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ALGEBRA AND MATRIX NORMED SPACES

SETH M. HAIN

ABSTRACT. We begin by looking at why operator spaces are necessary in the study of
operator algebras and many examples of and ways to construct operator algebras. Then
we examine how certain algebraic relationships, for example the well known relationship
M, (A) = Hom 4(A™), break down when norms are placed on them. This leads to ways to

correct these ideas using matrix norms.

Supported by a REU grant from the NSF, and the Department of Mathematics and the College of Natural

Sciences and Mathematics at the University of Houston.
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2 SETH M. HAIN

1. INTRODUCTION AND NOTATION

This paper is really an extended investigation of some notions from pure algebra concerning
rings, in the setting where the rings are operator algebras, i.e. closed subalgebras of the
bounded operators on a Hilbert space (which we will define momentarily). In fact, for the
purposes of our paper, the reader can take an ’operator algebra’ to be a subalgebra of the set
of n x n matrices, M,,. That is, an ’operator algebra’ may be taken to be a vector subspace
A C M, such that zy € A whenever z,y € A. We also assume usually that the n x n
identity matrix [, is in A. In this case we say that A is a 'unital algebra’. We will first be
involved with looking at why operator spaces may be useful in the study of operator algebras
and some examples of operator algebras. This leads to a natural question as to how some
algebraic notions transfer from the realm of algebra to the realm of analysis, in particular
the realm of analysis concerned with Banach space theory. We will concentrate our efforts
on primary algebraic relations that have problems when transferred to this area of analysis,
but when viewed in the realm of matrix normed spaces hold up nicely.

The primary focus of our paper has its roots in the idea that the ring of linear transfor-
mations on R™ is isomorphic to the ring of n x n matrices, i.e. M, = Lin(R"). We will use
Lin(R™) to denote the set of linear transformations taking R™ — R™. This idea is central to
much of mathematics including undergraduate courses in calculus and linear algebra. There
is a more general algebraic result that states that, if A is a unital ring or algebra then the
ring A-module homomorphisms from A™ to A™ is isomorphic to the n x n matrices with
entries in A. Here A™ is the direct sum of n copies of A. That is: M, (A) = Hom(A™)
isomorphically. We will define M,,(A) momentarily. The proofs of both of these results are
quite straightforward. One simply checks that the canonical map 6 : M,,(A) — Hom 4(A™)
defined as 0(B)(Z) = B where B € M, (A) and ¥ € A™ is an isomorphism. Throughout
this paper when we refer to a canonical map it will be defined in a similar manner with
elements from the correct corresponding spaces. We will concern ourselves with how the
algebraic relationship M, (A) = Hom(A™) transfers over to the analytic world. We will
see that some problems occur when we replace the A-module homomorphisms on A™ with
the bounded A-module maps on A™. We will define the terms ’bounded’ and ’completely
bounded’ later.

We first need to define some of the notation we will be using. Throughout this paper we
will assume that our field (IF) is either the real (R) or complex (C) numbers. A Hilbert space
is an inner product space for which the associated norm is complete, i.e. Cauchy sequences
converge. Here and throughout the paper H and K will be Hilbert spaces. We will also
denote the set of n x n matrices with entries in A as M,,(A) where A is some space. We will
write M, for the matrices with entries from the field, i.e. M, (F). Then B(H, K) will denote
the set of bounded linear maps taking H — K. This means that for every T" € B(H, K),
|T|| = sup{||T'(z)|| : x € H,||=| < 1} is finite. Also B(H) = B(H,H). When we discuss
matrix norms on a space, X, we are referring to a set of norms, {|| - ||.}2;, where the nth
norm is defined on M,, (X)), the space of n x n matrices with entries in X. It is well known to
experts that B(H) and B(H, K) have natural matrix norms. However for us, we will only use
a simple version of this fact. We will see momentarily that M,, has natural matrix norms,
i.e. a natural norm on M, (M,,). It is a well known fact that any B(H) may be viewed as
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some space of matrices M,,, so we can concentrate on M, and forget about general B(H)’s
for the most part.

An operator space is a vector subspace of B(H), or for us, a vector subspace X of M,,,
together with the natural matrix norms one gets on M, (X) from M,,(M,,) for n € N. We can
then define an operator 7" on a space X to be a complete isometry if ||[T(z:;)]|ln = ||[zi]||=
for every z;; € X and n € N. This simply states that the norm of an n X n matrix with
entries z;; € X equals the n norm of the matrix with entries T'(x;;). Recall that if this is
true for n = 1 then T is isometric.

Throughout the paper we will be finding the norms of matrices. Recall, if A € M,, then the
norm of A, ||Al|, can be calculated either by finding the square root of the largest eigenvalue
of A*A or ||A| = sup{% : ¥ € R"}. In more general terms, for any linear 7' : X — Y,
1T} = sup{[|T(z)]| : = € X, ||=]| < 1}.

We now want to take note that the M, (A) matrices have a norm already induced on them.
We will look at an example where A = M, (F). For this example we will examine the norm
on Ms(A). Then

1 -1 3 4
0 1 6 —1 N

. s L | € Me(M) = My
2 0 -3 6

Note that Ma(Ms) = B(F? @, F?). Therefore Ms(M>) has a canonical norm on it, the norm
that would be associated with the corresponding element in M. So we simply must find the

1 -1 3 4
0 1 6 -1 . .

norm of 7 5 1 _1 and transfer it back to the element in My(Ms).
2 0 -3 6

There is another way to calculate the norm. It involves using the C*-identity : ||z*z| =
|z||* for any matrix x (or operator on a Hilbert space). Here the * refers to the conjugate
transpose of a matrix. That is [a;;]* = [a;;]. If the entries in the matrix are real, then *
is just the transpose. It is well known that [|z*|| = ||z| for any matrix . Thus using the
C*-identity twice we get:

lz* 2l = llzl* = ll2"[I* = l|lz="]|

The C*-identity can be used in the following manner. First though we need some definitions
which will be used throughout. Let

ag 0 .. 0]
Cn: ay 0 ... 0 - a cF
a, O 0
. Vs
. )
ap aq an
R, — 0O 0 ... 0 ‘a; €T
0 0 .. 0 )
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Often times these are referred to as Column n-space and Row n-space, respectively. Applying
the C*-identity to an element x € C), we see

1
ay 0O .. 0 a; Qs ... Qp ay 0 0 2
a; 0 0 « il 0 O 0 a 0 0
Ll I el il et U I IR
a, 0 .. 0 0 0 .. 0 a, 0 0
1
|CL1|2+|CL2|2+...—|—|CLn|2 0O ... 0 2
0 0 ... 0
- = \/lCL1|2 + |CL2|2 + ...+ |CLn|2.
0 0 ... 0
We can use the same idea to calculate the norm for any element of y € R,,.
_ 1
a, Qs ... Qn a, ay ... Qan a 0 ... 0 2
0 0 .. 0 wpl 0 0 ... 0 a 0 ... 0
L I | A el |
| 00 0 0 0 .. 0 a, 0 0
_ 1
lai]? + lao* + ...+ |a,)> 0 ... 0 [|?
0 0 ... 0
= I | AR T T
i 0 0 ... 0

This shows that the obvious linear isomorphism, the transpose map, between C,, and R,, is
an isometry. In fact we have shown that both C), and R,, are basically F” with the Euclidean
norm. So someone studying Banach spaces, i.e. vector spaces where the associated norm is
complete, would consider C,, and R,, to be the same. Later we will see some differences that
do arise though when viewed in a different way.

There are many useful tricks for calculating norms that we will use throughout this paper.
The first of these is that switching rows and columns does not change the norm. This can
be useful because it is also well known that the norm of a diagonal matrix is the absolute
value of the largest entry on the diagonal. So often times we will switch rows and columns to
make a matrix into a diagonal matrix. Another useful trick for computing norms is realizing
that rows and columns entirely composed of zeros do not change the norm. So they can be
inserted or deleted without any effect.

For more details on matrix norms, if needed, consult some of the references in our bibli-
ography. We write CB4(A™) for the completely bounded A-module maps on A™, denoted
as CB4(A™), which are the completely bounded A-module maps taking A™ — A™  An
operator T is completely bounded if sup{||[T(z:;)]||n : ||[zi]]ln < 1} < oo for every n € N.

2. MATRIX NORMS AND OPERATOR ALGEBRAS

One of the first questions that arise when introduced to operator algebras is, ”Why are
operator spaces necessary?”.
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A first answer to this question is fairly basic in nature. Note that C,, R, C M,. We
checked above that C),, = R, isometrically isomorphically. Let’s look at what happens,
though, when we look at elements of M3(C3) and M;3(R3). First we will look at the norm of
a simple element in M;5(Cj):

100 00 0 00 0

00 0 00 0 00 0

00 0 00 0 00 0

000 0001 [0 0 0] 100
100 00 0 00 0 =1 00/|||l=V3
00 0 00 0 00 0 100

00 0 0001 [0 0 0]

00 0 00 0 00 0

100 00 0 00 0

by the simple ideas illustrated in the introduction concerning calculating norms. It would
seem that the norm of the corresponding element in M3(R3), corresponding via the mapping

a 0 0] a b c
b 0 0|—~|000
c 00 00 0
from C5 to Rs3, would have the same norm. But instead
[ fT100] [oooO0] [0ooO0O]]
000 00 0 00 0
00 0 00 0 00 0
01 0] [oo0o0] [00O0] 100
000 00 0 000 =lo10|||l=1.
000 00 0 000 001
0011 o007 [0 0 0]
000 00 0 000
00 0 00 0 00 0

It appears that something went wrong when we started looking at matrix norms. From this
simple example we can note that since the norms are different, then C5 and R3 seem to have
some underlying structure that is different and not perceived when viewed simply as normed
spaces. This difference is not recognized by someone studying Banach spaces, because they
will simply look at the first norm which are equal and not see this difference.

From this example it already seems evident that operator algebras seem to have a stronger
set of conditions placed on them. The calculations above motivate the following theorem.

Theorem 2.1. C,, is not completely isometrically isomorphic to R,,.

Proof. Assume that C,, = R,, completely isometrically isomorphically. Begin by looking
1 T2 e
at the matrices of size n with entries from R,,, i.e. 0 0 .. O : x; € R, ». Then

0 0 .. O
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r1 To2 ... Tp
0o 0 .. 0 = /2 i |lz:|[? by using the C*-identity to compute the norm in
0 0 .. O

a similar manner as before. By our assumption there must exist a 7' : C,, — R, which is
a complete isometry since C,, = R, via some mapping. Let {ej, es,...,e,} be the standard
orthonormal basis for C,,. Then T'(e;) = x; for some z; € R,,. Then we can calculate the

€1 €2 ... €n
normof | 0 0 ... 0 | € M,(C,) by deleting rows of zeros and rearranging the columns
0 0 .. 0]
i €1 €2 ... €n
to form the identity, thus 0 0 ... 0 = 1. Then we have
L0 0 . 0 |,
er €y ... e | T(er) T(ez) ... T(eyn) T1 Ty ... Ty
1= 0 0 .. 0 = 0 0O .. O = 0 0 .. O
0 0 .. 0 0 0o ... O 0 0 .. O
because T' is a complete isometry. Thus since 1 = ||e;|| = ||«;|| we have that
r1 T2 Tn
0 0 0 =
0 0 0

Thus we have shown that 1 = y/n which is a contradiction. Therefore C,, is not completely
isometrically isomorphic to R,.

There is a more general result that can be proven concerning C,,. We will need the following
lemma first though. Note that this lemma will be used at different times throughout the

paper.
Lemma 2.2. ||[a;]|ln > ||aw|| where a;; € A and A is a subspace of B(H) or B(H, K).

Proof. Let [a;;] be a p,q matrix with a;; € A. Then denote €;" to be a row of length
p with all entries zero, except the kth entry, which would be 1. Similarly define ¢ to be a
vector of length ¢ with all entries zero, except the [th entry which would be 1. Then note
that €, [a;;]é] = ay, and that ||é;"|| = ||&]| = 1 for any k and I. So then |jay|| = ||€: [ai;]é] <
lez" MlassIINel = [la]ll

So far we have seen an instance of some underlying structure in C,, and R,, that is not
immediately visible. The ideas behind the structure of C,, motivate the following theorem
which help to better describe the structure of C,. The theorem states that an if an operator
T taking elements of C), into M, is a linear complete isometry then up to a change of
orthonormal basis, 7" must be a function that takes a vector of C, (in this case we are
viewing elements of C,, as vectors) and places it in the first column of M, and fills the
rest of the matrix with zeros. We first need to formalize what we mean by a change of
orthonormal basis. A wunitary matriz (often simply called a unitary) is a matrix A with
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AA* = I and A*A = I where [ is the identity. It is common to think of a unitary as a
‘change of orthonormal basis’ when it acts as an operator.

Theorem 2.3. IfT : C, — M, is a linear complete isometry then there exists unitary n xn
matrices U and V', such that for any ¥ € C,,, UT(Z)V = [T :0:...:0].

Proof.  An equivalent statement is if 7(¢;) = A; then UA;V = [ : 0 : ... : 0] where €
are standard canonical basis elements, i.e. A; are square matrices with é; in the first column
and the remaining entries 0. So we need to show that there exists two orthonormal bases
D = {vi,03,...,v,} and C = {w), Wy, ...,w;,} such that the matrix of A; with respect to D
and C'is E;;. That is the matrix with [, k entry equal to (A;w}, 0}), i.e. [€ : 0:...: 6] This
is the statement we will prove. First let T": C}, — M,, be a linear complete isometry. Then
let {€1,¢€3, ..., €, } be the standard orthonormal basis for C),. Then assume T'(¢é;) = A;, which
by the complete isometry implies

leill = [[T(ed)ll = [[Asll = 1.
Thus ||AfA;]| = 1 We also have

n i
AL Az ALl = 11D A4s |2
=1
by the C*-identity. Then
n -~ . . .
DY Al =G :é: . =1
=1

by what was shown above and the fact that the matrix composed of basis elements can be
arranged into the identity. Also note that

Al n . €_i
=1 A= | - || =va
i=1 €n

Thus
1Y " ArAll =n ().
i=1

Define B; = AfA; and B = )" | B;. Note that B; are positive matrices and therefore B is
a positive matrix. Therefore B has eigenvalues > 0. Also there exist unitary U such that
B = U*RU where R is a diagonal matrix with the eigenvalues of B down the diagonal.
Also | BI| < |U*[[|RI[[|U] = [|R| and [|R]| < [|U[[||B|[[|U*]| = [[B]l so || B]| = ||R]|. Since
1 = ||Ar A;|| = || Bi|| then by what was marked (}) earlier ||B|| = n. Note that the norm of
R is the largest eigenvalue of B and n = ||B|| = ||R||. Thus n is the largest eigenvalue of B.
Let & be a normalized eigenvector for B for eigenvalue n, i.e., ||Z|| = 1 and BZ = n#. This
implies

(B, ) = (nZ,&) =n =Y _(Bif,F) =n.
=1



8 SETH M. HAIN

By the Cauchy-Schwarz inequality
(Biz, T) < |B:iZ||[|Z] < | Bill = 1.

Therefore combining the last two ideas we have that (B;7,Z) = 1 > || B;Z||||Z|| for every
1 €1,2,...,n. By the converse of the Cauchy-Schwarz theorem B;Z = & which implies that ¥
is an eigenvector for every B; for eigenvalue 1. Let A;7 = v;. Let D = {01, 03, ..., v, }. We need
to show that D is an orthonormal basis. First [|v;]|? = ||A:Z]|*> = (AT, i) = (AT AT, T) =
(B;Z, ) = 1 by previous ideas. So now we need to show (v;, v;) = 0 for i # j and (v;,v;) =1
for i = 5. We will assume that ¢; is a column vector, then (v;,v;) = Ujfv} = U?Aif. We have
shown that ||[A;As...A,]|| < 1 and we also know that the diagonal matrix [Z1,] with & down
the diagonal has norm equal to 1. Then we have

I[A1 Az . AL [Z1]]] < [[A1As A |[ZL]|| < 1= ||[AZ: AxZ ... 0 A < 1.
We also have that

v_j%[Alf: AT A = [v?Alf : U?Agfi U IV ’U_ijnf] €R,
with 1 in the jth entry. Therefore
||[U§Alf: UEFAQ:Z“’: Lol v_jAnf]H < ||v§k||||[Alf c AT AT < 1

It follows then that v?A,»f = 0 for i # j. Therefore D is an orthonormal basis. Now let
w) = & and let C' = {w, wh, ..., 1w, } be any orthonormal basis with ] as stated. A corollary
of the Gram-Schmidt Theorem guarantees that C' exists as prescribed. Now we’ll look at the
matrix [(A;af, o). If [ = 1 then (A;wy, v) = (A2, v) = (0;,0%). So by what was shown
previously (A;uw,v;) = 1 if k =i and 0 otherwise. Now we will look at the case of [ > 2.

Then since C' is an orthonormal basis ||[«] : W : ... : w,]|| < 1. Since by our lemma then
| A;|| <1, then ||A;[w) : wh @ ... s wy]|| < 1= |[[Aad : Ajdy o ... 0 Ajwy]|| < 1 and we have
already shown that ||A;w:|| = 1. Now notice that
I[Apady ... Aqay, = Agly oot Aoty o o s Apaly e Ay ]|| <
(W] 2wy o .y 0 0
0 Wy Wyt .. D W] ... 0
1Ay As.. A, [0 10 b <1
0 0 O (TR VN T8

by previous things stated in the paper and this proof. By rearranging columns and using
the fact that w); = x we have

1> ||[[Awh o s Ay, - Astlly e s Aoy, oot Agay s Apdy]|| =
|[Aa0) : Ay oo s Apdy = || = ||[01 103 ¢ .o 20y 2 T
where J = [Aywy @ ... : Ay, @ Agty @ ... 2 Agwy, ¢ ... s Aply o ...t Apwy,]. Then once again

by rearranging the columns composed of v;s we can form a unitary matrix W. So we have
that 1 > ||[W : J]||. Using the C*-identity we can easily deduce from the last result that
|.J|| = 0. Therefore A;w; =0 for [ > 2. Then (A;w;, vg) = 0 for all | > 2. We therefore have
shown that the matrix [(Aw;, vx)] = E; 1.

Now we will assume that z € C,,., Then xz = Z?:l é;a; where the a;’s are unique
scalars. Then using the properties of a linear function UT(Z)V = >." UT(&)Va; =
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S [ :0: ... : 0)a; by the previous theorem. Therefore UT(x)V = 37, [€a; : 0: ... : 0] =
[z

After having shown these last two ideas it is now possible to use them to prove the following
type of corollary. Note that (), is naturally a subalgebra of M, with a right identity of norm
1.

Corollary 2.4. The only multiplication on C,, that could make C,, an operator algebra with
a right identity of norm 1 is the usual matrix multiplication up to a change of unitary.

Proof. Assume that C,, is an operator algebra with some multiplication that we will write
as xy. Define ¢ : C,, — B(C,) as ¢(z)(y) = xy for z,y € C,,. It is easy to show that this map
is a linear homomorphism. Let e be the identity of C), then ||¢(x)|| > ||o(z)(e)|| = ||ze|| = ||zl
and [|g(z)[| = sup{[[zy| - lyll <1} < sup{[lz|llyll : [lyll <1} = [l=]|. Thus ¢ is isometric and
one can similarly check that it is a complete isometry. Noting that B(C,,) = M,, there then
exists some 0 : C,, — M,, which is a homomorphic complete isometry. Then let x,y € C,,.
Since C, is an operator algebra then zy € C), also. Therefore we can write z,y and xy as fol-

lows 7 — zo 0 ... 0 Y= Y2 0 ... 0 : and 2y = me 0 ... O  Then
z, 0 ... 0 Yo 0 ... 0 m, 0 .. O
ry 0 ... 0 nn 0 ... 0
i) 0 0 Y2 0 0
by our last corollary 6(z)0(y) = U VU V =0(zy) =
x, 0 ... 0 Yo 0 ... 0
vl "™ 0 V' for some unitaries U and V. Then let W = VU. So multiplying
m, 0 .. O
the above equality on the left by U* and on the right by V* we have
xT1 0 0 U1 0 0 my 0 0
i) 0 0 W Yo 0 0 _ Mo 0 0
T, O 0 Yo O 0 m, 0 0
yi 0 ... 0 Gy 0 ... 0
Then define W | ¥2 R B 0 0 . Thus we have that
Yo 0 ... 0 Gn 0 ... O
Zlflﬁl O 0 ma O 0
Zlfgﬁl 0 .. 0 mo 0 0
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Thus multiplication must then be defined in this manner, which is normal matrix multipli-
cation up to a change of unitary.

3. EXAMPLES OF OPERATOR ALGEBRAS

It is quite advantageous to have a number of examples of operator algebras at hand. This
section is concerned with providing numerous examples of operator algebras and ways to
construct them from others. We begin this section by noting that the class of operator
algebras contains all finite dimensional algebras. To show this we will begin with a lemma:

Lemma 3.1. Fvery finite dimensional vector space U is a Hilbert space.

Proof. Let U be a finite dimensional vector space. We then can fix a finite basis for
U, denote it as {us,ug, ..., u,}. Then for every v € U there exists unique a; € F such that

v =" au;. Thenlet (-,-) : U x U — F be the function defined as (u,v) = > " a;b;
where a; ’s and b; ’s are determined uniquely by expressing u and v as the sum of the basis
described previously. It can easily be verified that this is an inner product on U and will
therefore induce a norm on U, i.e. ||z|| = y/(z,x) for every x € U. Thus we have created
a finite dimensional normed space and it is well know that all finite dimensional normed

spaces are complete. Therefore U is a Hilbert space.

By use of this lemma we are able to prove the following result. While this result is
considered known, we are not aware of any straightforward proof which has been published. A
similar, but not identical, result appears in [4]. The following result simply shows that every
finite dimensional operator algebra is isomorphic to a subalgebra of the bounded operators
on a Hilbert space.

Theorem 3.2. Let A be an algebra which is finite dimensional as a vector space. Then there
exists a Hilbert space H, and a 1-1 homomorphism m: A — B(H).

Proof. First we will assume that A is a unital algebra. Using the previous lemma we
can associate A with its own Hilbert space. Then for every a € A let L,(b) = ab for b € A,
thus L, is a linear transformation from A — A. Now let ¢ : A — B(H) be the function
¢(a) = L,. It can be checked that this is a homomorphism. If ¢(a) = 0 then L, = 0.
Therefore 0 = L,(1) = a- 1 = a. Thus ¢ is injective and the theorem is proven in this case.

Now assume that A is not a unital algebra. In this case we will consider the Cartesian
product of A x F with multiplication defined as (a, «) - (b, 5) = (ab+ fa+ab, af) for a,b € A
and a, 3 € F. This is a unital algebra with multiplicative identity (0, 1). Denote this algebra
as A. Note that A is a subalgebra of A. We can create an inner product on A defined as
{(u,a), (v,b)) = (u,v) + ab for u,v € A and a,b € F, where the inner product on A is the
one discussed in the previous lemma. It is easy to check that this is an inner product space.
A is still a finite dimensional normed algebra and thus is complete. Therefore A is a Hilbert
space. Then the map p : A — A defined as p(a) = (a,0) for every a € A is an injective
homomorphism. Let 6 : A — B (A) be the same injective homomorphism discussed earlier.
Then ¢ : A — B (A) can be defined as ¢ = 6 o p, which is an injective homomorphism by
composition.
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A corollary follows directly from that theorem:
Corollary 3.3. Any finite dimensional algebra is an operator algebra.

Proof.  This follows directly from the definitions of an operator algebra and the previous
theorem.

In a similar manner we can show that a finite dimensional A — B bimodule is isomorphic
to a subalgebra of the bounded operators on a Hilbert space. We will define bimodules and
operator modules in the same manner as Blecher in [2].

Theorem 3.4. For X an A — B bimodule with X, A, and B having finite dimension, there
exists a Hilbert space, H, and a 1-1 bimodule map m : X — B(H).

Proof. Let X be an A — B bimodule. Then we can create a space

U:{[g ﬂ :aeA,beB,xeX}.

Define the addition as the normal matrix addition and define multiplication as normal matrix

multiplication. We need to check that U is closed under multiplication. Let { %1 il } , [ %2 22 } €
1 2

a; Iq Ao T2 - a1y  QoTo + $1b2 . . _
U, then { 0 b ] [ 0 b } = [ 0 byby ] . Since X is an A — B module,
a9 + x1by € X and therefore U is closed under multiplication. It is easy to check then that

U is an algebra. Let 6 : X — U be defined as z — for every z € X. It can be

0 =z
0 0
shown that 6 is a 1-1 map. Since X, A, and B are all finite dimensional, then U must be also.
Therefore we can apply the previous theorem and so there exists a p : U — B(H) which is
a 1-1 homomorphism as described. Therefore define m = pof. Then 7 : X — B(H) is a 1-1
8 8 for every a € A. So once again by the
previous theorem there exists ¢ : U — B(H) which is a 1-1 homomorphism. Then define
0=@o1. Then p: A — B(H) is a 1-1 map. Finally define o : B — U as b — 8 2
for every b € B. So once again by the previous theorem there exists v : U — B(H) which is
a 1-1 homomorphism. Then define w = yoa. Then w: B — B(H) is a 1-1 map. Thus we
can identify A and B as two subalgebras of B(H). Then one can easily check that the map
m:X — B(H) is a 1-1 A — B bimodule map.

map. Similarly define ¢ : A — U as a —

Corollary 3.5. Any finite dimensional A — B module X is an operator module.

Proof.  This also follows directly from the definitions of an operator module and the
above theorem.

We will now concern ourselves with ways to create operator algebras from other operator
algebras.
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Define the following construction. Let V' be a linear subspace of B(H) then define

Moow
b= {[¥ 4] reraer)

Note that By is an operator algebra, a subalgebra of My(B(H)).

Lemma 3.6. Let V and W be subspaces of B(H) and B(K), respectively. Then 6 : By —
Bw is a 1-1, onto, homomorphism if and only if

0 Ao | AL p(v)
0 A 10 M
where p: V. — W is a 1-1, onto, linear map.

Proof. We will begin by looking at possible idempotents. Define x = { AL } €

0 A
M ow Mo v NI 2)\v
2 _ _
Bwthenx_[o AIHO A _{0 N
Oor1landv =2\ = 0= (2\ — 1)v. Therefore either 2\ — 1 = 0 or v = 0, but by
possible values of A, 2\ —1 = —1 or 1. Thus v = 0 for all idempotents. Thus the only
idempotents are the identity matrix and the zero matrix. Since 6([I])* = 6([I]) and 6 is

linear and 1-1, thus ker@ = {0}, we then have that 6([I]) = [I]. Let C =6 ({ 8 8 .

} Since = = 22 then )\ is either

2
Then C? =6 (l 0 v 1) = 0(0) = 0. Now we will examine possible nilpotents. Assume

00
2

2?2 = 0 for z € Cy then 2? = l )\0[ 2}\);7”; = [0] for some w € W. Therefore A = 0

. . 0 v 0 =z
for every nilpotent. So since C' € Cy then 6 00 =10 0 for some z € W.
Then define 6 8 8 = 8 p (OU) where p : V' — W. So combining these ideas we
AMowv B A0 0 v B B 0 p(v) | _
haveﬁ(l 0 )J}) —9([ 0 A11+l0 0}) —AQ(I)—I—C—A[[]-I-[O 0 1 =
)E)I p S}) . Thus this is the only way to define §. The proof that p is 1-1, onto, and linear

follows directly from what we know about 6.

<) Letx € By en there exists v € V such that z = =
(<)L By . Then there exi V such th [M p@w o(| M v

0 M 0 M | )

: Aw B ~I D A p(v)
Thus # is onto. Suppose «9({ 0 )\I}) = «9({ 0 ’71})' Then { 0 A

MI i } So that A = 5, and p(v) = p(¢). Since pis 1-1 then v = &, thus 6 is 1-

1. Now to show it is a homomorphism, let =,y € By. Then there exists u,v € V such

ha
T (I R)- (8 )
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Agl p(AK ;LI ) } _ l Agl Ap(U);vr]w(v) _ l AOI /&(7;) ] “)I P$> } _

([ 32 3w

Thus it is a homomorphism.

The next two lemmas answer questions concerning when # and p are isometric and com-
pletely isometric. It will be assumed that 6 and p are defined as previously.

0 v B

0 0 ||

Lemma 3.7. 0 is isometric if and only if p is isometric.

Proof. (=) Letv € V. Then |jv]| = H{ 8 8 } . Since 6 is an isometry then

0 (l 8 8 1) ' = H l 8 p(ov) 1 ’ = ||p(v)]|. So by the string of equalities p is an isometry.
(<) It is an easy consequence of a result by Foias and Frazho in chapter IV of [5] that
[ Ay S B : My _
0 uly } = f(IAl el I1S]]) for some function f. Therefore [ 0l }H =
Mg Q . . . . .
0 u[ if and only if ||S|| = ||Q|| Soif p : V. — W is an isometry then
K
” p v Therefore 6 is an isomet
_ O )\ 7 0 \J erefore 6 is an isometry.

Lemma 3.8. 0 is completely isometric if and only if p is completely isometric.

Proct. (=) Lo v, < V. Then o = [ § %

!
o]l (o s D] -0 5

string of equalities p is a complete isometry.

. Since 0 is a complete isometry

then = ||[p(vij)]|ln. So by the

(<) Paulsen has proven that if p is a complete isometry then the function 6 : l 2*] :} 1 —
[ AL p(x)

p(y) wl
necessary result.

} for z,y € V is a complete isometry. Setting y = 0 and u = A we have our

From these results we are now able to create many different operator algebras from ones
we are already aware of. The last two lemmas we proved provide details on exactly which
are operator algebras and which are not. Following directly from this example we can prove
similar results about another type of example.

We will take any subspace U C B(H) and look at the subalgebra Ay of My(B(H)) =

B(H®) consisting of the following matrices:

A
AUZH 0 ;1] A\ ueF & ueU}.
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The following three lemmas we will combine to create a new set of examples of operator
algebras.

Lemma 3.9. Let V and W be subspaces of B(H) and B(K), respectively. Then 0 : Ay —
Aw s a 1-1, onto, isometric, homomorphism if and only if

0 Mowv AL p(v)
0 ul 0wl
where p -V — W s a 1-1, onto, isometric, linear map.

Proof. (=) We will begin by noting that

3(E RS Y

So 6 ({ 0 8 }) is a nilpotent element. Now we will examine possible nilpotents in Ay .

0
AL v : 1 o s | N MN+pv ]
Define x = 0 ul € Aw to be a nilpotent with z* = 0, then z* = 0 2 =

0. This implies that A = g = 0. Therefore 6 8 8 ]) = [ 8 16) } for some w € W.

Deﬁne&({g g]):{g p(ov)}wherep:V%W. NowdeﬁneB:0<{é 8}) and

C’:H(l 8 ) Then note that

0
I

o[ a])o([a )= ([0 8]) ([ 8)-=

Similarly C? = C. Therefore B and C' are idempotents. Also

me=oflon])el[s 7)) = ([oollo 7)) =o([30])=0

and similarly C'- B =0,s0 B- C = C'- B = 0. Now we will examine the possible forms that

M ow 5 | N v+ o
0 ,u]} € Ay, then z —{ 0 2 }Therefore

if x = 22, the possible values for A and p are 0 and 1 and v = Ao+ pw implies (A\+pu—1)v = 0.
Thus either A + =1 or v = 0. Therefore B and C' are each one of these three forms

ollor] o]

for some v € V Since B - C = C - B = 0 then neither can be of the last form. Note that
|B|| = ||C]| = 1. Since 0 is an isometry then

1=l =

idempotents can be. Define x = [
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Using the C* identity we can see that the norm of either of these elements is 1 + |v|2

Thus v = 0 in both cases. Assume that C' = {é 8} then 0-6’([ }) =0=
<{ ]) [ } where a,b € W. This is a contradiction. Thus C' = [ 8 and
= 8 Combining all of this we then have

(1w ]) o[ s+ [oa] Lo i) -

w3 3]) e[ 59

We have shown that this is the only way to define 6. It can be shown that p is 1-1, onto,
and linear quite easily from what is known about 6.
(<) The proof this direction is also very similar to the proof provided in 3.6.

The result concerning complete isometries that we proved for the previous example carry
over nicely to this example. Allow # and p to be defined as in the previous example.

Corollary 3.10. 0 is a complete isometry if and only if p is a complete isometry.

Proof.  This also follows from the proof from the last example.

These previous results enable us to look at examples of matrices which are isometrically
isomorphic but not completely isometrically isomorphic. Our next example is concerned
with another such set of matrices.

First we will define a few different algebras. Let RI, be an algebra with elements of the

a by by br—1
0 ¢ 0 0
foom [ O 0 ¢ 0 , where a,b;,c € F. Similarly we will define C'[,, to be an
| 0 0 0 c
[ a0 0 0
bl C 0 0
algebra with elements of the form by 0 ¢ 0 |, where a,b;,c € F. Note that
bn—l 0 0 C

both RI, and C1I, are subalgebras of M,,.

Example 3.11. RI, and C1, are isometric but not completely isometric.

Proof.

We will first begin by showing that RI, and CI, are isometric.

This is quite

easy to see by applying the C*-identity to both of them. Let p : C'[,, — RI, be the mapping
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defined as
a 0 0 0 a by by bn—1
bp ¢ O 0 0 ¢ 0
by 0 ¢ O~} 0 0 ¢ 0
bo_1 0 0 c 0 0 0 ... ¢

It is well known that the transpose map is isometric and p is the transpose map. Thus p is iso-
metric. It is quite easy to show that p is a 1-1, onto, homomorphism. Therefore we have that
RI, = C1, isometrically isomorphically. To show that they are not completely isometric we
will need the following constructions. Note that the constructions are isometric. Let r € RI,.

[ al, 5 0 al,_o 0
0 2 . } Note that H 0 2 , } H = ||r||. By
al,_y 71

0 CIn_l

Then construct the following matrix

switching rows and columns this matrix can be made into the form where

‘ [ CLln_l T’ |

r" € R,_1. So then = ||r||. Similarly by switching rows and columns the

0 Cln—l }
) S 0 ) ) ) cl,_ s’
matrix with s € C'I,, can be transformed into the matrix for
0 cl,_1 0  al,
B !
s' € Cp_y. With H 01’6_1 aIS = ||s]]. Therefore we have shown that RI, = Ag |
n—1

completely isometrically and C1I,, & A, , completely isometrically. So CI,, = RI, com-
pletely isometrically if and only if A, = A, completely isometrically. Lemma 3.10 showed
that Az, = Ac, completely isometrically if and only if C,, = R,, completely isometrically.
We showed in Theorem 2.1 that C), is not completely isometric to R, therefore CI,, is not
completely isometric to RI,. So we have another example of two subalgebras of M,, which
are isometric to one another but not completely isometric.

4. ALGEBRA AND OPERATOR ALGEBRAS

In this section we will examine a few ideas from algebra and consider the corresponding
ideas in the context of operator algebras. In particular, we will generalize the idea that the
linear transformations on an n-dimensional vector space are isomorphic to the n x n matrices.

We will examine the algebraic idea that the for any ring or unital algebra A the A-module
homomorphisms from A™ to itself are isomorphic to the n x n matrices with entries in A,
i.e. Homa(A™) = M,(A) isomorphically. Note that in the case that A = F this becomes
M, = Lin(F) isomorphically, which as discussed in the introduction, is central to much
of mathematics. To investigate if there is any good isometric version of this relation, it is
necessary to assign a norm to the different elements and make the isomorphism an isometric
isomorphism. For this portion of the paper let A be a unital operator algebra, whose identity
has norm 1. Note then by the discussion in section 1, M, (A) has a canonical norm on it.
Throughout the rest of the paper C,,(A) will be defined in the same manner as C,, except
entries will be in A rather then in F. We often think of A™ as being a vector of length n with
entries in A. Following this line of reasoning it makes sense to view A™ as the first column of
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an M, (A),ie. A® =(C,(A). Since C,,(A) C M, (A) it therefore has a norm on it also. So it
seems very natural to place a norm on A™ in this manner. The following lemma shows that
one direction of the relationship M, (A) = B4(C,(A)) isometrically isomorphically holds up.

Lemma 4.1. The canonical map 0 : M, (A) — Ba(C,(A)) is a contraction.

0: . 0] -
= sup{ux[
0 0]

Proof.  For any = € M,(A) [|0(z)]| = sup{[|=z]| : [|Z]] < 1} = sup{||[+Z :
H “H < 1} where [zZ: 0 : ... : 0] is a square matrix. We then have that ||6(z)

00l < 120 < 1} < sup{ellliz s 0 oo s O] < 2] < 1} = [l sup{J:
HZH < 1} = ||z||. Thus @ is a contraction.

The example below shows that this relationship does not hold up so well in the other
direction.

Example 4.2. M, (A) is not necessarily isometrically isomorphic to Ba(C,(A)) via the
canonical map.

a ¢ d e
) 0 b 00 i
Proof. Let A be the algebra with elements of the form 00 b 0 with a, b, c,d, e €
00 0 b
F. It is easy to check that A is an operator algebra. Let
[ fTo100] [000O0T1]]
0000 0000
0000 0000
0 00O 0000
"=1Toooo] [oooo0]]|EMA
0000 0000
0 00O 0000
i _0 00 0_ _0 0 0 0_ |

It is easy to calculate using the C*-identity that ||r|| = v/2. Let 6 : My(A) — B4(Cy(A)) be
the canonical map. Then ||6(r)|| =

p —

T
OO OO OO OO
1
T
1

sup 9

OO O DD OO =
DD OO OO OO
DD OO OO OO
[N el NN )
[N el NN )
[N el RN o)
DO OO O
O OOHw OO0 O
SO T oo
OFT O O OO
OO O OO,
S OO o0 O
oo T oo o
OFTOTT O D0
O O, O OO

r
I
T
L
I
L
L
T
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\
1
1
]
1
]
]

= sup

T OO O O~ o,

SO Do Do oo oo
SO Do Do oo oo
SO OO oo oo
SO oo T o
SO FTTDH” OO0

oo T oo o
O FTT OO OO
O Ow O OO Q
DO O O

SO DD Do oo oo
1L
T
OO Do Do oo oo
SO OO OO o
S OO oo O

T
OO OO OO OO
OO OO OO O

r
T
T
L
I
L
L

By Lemma 2.2 > H { Z } H So then

SO T OO0
T OO O O Q,

S o oo TR o

OO OO OO

ol =suptle 11+ || 5 || <11 =1

Thus [|6(r)]| is not equal to ||7]|.

The next logical question is whether or not there is a different type of norm that could be
assigned that would make the relationship M, (A) = B4(A™) isometrically isomorphically
true. There only seems to be one logical way to place a norm on M, (A) as explained in the
introduction. Thus the only option we would have is to place a different norm on A™ . The
obvious possibilities are the following, where @ is a vector of size n with entries from A,

lall, =

n
Yol p>1
i=1
1] oe = max{]|a;[[}
n
- 1
1l oy = 11 asaf]|2
i=1
n
- 1
lalle, =11 ) afaill=.
i=1

Previously we showed that the last norm listed would not work. The following lemma and
corollary show that none of these nor any other sensible norm will work for the relationship.
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a1
First define a sensible norm, ||| - |||, as one that satisfies @ > |la;|| for a; € A and
Qn
a1
0
O =t
0

Lemma 4.3. There does not exist any sensible norm on A"™ for which the canonical map
0 : M,(A) — Bs(A™) is an isometric isomorphism and which makes A™ a Banach A-
module.

Proof. Let 6 : M,(A) — Bi(A™) be the canonical map. Suppose that there exists

bnal

ay
a norm, ||| - |||, on A™, with the property that @ > |||la;||| for a; € A, which
Qn
makes @ an isometric isomorphism and makes A™ a Banach A-module. Then consider
ay b1a1
the map ¢ : A™ — AM defined as @ bax for some fixed by, bs, ..., b, € A.
an b,aq
b1 0 .. 0 ay
. . . R b2 0 .. 0 as

Note that ¢ is a linear right A-module map. Indeed ¢(a@) =

b, 0 .. O an,

(b 0 .. 0
That is 6(B) = ¢ where B = b 0 . Since # is isometric by assumption then
I
loll = 1Bl = I =i, bibill . By definition
aq aq blal a1
ol =sup < ||lB | A< s =swd [ = ] ] <0
G, G, bnal G,
By our assumptions then we have that
21;11 b,
|6]] = sup n el <o =0 ]
b,
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This uses the assumption that the norm is sensible. Following from the fact that A™ is a
Banach A-module, we have that

b1 bl bl
|o|l = sup o Lag|l] s laq]] <13 <sup lar] : ||aa]] <1 p = :
n i bTL bn
by 1
Therefore = ||o|l = || >oi_; bibi||2 by what we showed earlier in the proof. So
by
with these assumptions the norm
b1 n L bl
| [ =1 b0z = - loncay:
i=1

n n

Previously in the paper we showed that M, (A) is not isometrically isomorphic to B4(A™)
when the norm on A™ is the C,,(A) norm. Thus we have a contradiction. and there does
not exist a norm on A™ that satisfies our conditions.

So we have shown that in this manner we can not make the relationship isometric. Some
would argue that the relationship between M, (A) and Ba(C,(A)) does not need to be
isometric, rather it would just need to be bicontinuous. A function 6 : X — Y is bicontinuous
if there exists ki, ko > 0 such that ki||z|| < ||0(z)|| < k2||z|| for every x € X. In some areas
of analysis they are correct, these types of relationships need only be bicontinuous. In
some instances though bicontinuity is not enough. In fact the lack of an isometry in this
simple relation actually causes the complete breakdown of many more sophisticated ideas.
To illustrate this we will look at the following simple relationship, M/ (A) = Hom(A®))

o0
11 Aa12
isomorphically. By M ;{ (A) we mean the infinite matrices, | as1 ag ... |, with a; € A

which are column finite, that is finitely many entries of each column are not the zero element.
We will also define A as the algebraic direct sum of a countably infinite number of copies
of A. That is, A™ is the set of (a;)$2, where all but finitely many a; are the zero element.
Before anything else we will verify this algebraic relationship.

Proposition 4.4. M/ (A) = Hom(A)) isomorphically.

Proof. Let § : MS/(A) — Hom(A®)) be the canonical mapping, i.e. §(B)(a) = Ba
for B € M (A) and a € A®). First we will show @ is linear. Let By, By € M (A). Then
0(B) + By)(x) = Bix + Box = 0(By)(z) + 0(By)(x) for # € A, Similarly let A € F
and B € M (A) then §(\B)(x) = ABx = M(B)(x)for x € A®). Therefore 6 is linear.
Let O(A) = 0 then §(A)(F) = AT = 0 for every ¥ € A(™). Define ¢€; as the vector with
all zeros except 1 in the ¢th entry. Then Aé; is the ith column of A. We then have that
for any i, Ae; = 0. Therefore every column of A is 0. Thus A = 0 and @ is 1-1. Given
T € Hom(A™) define 0; = T(¢;) where ¢; is the vector of infinite size with zero entries
except the identity in the ith position. Then let B = [0 : v : ...]. Since T'(¢€;) € A then
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B € M (A). We now need to check that §(B) = T. Let 7 € A then express ¥ as a finite

sum U = Yy ', €a; where the a; are uniquely determined by the elements é;. Then T'(7)
TN &a)=> 1 T(&)a; = >, v;a; using the fact that T is linear. Similarly 6(B)(7) =

(A
Bv=BY ! éa; =Y Béa; =" va;. Therefore we have the equality we were look-

11 Ti2o .- Y11 Y12
ing for. Let x,y € MY/ (A). Denote v = | @31 92 ... | andy = | y21 Y22 ... |. Note

that it can be shown that M</(A) is an algebra and thus zy € M:i{(A) Let 2 € A,

Y Y2 - 11 T2 - Yii Y12
then 9(1’)9(y)(5) = 9(1‘) Ya1 Y22 ... zZ = To1 X229 ... Ya1 Y22 ... 7 =

0(zy)(Z). Thus 6 is a homomorphism. Thus M<(A) = Hom,(A®)) isomorphically.

We will now try to move this idea over to the realm of analysis we have been discussing.
Once again it makes sense to replace Hom(A)) with B4(A®)) by the same reasoning
as before. We will denote M* (A) = 0~ '(B4(A®)) where  is the canonical 1-1 mapping
described in the previous theorem. Let 6 : M* (A) — B4 (A®)) be the associated restriction
of . We will also define M (A) to be the set of infinite matrices with a finite number of
nonzero entries. We now can look at the following example.

Example 4.5. The canonical 0 : M’ (A) — BA(A®)) is not necessarily bicontinuous.

Proof. ~We will check that M/ (A) C M* (A). Note that for any element of B € M/ (A),

air ... Qip 0
0
B = Ap1 ... Qpp 0o .. = Z.ﬁl}'z],
0 0 0 0 O

where z;; is the matrix with all zero entries except a;; in the 7jth entry with 4, 7 < n. This
is a finite sum because the number of z;; are finite. Then #'(x;;)(Z) is the vector with all
zero entries except a;;z; in the ith entry where z; is the jth entry of 2, denote this as [a;;2;];.
Then [0/ (2i;) (2)]| = [[laijzilill = llaijzll < llaglllz] < llai||[|2] for every 2 € A©). Thus
¢'(x;;) is bounded. Since ' is linear then #'(B) is a sum of bounded operators and thus is
bounded. So M7 (A) C M* (A). So it will suffice to show that for every n € N there exists

an x, € MJ (A) such that W < L. This implies that there does not exist any constant
ky such that ki||z|| < ||0(x)| for every x € MZ (A). Therefore § would not be bicontinuous.
a €1 Cy C3
0 b 0

Let A be a subalgebra of M. (FF) with elements of the form 00 b T that

have a finite norm. Then let n € N and write z,, = [a;;] where a;; € A with a;; the zero
element if ¢ > 2, j > n*+ 1 or i = j = 1, otherwise let a; ; be a matrix with elements in A
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with a 14 in the 1,5 entry and zeros everywhere else, i.e.

0 0 0 .. 0 1 O
0 0 0 .. 0 0 O

o O
o O
=

Ty =

Then [z, || = Vn? = n and [|0(zn)|| = sup{[|za[yjloo ]| : [[yilooa ]| < 1} where

aj Cj1 Cjz2 Cj3
10 b 0
=10 0 b

Using the lemma proven before in this paper, computation, and the fact that the transpose
of rows and columns does not change the norm we have

by

b2 <1%=

10(x)]] < supQ [b:bs ...t byzyq]: <
bn2+1

sup{/[Da|2 4 [bs|2 4 ... + D212 0 V|02 + b2 + o b2 2 < 1} = 1.
Thus 12l < % for every n € N.

llznl

This last example shows that even bicontinuity is not assured when things are transferred
from the algebraic world to the realm of analysis. With things falling apart in this fairly
simple example it would seem there is little hope when looking at the bigger picture.

Our first attempts at transferring these ideas into the realm of analysis has not been very
successful. This may be because we have been working in the wrong framework. It is possible
that if we looked at something with more structure maybe these ideas would hold together
better. We will try restricting ourselves to the CB4(C,,(A)), i.e. the completely bounded
right A-module maps from C,(A) — C,,(A), instead of just Ba(C,(A)) as before.

[a¥)

Theorem 4.6. CB4(C,,(A)) = M, (A) isometrically isomorphically via the canonical map.

Proof. Let 0 : M, (A) — CBA(C,(A)) be the canonical map. First we will check that
this map is isomorphic. For any x,y € M,,(A), O(x+y)(2) = z(2) +y(Z) = 0(x)(2) + 0(y)(2)
for 27 € C,(A). Similarly for z € M, (A) and scalar X, 8(A\x)(2) = Az(Z) = \(x)(Z) for
Z € Cy,(A). So 0 is linear. Then if #(A) = 0 then Az = 0 for every z € C,(A). Let
E;1 € C,(A) denote the matrix with all entries zeros except 1 in the 4,1 position. Then
AFE; 1 is the matrix with the ¢th column of A in the first column and the rest zeros. Thus
since AE;; = 0 for every i, A = 0. So 0 is 1-1. Let T € CB4(C,(A)) then define v; to
be the first column of T(E;;) and let B = [v] : 03 : ... : U,]. B is obviously an n X n
matrix with entries in A and thus is in M, (A). Then let {ey,es,...,e,} be the standard
orthonormal basis for C),. Then for any = € C,(A) there exists unique a; € M, (A) such
that © = > e;a;. Thus T(z) = T(O.,  eai) = >0 T(e)a; = > via;. Similarly
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9(B)(x) =B> " ea; =y . Bea; =) va;. Therefore §(B) =T. In a similar manner
to Proposition 4.4 it can be shown that 6 is a homomorphism. So we have shown that 6
is isomorphic. Now we just need to show that it is isometric. First we will check that 6 is

a contraction. [|6(z)||e = sup{u[xzzj]ﬂm : ||Jz§}]||m <1} =sup{[[[zZ; : 0:0: ... : O)||m :
I[Z75]|lm < 1} such that [z25; : 0 : 0 : ... : 0] is a square matrix. Then following with the
equalities

sup{”[xz}’j :0:0:...: 6]Hm Nz lm < 1} _

z ... 0
sup{[| | O ... O [[Z5:0:0:..:0]|lm:|I[Z5]llm <1} <
0 ... x
z ... 0 B B
0 ... 0 sup{|[[z; : 0:0: oo : Ol : I[Z5])1|m < 1} = ||2]|.
0 ... x

This shows that the 6 is a contraction. Let [1j7;] be the matrix with y;; = 0 for all i > 2 and
y1; be the vector with all zero entries except the identity in the jth row. Then ||[y;]||,» =1
and also [zy;;] = x for every x. Therefore ||0(z)|s = sup{||[zZ]l|lm : [Z;lllm < 1} >
[zis]||m = ||2||m. Therefore we have shown that ||0(z)||w = ||z]|.

This result may also be given a longer indirect proof by deducing it from some general
theorems in [3], for example.

We have now shown for the finite cases that this relationship holds exactly as we wanted.
Before we saw though that things went drastically wrong when we started looking at ma-
trices of infinite size. The following theorem shows though that things hold up quite
well even for the infinite matrices when looking at the completely bounded maps. We
will first need another definition. Define M, (A) to be the set of all countably infinite

11 Q12
matrices | ag age ... | with a;; € A for which there exists & > 0 such that £ >
a1 ai2 ... QAip
21 A22 ... QA2
" for every n € N.
Ap1 Ap2 ... QApp

Theorem 4.7. M (A)N My (A) =2 CBs(A)) isometrically isomorphically via the canon-
1cal map if A is a unital operator algebra.

Proof. Let 6 : M (A)N My (A) — CB4(A®)) be the canonical map. It is easy to show
that 6 is linear and 1-1. To check that it is onto, let T € CB4(A®)). Then let v; = T(&)
where €; is a basis element. Then let B = [0 : 3 : 03 : ...]. Note that v; € A®) and thus
have a finite number of entries nonzero. Therefore B € M/ (A). Let n € N then let B,
denote the matrix that is the first n rows and columns of B. Then B, is a finite square
submatrix of [v7 : 03 : ... : ¥,]. Thus by Lemma 2.2 ||B,|| < ||[01 : 03 : ... : 0]]| = ||[T(€7) :
T(€) : ... : TEN] < |IT)l = k for some constant k because T is completely bounded.
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Since this is true for any n € N then B € M, (A). Therefore B € M (A) N My (A). In
a similar manner to Proposition 4.4 you can show that 7" = #(B). That proposition also
shows in a similar manner that 6 is a homomorphism. We will now concentrate on showing

that it is isometric also. Let z € M (A). Then ||0(x)||s = sup{||[z2; : 0 : ... : 0|l : [|[z7; :
0:..: 0. <1} < sup{H_)x||||[z?J 20 O] s 175 2 0 : o2 O]l < 1} < ||| sup{||[#7; : O :
w0l s #5520 s oo 2 0], < 1} = ||z|| for n € N. Thus 6 is a contraction. Now we will

define [y;;] as an m X m matrix with y;; = 0 fori > 2 and j7 > m and yi; for 7 < m to be the
vector of infinite length with zero entries except the identity in the jth position. Note then

that ||[zy;]|| = ||zk|| where zy is a block of z. Also note that ||[y;;]]| = 1. We then have that
10() e = sup{[[[zzij][|n : I[Z55][ln < 1} > [[lzgi3][| = llzs|| for n € N. Then the supremum of

|zx|| as the size of the matrix [y;;] goes to infinite is ||z||. Thus we have that ||0(x)| > |||
Thus we have shown that 6 is isometric in this case.

In a very similar manner you can show that the following relationship is also true.

Theorem 4.8. M, (A) = CB4(Cx(A)) isometrically isomorphically via the canonical map
if A is a unital subalgebra of M,.

Throughout this paper we have been looking at different relationships in algebra. In many
cases our first attempt at transferring them over to the realm of matrix spaces failed. We
saw things that appeared to be the same turn out to be quite different when looked at with
Banach space norms and then we saw algebraic relationships that did not transfer over as
we thought they would have. But after closer examination we saw some ways around these
problems.

Now that we have identified these problems and a context in which some of them seem to
be taken care of the next step is to transfer over some of the ideas from algebra and see how
they hold up in this environment. In a few cases this has already been done. One example is
the Memoir [3] in which a Morita theory for operator algebras is developed. The next step
will be to transfer other common ideas.
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