /∈ Ci, then there is

a B ∈ Ci such that H(A,B) = 2. Fix an i and an A, as stated. Determine j,

0 ≤ j ≤ n − 1, such that A ∈ Cj and then let k = (i − j)(mod n). As A /∈ Ci,

j �= i, and thus 0 < k < n. For each a ∈ A, let a∗ = (a + k)(mod n). If for some

a0 ∈ A, a∗
0 /∈ A, then by deleting a0 from A and inserting a∗

0 in its place, we obtain
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a set B as desired. To see why, note that A � B = {a0, a
∗
0}, and so |A � B| = 2.

Also, summing modulo n, we have
∑

b∈B b =
∑

a ∈ A+a∗
0 −a0 = j +k = i. Thus,

B ∈ Ci.

To complete the proof, we show that under the given hypothesis, there exists

an a ∈ A for which a∗ /∈ A. By way of contradiction, suppose such an a does not

exist. Let 〈k〉 be the subgroup of Zn generated by k. Then for each a ∈ A, the

coset 〈k〉 + a is contained in A. Therefore, A is a union of a set of cosets of 〈k〉
in Zn. As the order of the subgroup 〈k〉 is n

g
where g = gcd(k, n), it follows that

the cardinality of A, namely w, is a multiple of n
g
. This, in view of the hypothesis

that gcd(n,w) = 1 implies that n
g

= 1, so n = gcd(n, k). But then k ≥ n, a

contradiction. �

Corollary. If gcd(n,w) = 1, then a(n, d, w) ≤ 1
n

(
n
w

)
.

The proof of Theorem 2 implies that if gcd(n,w) = g > 1, then at least one of

the Ci is not a maximal (n, 4, w) code. To see this, let w = gw1 and n = gn1, and

note that the subgroup 〈n1〉 of Zn is of order g. Choose any w1 of the cosets of 〈n1〉
in Zn, and let A be their union, so that A ∈ (

X
w

)
. Then, for each a ∈ A, (a + n1)

(mod n) ∈ A. Thus, if A ∈ Cj and if i = (j+n1) (mod n), then A /∈ Ci even though

A is at a distance at least 4 from each member of Ci, as shown in the proof of The-

orem 1. Thus, Ci is not a maximal (n, 4, w) code, and we have shown the following.

Theorem 3. If gcd(n,w) > 1, then at least one Ci is not a maximal (n, 4, w) code.

An interesting interpretation of Theorem 2 in terms of “graph-coloring” is as

follows: If gcd(n,w) = 1, it is possible to color each binary word of length n and

weight w in one of n given colors so that each of the monochromatic classes is a

maximal (n, 4, w) code. It is noteworthy that similar “color” partitions into optimal

codes do not always exist. This is due to the fact that A(n, d) and A(n, d, w)

generally fail to divide 2n and
(

n
w

)
, respectively. For example, A(9, 4) = 40 which

does not divide 29, so a monochromatic partition of F
9
2 into optimal (9, 4) codes

does not exist. Similarly, A(11, 4, 4) = 35, which does not divide
(
11
4

)
, so the set

of binary words with length 11 and weight 4 cannot be partitioned into optimal

(11, 4, 4) codes.
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