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Turning the Lights Out in Three Dimensions.

J. Jacob Tawney
advisor: Dr. Todd Feil

Department of Mathematics & Computer Science
Denison University
Granville, OH 43023

Tiger electronics now has an entire Lights Out puzzle series. The original
version, solved by means of Linear Algebra by Feil and Anderson [1] in
October 1998, is a five by five grid of lights. Pressing a button results in a
change of parity of that button and a change in parity of the north, south,
east and west neighbors of that light (if such neighbors exist). The object of
the game is to get all of the lights turned off. Later, Tiger released another
version of the mind puzzle, Lights Out Cube, a cube in which the sides
are three by three grids of lights. The parity-changing rule still applies,
except this time if a light lies on the edge of a face, pressing it will change
all of its neighbors, including those on adjacent faces. Thus, in Lights Out
Cube, pressing any button will always result in the change of parity of five
buttons, itself and its four neighbors. Again, the game presents the user with
a configuration of lights, some off and some on, and the objective is to turn
all the lights out.

In Section 1, we will present a summary of Anderson and Feil’s solution
to the original Lights Out puzzle. We will see that with the five by five grid,
representationed by a very convenient matrix, the solution is easily obtained
using some basic Linear Algebra. In Section 2, we will discuss Lights Out
Cube, and we will present a complete solution. We will observe for the cube
that the representation is not so “convenient.” Thus, the solution for Lights
Out Cube becomes a bit more problematic.

1. Five by Five Lights Out.

The original Lights Out is a 5 × 5 array of buttons, each of which are
either lit or unlit. The board will be represented by a 5 × 5 matrix with
entires in the integers modulo 2. For a given board state, if a button (i, j) is
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lit, then the game matrix B has a 1 in the (i, j) spot; if a button (i, j) is off, B
has a 0 in the (i, j) position. Pressing a button changes the light’s status (on
to off or off to on) and the status of each of the light’s vertical and horizontal
neighbors. The goal of the game is, given an initial configuration of lights, to
find a winning strategy, i.e. find which buttons need to be pressed in order
to turn all of the lights off. Feil and Anderson begin by making two initial
observations:

1. Pushing a button twice is equivalent to not pushing it at all. Hence,
for any given configuration, we need consider only strategies in which each
button is pushed at most once.

2. The state of a button depends only on how often (whether even or
odd) it and its neighbors have been pushed. Hence, the order in which the
buttons are pushed is immaterial.

Together, these two observations imply that zeroing out a configuration
involves pressing the same buttons as starting from a zero matrix and arriving
at that configuration. Thus, given a configuration

B =




b1 b2 b3 b4 b5
b6 b7 b8 b9 b10
b11 b12 b13 b14 b15
b16 b17 b18 b19 b20
b21 b22 b23 b24 b25


 ,

we can begin with a zero matrix and find which buttons need to be pressed
in order to arrive at B. More specifically, we must solve for λi (1 ≤ i ≤ 25)
in

λ1




1 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 + λ2




1 1 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 + · · ·

+λ25




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 1


 =




b1 b2 b3 b4 b5
b6 b7 b8 b9 b10
b11 b12 b13 b14 b15
b16 b17 b18 b19 b20
b21 b22 b23 b24 b25




2



or
25∑
i=1

λiAi = B,

where each Ai represents the matrix formed by pressing button i on a game
board with all of the lights turned off, and each λi is an integer modulo 2
which represents either the act of pressing button i or the act of not pressing
button i. (Recall that all arithmetic is being done in the integers modulo 2.)
The numbering used to solve this problem is as follows: row 1 has buttons
1 through 5 in order, row 2 has buttons 5 through 10 in order, ... , row 5
has buttons 21 through 25 in order. If we find that λi = 1, then the winning
strategy involves pressing button i; if we find that λi = 0, then the winning
strategy involves not pressing button i. A winning strategy is a solution, �x,
of

A�x = �b

where
�x = (λ1, λ2, λ3, · · · , λ25)T

�b = (b1, b2, b3, · · · , b25)T

A =




C I O O O
I C I O O
O I C I O
O O I C I
O O O I C


 ;

here I is the 5 × 5 identity matrix, O is the 5 × 5 matrix of all zeros, and C
is the matrix

C =




1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1


 .

This is easy to verify, and we leave it up to the reader. Therefore, a config-
uration �b is winnable, (that is there exists a set of lights that when pressed
will result in turning all of the lights off), if and only if it belongs to the
column space of the matrix A, denoted Col(A). Performing Gauss-Jordan
elimination on A results in RA = E, where E is the Gauss-Jordan echelon
form, and R is the product of the elementary matrices which perform the
reducing row operations.
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The rank of the matrix E turns out to be 23, and the two free variables
are λ24 and λ25. To verify this, we recommend using a computer algebra
system such as Maple. To find which configurations have solutions, we must
determine which vectors �x are in Col(A). However, A is symmetric, so Col(A)
= Row(A), the row space of A, and Row(A) is the orthogonal complement
of the null space of A, Null(A) = Null(E). A basis for Null(E) can be found
by examining the last two columns of E:

�n1 = (0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0)T

�n2 = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1)T .

Formally stated, we have

Theoerm 1 [Feil and Anderson]. A configuration �b is winnable if and
only if �b is orthogonal to the two vectors �n1 and �n2.

Since the dimension of the null space of E is 2, it follows that only one
fourth of all possible configurations are winnable. Moreover, if �b is winnable
and �x is a winning strategy, then �x + �n1, �x + �n2, and �x + �n1 + �n2 are also
winning strategies. (E.g. A�x = �b ⇒ A(�x + �n1) = A�x + A�n1 = A�x +�0 = �b.)

We now attempt, given a winnable configuration, to find a winning
strategy, i.e. given �b, find �x such that A�x = �b. The key observation about
the matrix E (one that will make the solution quite convenient) is that if �b is
a winnable configuration, then λ24 and λ25 can be set to zero in any winning
strategy, �x, and E acts like identity matrix on such a vector; that is �x = E�x.
(We are free to set λ24 = λ25 = 0 because they are free variables.) Making
some substitutions, we have �x = E�x = RA�x = R�b. We now have a solution
to a winnable configuration:

Theorem 2 [Feil and Anderson]. Given �b, a winnable configuration, the
winning strategies are R�b, R�b + �n1, R�b + �n2,R�b + �n1 + �n2, where R is the
product of elementary matrices that reduce A to Gauss-Jordan echelon form.

2. Three Dimensional Lights Out.
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In this section, we will describe a method for finding the solution to
Lights Out Cube, a 3-dimensional version of the original game.

In Lights Out Cube, 3 × 3 grids of lights comprise the six faces of the
cube. Again, the object of the game is to turn all the lights out. However,
this time when a button is pressed, its parity is changed along with the parity
of each of its vertical and horizontal neighbors, including those on adjacent
faces. This “wrap around” effect gives Lights Out Cube a different flavor
than the original game. The analysis begins just as in Section 1, but the
matrix representation of the 5 × 5 puzzle is visually more compelling than
the solution to the matrix for the cube. The matrix representing a 5 × 5
configuration “looks like” it would on the game board; the matrix for Lights
Out Cube does not.

We begin by giving each light a number, i (1 ≤ i ≤ 54). Refer to
Appendix B for the location of the lights. Next we form the matrix A in the
same way that we did in Section 1, where the ith row of A contains a 1 in
the jth position if light j is changed by pressing light i, and a 0 otherwise.
Making the same two observations made by Anderson and Feil, we come to
the same conclusions: solving a configuration �b is equivalent to beginning
with a zero matrix and arriving at �b. Once again, we must solve for �x in
A�x = �b, where �b is the configuration presented by the game.

Using a computer algebra package such as Maple, and tediously typing
in the matrix A, we find that A is indeed a symmetric matrix (as we would
expect). So, Col(A)=Row(A), Row(A) is the orthogonal complement of
Null(A), and the dimension of the null space for A turns out to be 6. A basis
for Null(A) is given by:

�n1 = (1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,

1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1)T

�n2 = (1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1,

0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

�n3 = (0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1,

1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0)T
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�n4 = (0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0,

0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0)T

�n5 = (0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0,

1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0)T

�n6 = (0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0,

0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0)T .

This, of course, is a property of how the buttons were numbered.

We now state the following:

Theorem 3. A configuration �b is winnable if and only if �b is orthogonal to
the six vectors �n1, �n2, �n3, �n4, �n5, �n6.

Since the dimension of the null space of A is 6, only 1 out of every 26 = 64
possible configuration is winnable. Moreover, each winnable configuration �b,
has not just one winning strategy, but 64 different winning strategies.

As we attempt to find a vector �x that will serve as a winning strategy for
�b (i.e. A�x = �b), we examine E, the Gauss-Jordan echelon form of A. Recall
that this matrix in Section 1 for the 5 × 5 case had a convenient property:
the free variables were the last two, and setting those variables equal to zero
resulted in �x = E�x. Stated differently, the upper left 23× 23 matrix was the
identity matrix. Unfortunately, this property does not hold for E in the three
dimensional case because the free variables are not the last 6. In fact, the
free variables are λ36, λ48, λ51, λ52, λ53, and λ54. This doesn’t hinder us from
finding a solution by setting the free variable equal to zero, but it does make
it a bit more time consuming to do by hand, and the solution procedure is
not nearly as concise as the solution procedure found by Anderson and Feil.
It is best to write a procedure using a computer algebra package to actually
perform this series of operations.

The Maple algorithm presented on the following pages in Appendix A1
simulates (after the deletion of some rows) the property �x = E�x after setting
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each of the free variables λ36, λ48, λ51, λ52, λ53, and λ54 to 0. We begin by
obtaining the matrix R, the product of the elementary matrices used to
perform the row reducing operations on A in order to arrive at E. We then
multiply R by the vector �b, our initial configuration; call this result �w. If
the ith component of �w is a 1, the we begin at the (i, i) coordinate in E and
march across the ith row until we hit a 1 in the (i, j) position. The j button
is one that will need to be pressed. We repeat this process for the first 48
coordinates of �w. In most cases, there will be a 1 in the (i, i) position, thus
we can stop there with j = i; however, in some cases, the first 1 will be offset
by 1 (j = i + 1) or 2 (j = i + 2). If you look closely at E, this will become
apparent. Once a solution is found, any linear combination of that solution
and ni (1 ≤ i ≤ 6) is also a solution, just as in the 5 × 5 puzzle.

Although this alogrithm will produce a winning strategy for a config-
uration �b, we would like to have a process analogous to that of the 5 × 5
puzzle, one with the same “nice” mathematics. If we could renumber the
lights on the cube so that the free variables of its associated matrix E came
out to be the last 6, then we could present a theorem for Lights Out Cube
analogous to Theorem 2. Thus, we would like to permute the numbering of
the lights so that lights 36 and 49 swap and lights 48 and 50 swap. Then
the free variables of E would permute from λ36, λ48, λ51, λ52, λ53, and λ54 to
λ49, λ50, λ51, λ52, λ53, and λ54. If we multiply A by the permutation matrix
P with 1’s along the diagonal except for P [36, 36] = P [49, 49] = P [48, 48] =
P [50, 50] = 0, P [36, 49] = P [49, 36] = P [48, 50] = P [50, 48] = 1, and zeros
elsewhere, we will obtain a new matrix A∗ that is analogous to the old A
with a swap of buttons 36 and 49 and buttons 49 and 50. (This amounts to
renumbering four buttons.) Performing Gauss-Jordan elimination modulo
2 results in R∗A∗ = E∗, where E∗ is the Gauss-Jordan ecehlon form, and
R∗ is the product of elementary matrices which perform the reducing row
operations. A basis for Null(A∗)=Null(E∗) is:

�n∗
1 = (1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,

1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1)T

�n∗
2 = (1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)T

�n∗
3 = (0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0,

0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)T
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�n∗
4 = (0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1,

1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0)T

�n∗
5 = (0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0,

0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)T

�n∗
6 = (0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0,

1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0)T .

We now state the following:

Theorem 4. Under the new numbering of lights as described above, a con-
figuration �b is winnable if and only if �b is orthogonal to the six vectors �n∗

1,
�n∗
2, �n

∗
3, �n

∗
4, �n

∗
5, �n

∗
6.

We conclude our discussion by presenting the following:

Theorem 5. Under the new numbering of lights as described about, given
�b a winnable configuration, the winning strategies are R∗�b and the result of
adding R∗�b with one or more of �n∗

i (1 ≤ i ≤ 6).

The Maple code for the improved Solution to Lights Out Cube can be
found in Appendix A2.
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