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Properties of Divisor Graphs

Christopher Frayer

Department of Mathematics
Grand Valley State University

Allendale, MI 49401

Abstract

For a finite, nonempty set S of positive integers, the divisor graph
G(S) of S has vertex set S, and two distinct vertices i and j are
adjacent if and only if i|j or j|i, while the divisor digraph D(S) of S

has vertex set S and (i, j) is an arc of D(S) if and only if i|j. A graph
G is a divisor graph if there exists a set S of positive integers such that
G is isomorphic to G(S). It is shown that for a divisor graph G with
a transitive vertex, G×H is a divisor graph if and only if E(H) = ∅.
For m, n ∈ N, Pm × Pn is a divisor graph. Also, given m, n ∈ N with
m ≥ 5 there exists a non-divisor graph G, of order m+ n, that has m

neighborhoods that are divisor graphs and n neighborhoods that are
not divisor graphs.

1 Introduction

In 2000 Singh and Santhosh [2] defined the concept of a divisor graph. They
defined a divisor graph G as an ordered pair (V,E) where V ⊂ Z and for all
u, v ∈ V , u 6= v, uv ∈ E if and only if u|v or v|u. Singh and Santhosh showed
that every odd cycle of length five or more is not a divisor graph while all
even cycles, complete graphs, and caterpillars are divisor graphs.
In 2001, Chartrand, Muntean, Saenpholphant and Zhang [1] also studied

divisor graphs. They let S be a finite, nonempty set of positive integers.
Then, the divisor graph G(S) of S has S as its vertex set, and vertices i and
j are adjacent if and only if either i|j or j|i. A graph G is a divisor graph
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if G ∼= G(S) for some nonempty, finite set S of positive integers. Hence, if
G is a divisor graph, then there exists a function f : V (G) → N, called a
divisor labeling of G, such that G ∼= G(f(V (G))). Then the divisor digraph

D(S) of S has the vertex set S and (i, j) is an arc of D(S) if and only if
i|j. The results of [2] are confirmed in [1], where it was shown that trees
and bipartite graphs are divisor graphs and a characterization of all divisor
graphs was given.
In this paper, we will define divisor graphs in terms of a nonempty finite

set of positive integers as in [1]. See [3] and [4] for basic definitions. For the
graph G given in Figure 1, the vertices can be labeled with S = {2, 3, 4, 6} to
produce the divisor graph G(S) and the divisor digraph D(S). The divisor
labeling f : V (G) −→ N is defined as

f(a) = 2, f(b) = 6, f(c) = 3, f(d) = 4.

Observe that the labeling f ′ : V (G) −→ N with f ′(x) = cf(x) for c ∈ N is
also a divisor labeling of G. Therefore, any divisor graph G has infinitely
many divisor labelings.

Figure 1: A graph G, a divisor labelling of G, the resulting digraph.

The goal of this paper is to explore several families of divisor graphs, as
well as looking at divisor graphs and their relationship with their neighbor-
hoods, their complements, and products.

2 Classification of Divisor Graphs

In this section, we state the characterization of divisor graphs given in [1],
and give some results based upon this characterization. Let D be a labeled
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divisor digraph. A transmitter of D is a vertex having indegree 0 and a
receiver of D is a vertex having outdegree 0. For a vertex u of D, let

N+(u) = {x|(u, x) ∈ E(D)} and N−(u) = {x|(x, u) ∈ E(D)}.

A vertex v in D is transitive if its outdegree and indegree are both greater
than zero, and for every x ∈ N−(u) and y ∈ N+(u), necessarily (x, y) ∈
E(D). In [1] it was shown that:

Theorem A Let G be a graph. Then G is a divisor graph if and only if there

exists an orientation D of G such that every vertex of D is a transmitter, a

receiver, or a transitive vertex.

Using theorem A one can easily verify that all odd cycles of length greater
than three are not divisor graphs. Hence, the five cycle, C5, is not a divisor
graph.

Theorem 2.1 An orientation of a divisor graph, G, contains no transitive

vertices if and only if G is a bipartite graph.

Proof : Let G be a divisor graph. If an orientation of G contains a tran-
sitive vertex, G must contain a 3-cycle and therefore could not be bipartite.
Conversely, if an orientation of G does not contain a transitive vertex then
each vertex is a transmitter or a receiver, so G is a bipartite graph. ¥

The following can be proven as a corollary to Theorem 3.3 and Proposition
2.3 in [1]; however, we present the following independent proof.

Theorem 2.2 Let G be a divisor graph with an orientation that contains a

transitive vertex. The graph G×H is a divisor graph if and only if E(H) = ∅.

Proof : Let G be a divisor graph with an orientation that contains a
transitive vertex. If H is a graph of order n ∈ N, such that E(H) = ∅, then
G×H is composed of n individual copies of G and is a divisor graph.
Assume, to the contrary, G×H with orientation D and induced labeling

f : V (G × H) → N is a divisor graph and E(H) 6= ∅. Since E(H) 6= ∅, let
h1h2 ∈ E(H). Also, since G contains a transitive vertex, say g1, each copy of
G in G ×H contains a transitive vertex, (g1, hi). Then, in the first copy of
G, there exist vertices (g2, h1) and (g3, h1) such that f(g2, h1)|f(g1, h1) and
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f(g1, h1)|f(g3, h1), where, since E(H) 6= ∅, (g1, h1) is adjacent to (g1, h2). We
must consider two cases.

Case 1: We assume f(g1, h1)|f(g1, h2). Therefore f(g2, h1)|f(g1, h2). How-
ever (g2, h1) is not adjacent to (g1, h2) and G×H is not a divisor graph.

Case 2: We assume f(g1, h2)|f(g1, h1). Therefore f(g1, h2)|f(g3, h1). How-
ever (g1, h2) is not adjacent to (g3, h1) and G×H is not a divisor graph. ¥

Corollary 2.3 Kn ×K2 is not a divisor graph for each n ≥ 3.

Corollary 2.4 Kn×G is a divisor graph for each n if and only if G contains

no edges.

3 Some General Results

In this section we will look at several results concerning divisor graphs. We
begin by making the following observation that appears in [1]. Since our
proof is different and shorter, we include it.

Theorem 3.1 Every bipartite graph is a divisor graph.

Proof : Let G be a bipartite graph with partite sets U and W . Without
loss of generality we let any isolated vertices of G be inW . Label each vertex
w ∈ W with a distinct prime, and every vertex u ∈ U with the product of
the labels of its adjacent vertices. Multiply the label of each vertex of U with
a prime distinct from the labels of the vertices in W . No two vertex labels
from the same partite set divide each other since they have distinct prime
factorizations with at least one uncommon prime. Vertex labels divide each
other if and only if they correspond to an edge of G. Thus this is a divisor
labeling of G, and every bipartite graph must be a divisor graph. ¥

Singh and Santhosh showed that all graphs of order less than five are
divisor graphs. We extend this result by showing that C5 is the unique graph
of order less than six that is not a divisor graph.

Theorem 3.2 All graphs of order less than six are divisor graphs with the

exception of C5.
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Proof : It has already been shown that all graphs of order less than five
are divisor graphs. To extend to order 6, we simply must show that all graphs
of order 5 are divisor graphs except C5. Actually we only need to look at the
connected graphs of order five. Any non-connected graph or order 5 must
be a divisor graph, since all graphs of order less then 5 are divisor graphs.
For the connected components a divisor labelling must exist, and then label
any isolated vertices with distinct primes not seen in any of the other labels.
Figures 2 and 3 illustrate that all connected graphs of order five are divisor
graphs (We let p, q, r, s, and t be distinct primes. For a table of all graphs
of order five see [3].). Therefore all graphs of order less than six are divisor
graphs with the exception of C5. ¥

Figure 2: Order five and size 4, 5, and 6.

Figure 3: Order five and size 7, 8, 9, and 10.

We now turn our attention to look at products of paths.

Theorem 3.3 Pm × Pn is a divisor graph.
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Proof : We clearly see that Pm × Pn is a bipartite graph and therefore is
a divisor graph. ¥

We also present an alternative proof.

Proof : Construct Pm×Pn and think of Pm×Pn as a m by n grid graph.
Start in the top left hand corner and label this vertex v1,1. In a similar fashion
label the vertex in the ith row and jth column as vi,j. We now introduce an
orientation D. For every vertex vi,j such that i + j = 2n for some n ∈ N
make vi,j a transmitter. Therefore every vertex vi,j such that i+ j = 2n+ 1
for some n ∈ N must be a receiver. See Figure 4 for the resulting orientation,
D, of P4 × P4. The orientation D is such that the only directed edges are
from a transmitter to a receiver. Therefore, by Theorem A, Pm × Pn is a
divisor graph. ¥

Figure 4: An example of the orientation given to P4 × P4.

Theorem 3.4 Let G be a divisor graph. Construct H from G by adding an

edge between any two vertices whose distance apart is an even number greater

than 2, then H is not a divisor graph.

Proof : Let G be a divisor graph. Construct H from G by adding an edge
between any two vertices whose distance apart is an even number greater
than 2, say v1 and v2. Then the induced subgraph containing v1 and v2 along
with the odd number of vertices corresponding to the even number of edges
on the path connecting v1 and v2 is a cycle of odd length greater than three,
and therefore H is not a divisor graph. ¥
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4 Complements and Neighborhoods

For a graph G, we denote the complement of G by G. Some results arise
when we ask about the relationship that exists between a graph and its
complement with regards to divisor graphs. Consider the following corollary
of Theorem 3.2.

Corollary 4.1 Except for C5, all graphs of order less than six and their

complements are divisor graphs. Furthermore, C5 and its complement are

non-divisor graphs.

Note that when we look at graphs of order six this property does not
hold. By Corollary 2.3, K3 ×K2 is not a divisor graph, but K3 ×K2 = C6

is a divisor graph.
We also have the following:

Theorem 4.2 Kn × K2 is not a divisor graph, but Kn ×K2 is a divisor

graph for each n ≥ 3.

Proof : From Corollary 2.3 we know that Kn ×K2 is not a divisor graph
for each n ≥ 3. Since Kn ×K2 is a bipartite graph, it is a divisor graph. ¥

Note that since Km = nK1 and Km,n = Km∪Kn, if G = Kn or G = Km,n

then G and G are both divisor graphs. On the other hand, C5 is not a
divisor graph and its complement, C5, is not a divisor graph. However, some
graphs, for example, Kn ×K2, from Theorem 4.2, are divisor graphs but
their complements are not.
We now focus on neighborhoods of a vertex. For v ∈ V (G), we define the

neighborhood of v in G as, N(v) = {u|uv ∈ E(G)}. The induced neighbor-
hood of v, denoted 〈N(v)〉, is the induced subgraph of N(v). When talking
about an induced neighborhood we will simply refer to it as a neighborhood.
Note that if G is a graph such that the neighborhood of every vertex is a
divisor graph, then G does not have to be a divisor graph. Clearly C5 is such
a graph. We also can have a graph for which the neighborhood of no vertex
is a divisor graph.

Theorem 4.3 For each n ≥ 10 there exists a graph G of order n with the

property, for all v ∈ V (G), 〈N(v)〉 is not a divisor graph.
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Figure 5: G is such that for each v ∈ V , 〈N(v)〉 is not a divisor graph.

Proof : We first show that this is true for a graph G of order 10. Let U

and V be the partite sets of K5,5, and G be the graph obtained by adding 5
edges in each U and V to form a copy of C5 in both U and V . See Figure 5.
We see that the neighborhood of each vertex of G contains the induced cycle
C5 so is not a divisor graph.
Let n > 10 and consider G as defined above. Add n−10 vertices into the

set U without interfering with the 5-cycle that has already been constructed,
making each new vertex adjacent to each vertex in the set V , and call the
graph G′. We once again see that the induced neighborhood of each of the n

vertices in G′ contains an induced 5-cycle and thus is not a divisor graph. ¥

Theorem 4.4 Given m,n ∈ N with m ≥ 5, there exists a non-divisor graph

G that has m induced neighborhoods which are divisor graphs and n induced

neighborhoods which are not divisor graphs.

Proof : Let m,n ∈ N with m ≥ 5. We will build a graph of order
m+ n that has the property that m neighborhoods are divisor graphs and n

neighborhoods are not divisor graphs. First consider Km,n. Then select five
vertices in the partite set of order m, and add 5 edges so that the subgraph
induced by those five vertices is C5. See Figure 6. Then every vertex in
the partite set of order m has a finite collection of isolated vertices as a
neighborhood, so we have m induced neighborhoods that are divisor graphs.
Also, the neighborhood of every vertex in the partite set of order n contains
the induced subgraph C5 and so is not a divisor graph. Therefore we have
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a non-divisor graph G that has m induced neighborhoods which are divisor
graphs and n induced neighborhoods which are not divisor graphs. ¥

Figure 6: G has m induced neighborhoods which are divisor graphs and n induced neighborhoods
which are not divisor graphs.

5 Open Questions

Early on in [2] it was shown that C2n+1 is not a divisor graph for each n ∈ N
with n ≥ 2. However not much more is known about non-divisor graphs,
with the exception of several families based upon the cross product of graphs,
Theorem 2.2. It would be nice to know more families of non-divisor graphs.
Is there a characterization of non-divisor graphs not depending upon odd
cycles? Similarly, is there a characterization of all graphs which are divisor
graphs but their complements are not? Is there a characterization of all
graphs which are not divisor graphs and their complements are not divisor
graphs? For a given integer n ≥ 5 what is the maximum integer m for which
there is a non-divisor graph of order n and size m. These appear to be
difficult problems.
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