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Abstract. The strong symmetric genus of a group G, σ0(G), is the minimum genus
of any compact surface on which G acts faithfully while preserving orientation. We
investigate the set of positive integers which occur as the strong symmetric genus of a
finite abelian group. This is called the strong symmetric genus spectrum. We prove
that there are an infinite number of gaps in the strong symmetric genus spectrum
of finite abelian groups. We also determine an upper bound for the size of a finite
abelian group that can act faithfully on a surface of a particular genus and then find
the genus of abelian groups in particular families. These formulas produce a lower
bound for the density of the strong symmetric genus spectrum.
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1 Introduction

The strong symmetric genus of a group G, denoted σ0(G), is the minimum genus of a compact
surface on which G acts faithfully while preserving orientation. This paper focuses on the
strong symmetric genus of finite abelian groups. As of 2008, all groups of strong symmetric
genus up to σ0 = 25 had been classified [5]. It has also been shown by May and Zimmerman
[10] that there is a group of every strong symmetric genus value. In a similar study, Conder
and Tucker [4] investigated this same question for the symmetric genus parameter. The
symmetric genus of a group G, σ(G), allows the group to have both orientation preserving
and orientation reversing elements. It has been conjectured that there is a group for every
symmetric genus (see [4], [10]).

In contrast to what May and Zimmerman proved for all groups, we will show that there
are integers that are not the strong symmetric genus of any finite abelian group. In fact, if
g = pq + 1, where p is an odd prime and q equals 1 or a prime, with p and q not both 3,
then there is no abelian group G for which σ0(G) = g. Consequently, there are infinitely
many gaps in the genus spectrum for abelian groups. We will also determine genus formulas
for several abelian group families. These formulas yield a lower bound for the density of the
integers σ0(G) for abelian groups G. In addition, we will show that 2(g + 3) is the upper
bound for the size of a finite abelian group of rank three or more which acts faithfully on a
surface of genus g. Section 2 of this paper will provide background information on the genus
of compact surfaces and how groups act upon those surfaces. Then Section 3 will discuss
past research in this field that we utilize as well as our own methodology. Finally, Section 4
and subsequent sections will encompass all of our research and findings.

2 Background

The genus of a surface describes the number of handles that are connected to that surface.
This study will specifically deal with the genera of closed, orientable surfaces, which are
compact surfaces with no boundaries. Figure 1 provides several examples of closed surfaces
with small genera. The sphere has genus zero, while the torus, having one handle, has genus
one. As additional handles are added to the surface, its genus value increases accordingly.

Figure 1: Surfaces of Small Genus

In order to better understand how groups act on surfaces it helps to visualize a few
examples. The elements in any group can be thought of as symmetries or automorphisms of
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a surface. For example, a cyclic group Zn, of size n, acts on the sphere. Each automorphism
in the group would be a rotation of the sphere about its central axis by 360◦/n. The variable
n can be any positive integer since the sphere can have infinitely many degrees of rotation
thus allowing any cyclic group to act on the sphere. Therefore, σ0(Zn) = 0. Another example
of this visualization of a group acting faithfully on a surface would be the way in which the
group Zn × Zm acts on a torus. The first set of symmetries, Zn, would again be a rotation
of 360◦/n about the central axis. For the second set of symmetries, imagine the torus as a
cylinder that has been bent into a ring. That cylinder has a central axis through its length
and the torus can rotate about this central axis by 360◦/m, similar to a hair tie being rolled
inward. The positive integers n and m can take on any value, thus all groups of the form
Zn × Zm can act faithfully on the torus and σ0(Zn × Zm) = 1, for all n, m > 1.

Figure 2: Automorphisms of Surfaces

3 Preliminaries

The relationship between groups and the surfaces they act on is a classical research topic
that has been studied for over a century. One of the most influential people to work in this
field was Hurwitz. He proved [6, p.424] that the order of any group of automorphisms on a
surface of genus g was less than or equal to 84(g − 1). This result and much of Hurwitz’s
other work has dramatically influenced the research of subsequent mathematicians in this
field.

The modern study of groups acting on surfaces involves Fuchsian groups, which are dis-
crete groups of automorphisms of the hyperbolic plane. A Fuchsian group Γ has the following
well-known presentation[8, p. 699]:

Generators: x1, x2, · · · , xr, a1, b1, a2, b2, · · · , ag0 , bg0
Relations: xm1

1 = xm2
2 = · · · = xmrr = 1,

∏r
i=1 xi

∏g0
j=1[aj, bj] = 1,

where the mi are integers greater than or equal to 2.

For any Fuchsian group Γ, the parameter g0 is called the orbit genus of Γ and the mi’s
are called the periods of Γ. Additionally, the group Γ can be represented by the signature
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(g0;m1,m2, · · · ,mr) [2, p. 8]. This group will have 2g0 + r generators; however one of them
is always redundant because the final relation allows for one generator to be solved in terms
of the others. Thus a group of this presentation has 2g0 + r − 1 generators. Let G be a
finite group that is the homomorphic image of the Fuchsian group Γ. The Riemann-Hurwitz
formula [2, p. 8] relates the size and structure of a Fuchsian group to the genus of the surface
on which its images act:

g − 1 = |G|(g0 − 1) +
|G|
2

r∑
i=1

(1− 1
mi

) (1)

where |G| is the order of the group G and g is the genus of the surface upon which G faithfully
acts.

Another mathematician whose work is of particular importance to this paper is Maclach-
lan. He used the classical Riemann-Hurwitz formula to determine the strong symmetric
genus of any finite abelian group. Maclachlan [8] showed that the minimum genus of any
surface that a finite abelian group can faithfully act on results from its canonical form. Every
finite abelian group has a unique representation Zm1 ×Zm2 × · · · ×Zms , called the canonical
form, in which mi|mi+1 for all i [1, p. 345]. The mi’s of the canonical form of an abelian
group are called the invariants of that group, and the quantity of those invariants determines
the group’s rank.

Theorem 1. [8, Thm. 4] Let A be an Abelian group with invariants m1,m2, · · · ,ms for
s > 2, where mi|mi+1 and |A| > 9. Then the minimum genus σ0 of a surface for which A is
a group of automorphisms is given as follows:

• For s even:
2(σ0−1)
|A| = min

0≤2γ≤s

{
2(γ − 1) +

s−2γ∑
i=1

(1− 1
mi

) + (1− 1
ms−2γ

)

}
If s = 2γ, then m0 is to be interpreted as 1.

• For s odd:
2(σ0−1)
|A| = min

0≤2γ<s

{
2(γ − 1) +

s−2γ∑
i=1

(1− 1
mi

) + (1− 1
ms−2γ

)

}
We use Maclachlan’s formula for all of the σ0 calculations in this paper.
Our research consisted of two main phases. First, we collected and analyzed data on

genus values of abelian groups and then we proved several conjectures developed through
that analysis. A main part in the data collection phase involved utilizing the Small Groups
Library in the computational algebra software MAGMA [3]. We wrote a brief MAGMA
program that runs through every abelian group of order one to order two thousand and
computes its strong symmetric genus using Maclachlan’s formula. It is important to note
that since abelian groups of rank 1 have a strong symmetric genus equal to zero and abelian
groups of rank 2 have a strong symmetric genus equal to one, the data we collected and
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analyzed only included groups of rank 3 or higher. An analysis of this data revealed patterns
among the genus values, including arithmetic sequences, as well as patterns of missing genus
values. Utilizing the work of Hurwitz and Maclachlan we were able to prove several of our
conjectures about the genus spectrum of finite abelian groups.

4 Upper Bound of the Order of a Group on a Surface

Hurwitz’s 84(g − 1) bound [6, p. 424] applies to any group, not just abelian groups. More
recently, Breuer [2, p. 32] used Maclachlan’s formula to determine an upper bound for the
order of an abelian group of automorphisms of a surface of genus g to be 4(g + 1). This
bound is attained for a family of rank 2 abelian groups, which have genus 1. For our study,
we added the additional hypothesis that the strong symmetric genus of the finite abelian
group must be greater than 1, which excludes all rank 1 and rank 2 groups. Expanding on
Breuer’s method, we were able to calculate the bound to be 2(g + 3).

In order to facilitate the proof of this bound, we will use the following lemma.

Lemma 1. Suppose Γ is a Fuchsian group with 4 periods and g0 = 0, that is, Γ is a
quadrilateral group. If Γ has two periods which are relatively prime, then any abelian image
of Γ has rank 2 or less.

Proof. Suppose Γ(g0;m1,m2,m3,m4) is a quadrilateral group with m1 and m2 relatively
prime and A is an abelian image of Γ. Let x, y, and z be the generators so that Γ = 〈x, y, z〉.
Therefore A = 〈x̄, ȳ, z̄〉, where x̄ is the image of x, etc. Since the o(x̄) and o(ȳ) are relatively
prime, A = 〈x̄, ȳ, z̄〉 = 〈x̄ · ȳ, z̄〉. Therefore, A has rank 2 or less.

Theorem 2. Let A be a finite abelian group with σ0(A) ≥ 2 and A 6= Z3 × Z3 × Z3. If A
acts faithfully on a compact surface of genus g, then |A| ≤ 2(g+ 3). Furthermore, this upper
bound is attained for infinitely many values of g.

Proof. Let A 6= Z3 × Z3 × Z3 be a finite abelian group with σ0(A) ≥ 2 acting faithfully on
a compact surface of genus g. Let M = |A|. Since σ0(A) ≥ 2, A has rank s ≥ 3. There is a
Fuchsian group Γ satisfying s ≤ 2g0 + r− 1 which maps onto A. This gives an action of the
abelian group A on the surface of genus g by equation (1).

If g0 ≥ 2, then g− 1 ≥M + M
2

r∑
i=1

(1− 1
mi

) ≥M . Thus for g0 ≥ 2, M ≤ g− 1 < 2(g+ 3),

regardless of the values of r and mi.
If g0 = 1, then r ≥ 2 because s ≥ 3 and s ≤ 2g0 + r − 1 = r + 1. This means that

r∑
i=1

(1− 1
mi

) ≥ 1 and therefore g − 1 ≥ M
2

by equation (1). Thus for g0 = 1, M ≤ 2(g − 1) <

2(g + 3), regardless of the values of r and mi. Therefore we may assume that g0 = 0 and

g − 1 = −M + M
2

r∑
i=1

(1− 1
mi

). (2)
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Since s ≥ 3 and s ≥ 2g0 + r− 1 = r− 1, it follows that r ≥ 4. Without loss of generality, the
periods can be ordered such that m1 ≤ m2 ≤ · · · ≤ mr. Recall, mi ≥ 2, for all i. Since any
r − 1 of the r generators generate the abelian group A, M = |A| ≤ (m1 ·m2 · . . . ·mr)/mi,
for any i. We must now consider cases for the value of r.

Case 1: Let r = 4.

If m1 = 2 and m2 = 2, then M ≤ 4m3 and M ≤ 4m4. By equation (2), g − 1 ≥
−M + M

2

(
2 · 1

2
+ 2(1− 4

M
)
)

= −M + M
2

(
3− 8

M

)
= (M−8)

2
. Thus M ≤ 2(g + 3). Note that

in this case the Fuchsian group Γ(2, 2, 2n, 2n) satisfies m3 = m4 = M
4

and so the equality
is attained for any image of this Fuchsian group. This gives infinitely many values of g for
which g − 1 = (M−8)

2
.

If m1 = 2 and m2 = 3, then by Lemma 1, A would have rank 2 or less which is not
possible because σ0(A) ≥ 2.

If m1 = 2 and m2 = 4, then M ≤ 8m3 and M ≤ 8m4. By equation (2), g − 1 ≥
−M + M

2

(
1
2

+ 3
4

+ 2(1− 8
M

)
)

= −M + M
2

(
13
4
− 16

M

)
= (5M−64)

8
.

Comparing these two bounds yields (M−8)
2
≤ (5M−64)

8
, which simplifies to 4M − 32 ≤

5M − 64, so 32 ≤ M . This is the point at which the first bound, (M−8)
2

, drops below and

thus includes all possible values greater than (5M−64)
8

. Thus if M ≥ 32, then g − 1 ≥ (M−8)
2

and M ≤ 2(g + 3).
Any abelian groups with M < 32 and r = 4 must be checked to see if they satisfy the

bound g − 1 ≥ (M−8)
2

. There are only four such groups and using Maclachlan’s formula it
can be determined that each of them also satisfy this bound except the group Z3×Z3×Z3.
Since A 6= Z3 × Z3 × Z3 the bound g − 1 ≥ (M−8)

2
, or M ≤ 2(g + 3) holds in this case.

If m1 = 2 and m2 = 5, then by Lemma 1, A would be of rank 2 or less which is not
possible because σ0(A) ≥ 2.

If m1 = 2 and m2 ≥ 6, then m3 ≥ 6 and m4 ≥ 6. By equation (2), g − 1 ≥ −M +
M
2

(
1
2

+ 3 · 5
6

)
= −M + M

2
(3) = M

2
. Therefore M ≤ 2(g − 1) < 2(g + 3).

If m1 = 3 and m2 = 3, then m3 ≥ 3 and m4 ≥ 3. However, when m1 = m2 = m3 =
m4 = 3, the only abelian group of rank three that is the image of Γ is Z3 × Z3 × Z3 6= A,
so this case can be ignored. Thus m1 = 3, m2 = 3, m3 > 3 and m4 > 3 and by Lemma
1, m3 ≥ m4 ≥ 6. By equation (2), g − 1 ≥ −M + M

2

(
2 · 2

3
+ 2 · 5

6

)
= −M + M

2
(3) = M

2
.

Therefore M ≤ 2(g − 1) < 2(g + 3).
Finally, if m1 ≥ 4 then m2 ≥ m3 ≥ m4 ≥ 4. By equation (2), g − 1 ≥ −M + M

2
(4 · 3

4
) =

−M+M
2

(3) = M
2

. Therefore M ≤ 2(g−1) < 2(g+3). Thus if g0 = 0 and r = 4, M ≤ 2(g+3)
is the upper bound for the size of the abelian group A with σ0(A) ≥ 2 acting faithfully on a
compact surface of genus g, unless A = Z3 × Z3 × Z3.

Case 2: Let r = 5.

If m1 = 2, m2 = 2, and m3 = 2, then M ≤ 8m4 and M ≤ 8m5. By equation (2),

g − 1 ≥ −M + M
2

(
3 · 1

2
+ 2(1− 8

M
)
)

= −M + M
2

(
7
2
− 16

M

)
= (3M−32)

4
. Comparing the two

bounds yields (M−8)
2
≤ (3M−32)

4
, which simplifies to 2M − 16 ≤ 3M − 32, so 16 ≤M . This is

the point at which the first bound, (M−8)
2

, drops below and thus includes all possible values
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greater than (3M−32)
4

. There are no abelian groups with M < 16 and r = 5 so g− 1 ≥ (M−8)
2

,
or M ≤ 2(g + 3), is the upper bound for M in this case.

If m1 = 2, m2 = 2, and m3 ≥ 3, then m4 ≥ m5 ≥ 3. By equation (2), g − 1 ≥
−M + M

2

(
2 · 1

2
+ 3 · 2

3

)
= −M + M

2
(3) = M

2
. Therefore M ≤ 2(g − 1) < 2(g + 3).

If m1 ≥ 2 and m2 ≥ 3, then m3 ≥ 3, m4 ≥ 3 and m5 ≥ 3. By equation (2), g − 1 ≥
−M + M

2

(
1
2

+ 4 · 2
3

)
= −M + M

2
(19
6

) = 7M
12

. Therefore M ≤ 12
7

(g − 1) < 2(g + 3). Thus if
g0 = 0 and r = 5, M ≤ 2(g + 3) is the upper bound for the size of the abelian group A with
σ0(A) ≥ 2 acting faithfully on a compact surface of genus g.

Case 3: Let r ≥ 6.

Since every mi is a positive integer greater than 1, 1 − 1
mi
≥ 1

2
, for all i. So g − 1 ≥

−M + M
2

6∑
i=1

(1
2
) ≥ −M + 3M

2
≥ M

2
, by equation (2). Thus for g0 = 0 and r ≥ 6, M ≤

2(g − 1) < 2(g + 3), regardless of the mi values.
Consequently, given any possible values of g0, r, and the periods, the finite abelian

group A 6= Z3 × Z3 × Z3 acting faithfully on a compact surface of genus g will have order
M ≤ 2(g + 3).

Figure 3: Frequency of σ0 for Finite Abelian Groups
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The main application of this bound for our research was to determine the completeness
of the genus data. Although we calculated the strong symmetric genus value of every abelian
group with order 2000 or less using MAGMA, it was possible that a finite abelian group of
larger order could have a genus value that fell within our data range. We wanted to know the
highest integer, n, for which we could positively determine whether or not n was the genus of
an abelian group. Additionally, we would be able to identify every finite abelian group with
the strong symmetric genus of n. Using our bound 2(g + 3) = 2000, when g = 997. This
means that for every integer n up to and including 997, if n is the genus of an abelian group,
then that group will have order 2000 or less. Thus, our calculations yield a classification of
all finite abelian groups G with strong symmetric genus σ0(G) ≤ 997. Figure 3 shows the
frequency of every strong symmetric genus value up to 997 for finite abelian groups. This
added completeness of the genus data allowed us to better observe patterns and gaps within
the strong symmetric genus spectrum.

5 Group Families with Arithmetic Genus Formulas

Using Maclachlan’s formula for the genus of a group, stated in Theorem 1, we obtain a
general formula for the strong symmetric genus of a family of groups.

Theorem 3. Let A = Za × Za × Zan, where a εZ and a ≥ 2. Then the strong symmetric
genus of A is given by σ0(A) = (a3 − a2)n− (a2 − 1).

Proof. Let A = Za × Za × Zan, where a εZ and a ≥ 2. So A is a group of rank 3 with
invariants a, a, and an and s = 3. First, it is necessary to determine which value of γ yields
the minimum value of the right hand side of Maclachlan’s formula. Since s = 3, 0 ≤ 2γ < s
so γ = 0 or γ = 1.

Case 1: γ = 0

−2 +
3∑
i=1

(1− 1
mi

) + (1− 1
m3

) = −2 + 2(1− 1
a
) + 2(1− 1

an
) = 2− 2

a
− 2

an

Case 2: γ = 1

0 +
1∑
i=1

(1− 1
mi

) + (1− 1
m1

) = 2(1− 1
a
) = 2− 2

a

For groups of the form Za × Za × Zan, the case γ = 0 will always yield the minimum
value because 2 − 2

a
− 2

an
< 2 − 2

a
. This allows us to calculate a general genus formula for

these groups by setting this minimum value equal to the left hand side of the equation. Since
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|A| = a · a · an = a3n, we have:

2(σ0 − 1)

(a3n)
= 2− 2

a
− 2

an

2(σ0 − 1) = 2a3n− 2a2n− 2a2

σ0 = (a3 − a2)n− (a2 − 1)

The formulas for the first four groups in this family are shown below:

• Z2 × Z2 × Z2n : σ0 = (23 − 22)n− (22 − 1) = 4n− 3

• Z3 × Z3 × Z3n : σ0 = (33 − 32)n− (32 − 1) = 18n− 8

• Z4 × Z4 × Z4n : σ0 = (43 − 42)n− (42 − 1) = 48n− 15

• Z5 × Z5 × Z5n : σ0 = (53 − 52)n− (52 − 1) = 100n− 24

By a similar process, the strong symmetric genus formula for many other families of abelian
groups can be determined.

Theorem 4. Let A = Z3 × Z3 × Z3 × Z3n. Then the strong symmetric genus of A is given
by σ0(A) = 81n− 26.

Proof. Let A = Z3 × Z3 × Z3 × Z3n. The invariants of A are 3, 3, 3, and 3n and s = 4
because A is a group of rank 4. First, it is necessary to determine which value of γ yields
the minimum value of the right hand side of Maclachlan’s formula. Since s = 4, 0 ≤ 2γ ≤ s
so γ = 0, γ = 1, or γ = 2.

Case 1: γ = 0

−2 +
4∑
i=1

(1− 1
mi

) + (1− 1
m4

) = −2 + 3(1− 1
3
) + 2(1− 1

3n
) = 2− 2

3n

Case 2: γ = 1

0 +
2∑
i=1

(1− 1
mi

) + (1− 1
m1

) = 3(1− 1
3
) = 3− 3

3
= 2

Case 3: γ = 2

2 +
0∑
i=1

(1− 1
mi

) + (1− 1
m0

) = 2 + 0 + 1− 1 = 2

For groups of the form Z3×Z3×Z3×Z3n, the case γ = 0 will always yield the minimum
value because 2 − 2

3n
< 2. This allows us to calculate a general genus formula for these
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groups by setting this minimum value equal to the left hand side of the equation. Since
|A| = 3 · 3 · 3 · 3n = 81n, we have:

2(σ0 − 1)

81n
= 2− 2

3n

2(σ0 − 1) = 162n− 54

σ0 = 81n− 26

The proofs of the following two theorems are similar to those of Theorems 3 and 4. We
omit the details.

Theorem 5. Let A = Z2 × Z2 × Z2 × Z2n. Then the strong symmetric genus of A is given
by σ0(A) = 12n− 7.

Theorem 6. Let A = Z2 × Z2 × Z2 × Z2 × Z2n. Then the strong symmetric genus of A is
given by σ0(A) = 32n− 15.

A summary of the genus formulas for families of abelian groups that were calculated in
this section is given in Table 1.

Group Genus

Z2 × Z2 × Z2n σ0 = 4n− 3 ≡ 1 (mod 4)
Z3 × Z3 × Z3n σ0 = 18n− 8 ≡ 10 (mod 18)
Z4 × Z4 × Z4n σ0 = 48n− 15 ≡ 33 (mod 48)
Z5 × Z5 × Z5n σ0 = 100n− 24 ≡ 76 (mod 100)
Z2 × Z2 × Z2 × Z2n σ0 = 12n− 7 ≡ 5 (mod 12)
Z3 × Z3 × Z3 × Z3n σ0 = 81n− 26 ≡ 55 (mod 81)
Z2 × Z2 × Z2 × Z2 × Z2n σ0 = 32n− 15 ≡ 17 (mod 32)

Table 1: Genus Formulas for Selected Families of Groups

6 Density of the Strong Symmetric Genus Spectrum

The above formulas can be used to find a lower bound for the density of the spectrum
of strong symmetric genus values for all finite abelian groups. The density δ of a set is
calculated by taking the limit of the number of integers in the set that are less than or equal
to n divided by n, as n tends towards infinity. So if the set J = {g | g is the strong symmetric
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genus of a finite abelian group} and the counting function F (n) is defined as F (n) = {the
number of values in J that are ≤ n}, then:

δ(J) = lim
n→∞

F (n)

n

The genus formulas in Table 1 can be combined to produce a lower bound for the density
of all integers that are genus values for abelian groups. The calculation of the densities of
arithmetic sequences is very straight forward.

The number of positive integers congruent to 1 (mod 4) that are less than or equal to
n is n

4
because every fourth number will have a remainder of 1 when divided by 4. Thus,

δ(x ≡ 1 (mod 4)) = lim
n→∞

(
n/4
n

) = n
4n

= 1
4
. The density of each of the arithmetic sequences

can be calculated the same way. It is possible for there to be overlap between two or more
of these arithmetic sequences which must be calculated and subtracted from the combined
density value. Numbers congruent to 1 (mod 4) are all odd while numbers congruent to 10
(mod 18) are all even, so there is no overlap to consider worry about between those two sets.
However, every number congruent to 33 (mod 48), 5 (mod 12) or 17 (mod 32) is congruent
to 1 (mod 4) and must be left out of the density calculation.

The remaining two genera families will have some overlap, but not the complete overlap
that was seen in previous cases. The numbers congruent to 76 (mod 100) are all even
so they overlap with 10 (mod 18). By reducing these into a system of congruencies with
relatively prime moduli and then applying the Chinese Remainder Theorem this overlap can
be calculated to be once every 900 numbers, or 1/900. Finally, the numbers congruent to 55
(mod 81) can be either even or odd so they must be compared to all of the remaining sets
in our calculation. The overlap between 55 (mod 81) and 1 (mod 4) is 1/324. The overlap
between 55 (mod 81) and 10 (mod 18) is 1/162. The overlap between 55 (mod 81) and 76
(mod 100) is 1/8100. Since 55 (mod 81), 10 (mod 18), and 76 (mod 100) all give even values,
it is possible for there to be values congruent to all three moduli which were counted twice
in the overlap calculations. This double elimination occurs once in every 8100 numbers, or
1/8100.

Genus Formula Density

σ0 = 4n− 3 δ(x ≡ 1 (mod 4)) = 1/4
σ0 = 18n− 8 δ(x ≡ 10 (mod 18)) = 1/18
σ0 = 100n− 24 δ(x ≡ 76 (mod 100)) = 1/100
σ0 = 81n− 26 δ(x ≡ 55 (mod 81)) = 1/81

Table 2: Densities of Selected Genus Sequences

With the density values and their overlaps calculated, it is now possible to calculate a
lower bound to the density of the spectrum of strong symmetric genus values of all finite
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abelian groups. Eliminating the genera families that have complete overlap gives a set of
densities that will be needed for this calculation, shown in Table 2.

Theorem 7. Let J = {g | g is the strong symmetric genus for an abelian group}. The
density of J is δ(J) ≥ 643

2025
> 5

16
.

Proof. The families of groups for which this paper has found genus formulas represent a
subset of all abelian groups. Thus the density of strong symmetric genera for the families
that have been analyzed will be less than or equal to the density of the full spectrum of
strong symmetric genus values for all finite abelian groups. The density of all the arithmetic
sequences is the sum of their individual densities, minus the density of each calculated
overlap, with the density of the double cancellation added back in. Therefore,

δ(J) ≥ 1

4
+

1

18
+

1

81
+

1

100
− 1

162
− 1

324
− 1

900
− 1

8100
+

1

8100
=

643

2025

7 Gaps in the Spectrum

With a lower bound set for the density of the spectrum of strong symmetric genus values
for all finite abelian groups it is natural to then look for a corresponding upper bound. This
involves analyzing those positive integers which cannot be the strong symmetric genus for
any finite abelian group and determining the number of these gaps in the spectrum of strong
symmetric genus values.

Theorem 8. Suppose p is an odd prime and q equals 1 or a prime. Assume p and q are not
both 3. Then there is no finite abelian group A such that σ0(A) = pq + 1.

Proof. Let the finite abelian group A have the canonical form Zm1 ×Zm2 × · · ·×Zms , where
the mi values are the invariants. Assume that σ0(A) = pq+1. Let M = |A| and let m̂i = M

mi
.

Since σ0(A) > 1, we know s = rank(A) ≥ 3. Maclachlan’s formula applies to groups of order
greater than 9. The only group of rank 3 that has an order 9 or less is Z2 × Z2 × Z2 and its
strong symmetric genus is 1. Thus, |A| > 9 and σ0(A) is given by Maclachlan’s formula.

For some γ satisfying s
2
≥ γ ≥ 0, Maclachlan’s formula gives:

2(σ0(A)− 1)

|A|
= 2(γ − 1) +

s−2γ∑
i=1

(1− 1
mi

) + (1− 1
ms−2γ

) (3)

Let n = s− 2γ. Using M and m̂i the genus equation (3) can be re-written as:

2(σ0(A)− 1) = 2M(γ − 1) +
n∑
i=1

(M − m̂i) + (M − m̂n)

2(σ0(A)− 1) = M(2γ + n− 1)−
n∑
i=1

(m̂i)− m̂n
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Now assume that the genus σ0(A) = pq + 1, where p is an odd prime and q equals 1 or a
prime with p 6= 3 or q 6= 3. Thus σ0(A)− 1 = pq. This makes the equation:

2pq = M(2γ + n− 1)−
n∑
i=1

(m̂i)− m̂n (4)

Case 1: Let s = 3.

Then the invariants of A satisfy m2 = am1 and m3 = bm2 = abm1, for some a, b εZ+

Therefore, M = m1 ·m2 ·m3 = a2b(m1)
3, m̂1 = M

m1
= a2b(m1)

2, m̂2 = M
m2

= ab(m1)
2, and

m̂3 = M
m3

= a(m1)
2. Since s = 3, obviously γ = 0 or γ = 1.

First assume γ = 0. Then n = 3 and equation (4) simplifies to:

2pq = 2M − m̂1 − m̂2 − m̂3 − m̂3

= 2a2b(m1)
3 − a2b(m1)

2 − ab(m1)
2 − 2a(m1)

2

= a(m1)
2(2abm1 − ab− b− 2)

= a(m1)
2 · x, where x = 2abm1 − ab− b− 2

Since 2pq has at most three prime factors, so does a(m1)
2 · x. Since m1 ≥ 2, it follows

that either a = 1 or x = 1 or both.
Suppose a > 1. Then x = 1, but x = 2abm1 − ab − b − 2 = ab(2m1 − 1) − b − 2. So

x ≥ 3ab − b − 2 ≥ b(3a − 1) − 2 ≥ b(5) − 2 ≥ 3. This is a contradiction. Hence a = 1 and
x is 1 or a prime. Now x = 2bm1 − b − b − 2 = 2b(m1 − 1) − 2 = 2(b(m1 − 1) − 1). Thus
2pq = 1 · (m1)

2 · x = 2(m1)
2(b(m1 − 1)− 1). Let y = b(m1 − 1)− 1, so 2pq = 2(m1)

2 · y. If
m1 = 2, then y = b−1, and therefore 2pq = 2(m1)

2 ·1 = 23. This would force p = q = m1 = 2
which is not possible because p is an odd prime. If m1 = 3, then y = 2b− 1, so it is possible
for 2pq = 2(m1)

2 · 1 = 2 · 32 when b = 1. However this forces p = q = 3, which is excluded.
Finally, if m1 > 3, then y > 3b− 1 > 1, for all values of b. This means that 2pq = 2(m1)

2 · y
is the product of four integers not equal to 1, which is a contradiction.

Now assume γ = 1. Then n = 1 and equation (4) simplifies to:

2pq = 2M − 2m̂1 = 2a2b(m1)
3 − 2a2b(m1)

2

= 2a2b(m1)
2(m1 − 1) = 2a2b(m1)

2 · x, where x = m1 − 1

Since 2pq has at most three prime factors, so does 2a2b(m1)
2 · x. This can only be true if a,

b, and x all equal 1. However, this would force p = q = m1 = 2 which is not possible because
p is an odd prime, so we have a contradiction in this case as well.

Case 2: Let s > 3.

Since s > 3, M is the product of at least 4 invariants and every m̂i is the product of at
least 3 invariants. Thus (m1)

3|m̂i for all m̂i and (m1)
4|M .
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If s
2
> γ ≥ 0 it is possible to factor out (m1)

3 from the right hand side of equation (4).

2pq = (m1)
3

(
M

(m1)
3 (2γ + n− 1)−

n∑
i=1

(
m̂i

(m1)
3

)
− m̂n

(m1)
3

)

Therefore x = M
(m1)

3 (2γ + n− 1)−
n∑
i=1

( m̂i
(m1)

3 )− m̂n
(m1)

3 is an integer. This simplifies the genus

equation to 2pq = (m1)
3 ·x. Since m1 ≥ 2, the only possibility is x = 1 and p = q = m1 = 2.

This is a contradiction, since p is an odd prime.
When s is even, it is possible that γ = s

2
. In this case n = 0 and equation (4) simplifies

to:

2pq = M(s− 1)−
0∑
i=1

(m̂i)− m̂0

According to Maclachlan [8, pp. 711], when s = 2γ, the m0 is to be interpreted as 1. Thus
m̂0 = M and 2pq = M(s− 2). That means it is possible to factor out (m1)

4 from the right
hand side of the equation.

2pq = (m1)
4 · M

(m1)
4 · (s− 2)

Since (m1)
4|M , the number x = M

(m1)
4 · (s− 2) is an integer. This makes the genus equation:

2pq = (m1)
4 · x, where x εZ

Since 2pq has at most three prime factors, so does (m1)
4 · x. The number (m1)

4 · x is the
product of four or more integers not equal to 1. This is a contradiction.

In conclusion, when p is an odd prime and q equals 1 or a prime with p 6= 3 or q 6= 3,
then there is no finite abelian group A such that σ0(A) = pq + 1.

Theorem 9. There are an infinite number of gaps in the spectrum of strong symmetric
genera for finite abelian groups.

Proof. It has long been known that there are an infinite number of prime numbers. It follows
that there must therefore be an infinite number of integers of the form g = pq + 1, where p
is an odd prime and q is 1 or a prime. Since no such value g can be the strong symmetric
genus of a finite abelian group, there are an infinite number of gaps in the spectrum of strong
symmetric genera for abelian groups.

8 Possible Further Research

During our study into the genus spectrum of abelian groups we encountered several topics
that we feel merit further research. Two such points of interest are the density of the gaps
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in the genus spectrum and patterns in the occurrence and extreme frequency for some genus
values.

We proved that there does not exist any finite abelian group with strong symmetric genus
g = pq + 1, where p is an odd prime, q equals 1 or a prime, and p and q are not both 3.
Using our data from MAGMA we found 671 integers less than or equal to 997 that are not
the strong symmetric genus of any finite abelian group. Of these 671 gaps, 458 or 68.2%
are of the form g = pq + 1. Although this set of numbers accounts for many of the gaps
in the spectrum of σ0, it does not contribute to an upper bound for the density of genera.
This is because the density of numbers that are the product of two primes is zero [7]. If
an arithmetic sequence of gaps in the genus spectrum were discovered an upper bound for
the density of genus values could be revealed. For our full classification of all finite abelian
groups with strong symmetric genus less than or equal to 997, there were only 326 integers
that were genus values, resulting in a density of approximately .327. This data supports the
following conjecture:

Conjecture 1. Let J = {g | g is the strong symmetric genus for an abelian group}. The
density of J is δ(J) < 1

2
.

The genus data we calculated revealed several interesting patterns within the genus spec-
trum. For example, there were significantly fewer even genus values than odd. For σ0 ≤ 997,
there were only 64 even values, compared to the 694 odd values. Equally as intriguing was
the fact that there were only 8 strong symmetric genus values less than 997 that were con-
gruent to 3 (mod 4). We also observed several occurrences of extreme frequency in the genus
values, which can be easily seen in Figure 3. The mode of the genus values, 865, occurred
with 15 groups and the next most frequent values, 577 and 865, occurred in 14 groups.
Conversely, every even genus value occurred for only 3 or fewer groups. Further research
into genus frequencies could determine if there is a maximum to the number of finite abelian
groups that can share the same strong symmetric genus value and explain why some genus
values are more frequent than others. If the genus values of finite abelian groups beyond
those in the MAGMA Small Groups Library were computed, it is possible that other similar
patterns in the genus spectrum could be discovered and investigated.
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