Rose-Hulman Undergraduate Mathematics Journal

Volume 3 Issue 1

Two Quasi p-Groups

Ben Harwood

Northern Kentucky University, kymagician@yahoo.com

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation

Harwood, Ben (2002) "Two Quasi p-Groups," *Rose-Hulman Undergraduate Mathematics Journal*: Vol. 3 : Iss. 1 , Article 2.

Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss1/2

Two Quasi 2-Groups*

By

Ben Harwood

Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099

e-mail: kymagician@yahoo.com

Section One: Introduction

As part of an undergraduate research project, I set out to classify all the quasi p-groups of order less than 24. There are 59 groups of order less than 24: the group consisting of the identity, 33 abelian groups, and 25 nonabelian groups. This work is summarized in [Hwd]. Many of the groups are semidirect products, and that structure was exploited in the classification. A brief introduction to the semidirect product may be found in [AbC]. Two of the groups provide nice examples of the techniques that were used to classify the groups of order less than 24 – a group of order 20 $Z_5 \times Z_4$ and a group of order 18 $(Z_3 \times Z_3) \times Z_2$. We will examine these two groups in the sections below. We will show that each of these groups is a quasi 2-group and that each of these groups is not a quasi p-group for $p \neq 2$.

Section Two: Quasi p-Groups

Abhyankar defined quasi p-groups in [Ab]. His definition was:

Definition (2.1) If G is a finite group, then G is a quasi p-group if G is generated by all of its p-Sylow subgroups.

By p(G) Abhyankar denoted the subgroup of G generated by the p-Sylow subgroups. So, a finite group is a quasi p-group if G = p(G). It is easy to see that p(G) is a normal subgroup of G. We denote this by $p(G) \triangleleft G$.

The following lemma is proved in [Hwd].

Lemma (2.2) G is a finite group. The following are equivalent:

- 1. G is a quasi p-group.
- 2. G is generated by all of its elements whose orders are powers of p.
- 3. G has no nontrivial quotient group whose order is prime to p.

2 was most useful to prove that a finite group is a quasi p-group, and 3 was most useful to prove that a finite group was not a quasi p-group.

Section Three: $Z_5 \rtimes Z_4$

In terms of generators and relations, $Z_5 \rtimes Z_4 = \langle x,y|x^4=y^5=1,x^{-1}yx=y^{-1}\rangle$. So, $x\in 2(Z_5\rtimes Z_4)$. If we can get $y\in 2(Z_5\rtimes Z_4)$, we will be done because then $2(Z_5\rtimes Z_4)=Z_5\rtimes Z_4$. Notice that because $x^{-1}yx=y^{-1},\ yx=xy^{-1}=xy^4$. Now consider the order of xy. $(xy)^2=xyxy=xxy^4y=x^2$. So, the order of xy is 4, and, therefore, $xy\in 2(Z_5\rtimes Z_4)$. Because $x,xy\in 2(Z_5\rtimes Z_4),\ y=x^3xy\in 2(Z_5\rtimes Z_4)$, and we can conclude that $Z_5\rtimes Z_4$ is a quasi 2-group.

Because all the elements of order 5 in $Z_5 \rtimes Z_4$ are in the factor Z_5 , $5(Z_5 \rtimes Z_4)$ is a proper subgroup of $Z_5 \rtimes Z_4$. Therefore, $Z_5 \rtimes Z_4$ is only a quasi 2-group.

We have proved

Proposition (3.1) $Z_5 \rtimes Z_4$ is a quasi 2-group, and it is not a quasi p-group for any prime $p \neq 2$.

^{*2000} Mathematical Subject Classification: 20D99. This work was supported by a Greaves' Undergraduate Research grant from Northern Kentucky University.

Section Four: $(Z_3 \times Z_3) \rtimes Z_2$

To prove that $(Z_3 \times Z_3) \rtimes Z_2$ is a quasi 2-group, we will find enough elements of order two to generate the group. This method requires understanding of the semidirect product. The semidirect product requires a homomorphism $\phi: Z_2 \to \operatorname{Aut}(Z_3 \times Z_3)$. For $(Z_3 \times Z_3) \rtimes Z_2$, $\phi(0)$ is the identity and $\phi(1)$ maps elements to their inverses. We will use addition for the group operation and write elements of $(Z_3 \times Z_3) \rtimes Z_2$ as [(x,y),z]. For $g_1 = [(x_1,y_1),z_1], g_2 = [(x_2,y_2),z_2] \in (Z_3 \times Z_3) \rtimes Z_2, g_1+g_2 = [(x_1,y_1),z_1]+[(x_2,y_2),z_2] = [(x_1,y_1)+\phi(z_1)(x_2,y_2),z_1+z_2]$. Notice that $\phi(0)(x,y)=(x,y)$ and $\phi(1)(x,y)=(-x,-y)$.

The order of $(Z_3 \times Z_3) \rtimes Z_2$ is 18. We will determine the orders of each of the 18 elements.

Obviously, the order of [(0,0),0] is 1.

Now we consider the case of elements of the form [(x,y),0] with $(x,y) \neq (0,0)$. We have that

$$2[(x,y),0] = [(x,y) + \phi(0)(x,y),0 + 0] = [(x,y) + (x,y),0] = [(2x,2y),0] \neq [(0,0),0]$$
$$3[(x,y),0] = [(2x,2y) + \phi(0)(x,y),0 + 0] = [(2x,2y) + (x,y),0] = [(3x,3y),0] = [(0,0),0]$$

So, the order of [(x,y),0] with $(x,y) \neq (0,0)$ is 3.

Next consider the element [(0,0),1].

$$2[(0,0),1] = [(0,0),1] + [(0,0),1] = [(0,0) + \phi(1)(0,0),1+1] = [(0,0) + (0,0),0] = [(0,0),0]$$

So, the order of [(0,0),1] is 2.

Finally, consider elements of the form
$$[(x, y), 1]$$
 with $(x, y) \neq (0, 0)$.

$$2[(x, y), 1] = [(x, y), 1] + [(x, y), 1] = [(x, y) + \phi(1)(x, y), 1 + 1] = [(x, y) + (-x, -y), 0] = [(0, 0), 0]$$

So, the order of [(x,y),1] with $(x,y) \neq (0,0)$ is 2.

Therefore, each of the elements of $(Z_3 \times Z_3) \rtimes Z_2$ has order 1, 2, or 3. There is one element of order 1: [(0,0),0]. There are 8 elements of order 3: [(1,0),0], [(2,0),0], [(1,1),0], [(2,1),0], [(2,1),0], [(1,2),0], [(2,2),0], [(0,1),0], [(0,2),0]. The remaining 9 elements each have order 2: [(0,0),1], [(1,0),1], [(2,0),1], [(1,1),1], [(2,1),1], [(2,1),1], [(2,2),1], [(0,1),1], [(0,2),1].

We note two ways to see that the elements of order 2 generate $(Z_3 \times Z_3) \rtimes Z_2$. First, because the 9 elements of order 2 and the identity must be in $2((Z_3 \times Z_3) \rtimes Z_2)$, by Lagrange's theorem, $2((Z_3 \times Z_3) \rtimes Z_2)$ must be all of $(Z_3 \times Z_3) \rtimes Z_2$. Alternatively, we notice that [(2,0),1],[(1,0),1],[(0,2),1], and [(0,1),1] are each elements of order 2, and that

$$[(2,0),1] + [(1,0),1] = [(2,0) + (-1,0),1+1] = [(1,0),0]$$

and

$$[(0,2),1] + [(0,1),1] = [(0,2) + (0,-1),1+1] = [(0,1),0]$$

•

So, the generators of $(Z_3 \times Z_3) \rtimes Z_2 - [(1,0),0], [(0,1),0], \text{ and } [(0,0),1] - \text{ are all in } 2((Z_3 \times Z_3) \rtimes Z_2)$

Because all the elements of order 3 in $(Z_3 \times Z_3) \rtimes Z_2$ are in the factor $Z_3 \times Z_3$, $3((Z_3 \times Z_3) \rtimes Z_2)$ is a proper subgroup of $(Z_3 \times Z_3) \rtimes Z_2$. Therefore, $(Z_3 \times Z_3) \rtimes Z_2$ is only a quasi 2-group.

We have proved

Proposition (4.1) $(Z_3 \times Z_3) \rtimes Z_2$ is a quasi 2-group, and it is not a quasi p-group for any prime $p \neq 2$.

Section Five: Acknowledgements

This work was the result of a Greaves' Undergraduate Summer Research Project at Northern Kentucky University. I am grateful for that support. I am also indebted to Dr. Chris Christensen. Without his guidance and support, this would not have been possible.

REFERENCES

- [Ab] S. S. Abhyankar, On the ramification of algebraic functions, Amer. J. Math. 77 (1955), 572-592.
- [AbC] S. S. Abhyankar and C. Christensen, $x \mapsto ax + b$: A pathway to the semidirect product, To appear in Mathematics Magazine.
- [Hwd] B. Harwood, Quasi p- or Not Quasi p-? That is the question, In preparation.