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Isoperimetry in the plane with density e−1/r

Paul Gallagher David Hu Zane Martin Maggie Miller
Byron Perpetua

Abstract. We study the isoperimetric problem in the plane with weighting or den-
sity e−1/r. The isoperimetric problem seeks to enclose prescribed weighted area with
minimum weighted perimeter. For density e−1/r, isoperimetric curves are conjec-
tured to pass through the origin. We provide numerical and theoretical evidence
that such curves have an angle at the origin approaching 1 radian from above as
area approaches zero and provide further estimates.
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1 Introduction

A density on a manifold is a positive function that weights volume equally in all dimensions.
Manifolds with density have long been studied on an ad hoc basis in mathematics, and were
instrumental in Perelman’s proof of the Poincaré conjecture [M2, 18.11]. The isoperimetric
problem in manifolds with density has been well studied, but few cases have been solved.
In Gauss space, Rn with radially symmetric density Ce−br

2
, it has been proved that isoperi-

metric curves are hyperplanes [B], [S]. In the plane with density rp, p > 0, Dahlberg et
al. [D] proved that isoperimetric curves are circles that pass through the origin. Recently
the Log-Convex Density Conjecture, which states that any radial log-convex density on Rn

has spheres around the origin as unique isoperimetric surfaces, has been proven by Gregory
Chambers [Cha].

In this paper we study the plane with radial density e−1/r, where isoperimetric regions
are conjectured to be curves passing through the origin. Intuition for this conjecture might
come from a result of Dahlberg et al. [D, Thm. 3.16], which states that isoperimetric curves
in the plane with density rp, p > 0 are circles through the origin. As in the case of density
rp, the plane with density e−1/r has density 0 at the origin and density strictly increasing
with distance from the origin. Although an isoperimetric curve must be smooth away from
the origin, we provide numerical and theoretical evidence that it passes through the origin
at a sharp angle, decreasing to 1 radian as the enclosed area approaches 0 as in Figure 1.
Our computations show that other candidate (constant generalized curvature) curves either
do not close up or have unstable oscillation as in Figure 2. In Remark 2.3, we give a lower
bound on the weighted perimeter required to enclose a given weighted area. Propositions
2.5 and 2.6 establish the existence of isoperimetric curves enclosing any area and describe
their behavior away from the origin. Throughout the remainder of the paper, we discuss
behavior at the origin. By Proposition 2.10, an isoperimetric curve through the origin must
be continuous differentiable there on one side. Propositions 2.11 and 2.12 prove that a
certain class of isoperimetric curves cannot have a cusp at the origin, while Proposition 2.13
demonstrates the existence along an isoperimetric curve of exactly two extrema of distance
from the origin. Finally, in Proposition 2.15, we show that perimeter-minimizing circular
sectors at the origin, which approximate our conjectured isoperimetric curves, approach an
angle of 1 radian for sufficiently small area.

2 Isoperimetric problem in the plane with density e−1/r

We study the plane with density e−1/r. Kolesnikov and Zhdanov [K, Sect. 5] have found
interesting numerical results on isoperimetric curves in the plane with density Ce−r

α
for

α > 1. The α = 2 case corresponds to Gaussian density, for which isoperimetric curves
have been proven by Borell [B] and Sudakov and Tsirelson [S] to be straight lines. As α
decreases from 2 to 1, they discover a transition in isoperimetric curves from the straight
line to curved lines to large closed curves and circles around (though not centered at) the
origin. As α increases from 2, they see the same curving of the straight line in the other
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Figure 1: The conjectured isoperimetric curves with area 0.1132, 0.2783, 0.3540, 1.0519 in the
plane with density e−1/r have angles at the origin: 2.1438, 2.1956, 2.2368, 2.3560, respectively.
These curves were found with Mathematica using the constraint of constant generalized
curvature (see Def. 2.1 and Prop. 2.5.).
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Figure 2: Computed curves of constant generalized curvature exhibit periodicity and insta-
bility. Curvature: 5; initial conditions: r(0) = .3, r′(0) = 1.
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direction. This paper considers the case of α < 0, in particular α = −1, for which density
vanishes at the origin but approaches 1 at infinity.

Definition 2.1. A density is a positive continuous function that weights perimeter and area
equally. Given a Riemannian manifold with density eφ and underlying Riemannian volume
element dV0 and hypersurface area element dA0, the new weighted volume and area forms
are given by

dVφ = eφdV0

dAφ = eφdA0.

On a smooth two-dimensional Riemannian manifold with density eφ, the generalized curva-
ture of a smooth curve with unit normal n and Riemannian curvature κ is

κφ = κ− dφ

dn
. (1)

To justify this, note that the first variation δ1(v) = dLφ/dt of the length of a smooth curve
in a two-dimensional Riemannian manifold with density eφ under a smooth variation with
initial velocity v satisfies

dLφ
dt

= δ1(v) = −
∫
κφvdsφ

dAφ
dt

= −
∫
vdsφ

(see e.g. [Co, Prop. 3.2]), where Aφ is the weighted area of the curve on the side of the
normal. Thus κφ = dLφ/dAφ. Therefore, a smooth isoperimetric curve must have constant
generalized curvature.

Figures 2 and 3 show some constant-curvature curves.

Conjecture 2.2. Isoperimetric curves in the plane with density e−1/r pass through the origin,
at an acute angle.

Remark 2.3. Grigor’yan et al. [G, Thm. 5.3] show that for some constants C > 0, τ ∈ (0, 1),
for given volume V , a lower bound on minimum weighted surface area A necessary to enclose
weighted area V in the plane with density e−1/r

α
is

A ≥ C

{
V (log 1

V
)1+

1
α 0 ≤ V ≤ τ

V
n−1
n V > τ

.

In the plane with density e−1/r, this yields

P ≥ C

{
A(log 1

A
)2 0 ≤ A ≤ τ√

A A > τ
,
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Figure 3: By carefully choosing the curvature of the constant-generalized-curvature curve,
we may approach a period that divides 2π. Curvature (left to right): 1, .1, .01; initial
conditions: r(0) = .1, r′(0) = 0.

where P is the least weighted perimeter needed to enclose weighted area A. The lower bound
is easy for large area, since (1−ε)A is in a ball complement where the density is greater than
1− ε, requiring perimeter order of A to enclose it. Small volume is much more delicate. As
for large A, disks about the origin show that the bound is asymptotically sharp for small A.
For small A,

A = 2π

∫ r

0

re−1/RdR ∼ 2π2r3e−1/r,

P = 2πre−1/r,

where r is the radius of the disk. It follows that

P ≥ CA(log
1

A
)2

for small A and some C, as desired.

The following proposition gives an easy proof of a weaker estimate.

Proposition 2.4. The least perimeter P to enclose small area A in the plane with density
e−1/r satisfies P ≥ cA3/2(log 1/A)3.

Proof. Given A, let r0 be the radius of a disk of area A0 = A/2. Then the unweighted area
outside the disk of a region of area A is greater than A/2. Hence (see [Cho]), the unweighted
perimeter of the region outside the disk is at least c1A

1/2, so the weighted perimeter of the
region outside the disk is at least

c1e
−1/r0A1/2 ∼ c2(A0/r

3
0)A

1/2 ∼ c3A0(log(1/A0))
3A1/2 ∼ c4A

3/2(log(1/A))3,

as desired. As A approaches zero, this yields the estimate given by circles about the origin
up to a constant. Therefore, this lower bound is asymptotically sharp up to a constant.
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Proposition 2.5. Isoperimetric curves exist for all areas in the plane with density e−1/r, and
such curves are smooth constant-generalized-curvature curves except possibly at the origin.

Proof. To show that isoperimetric regions exist for all areas in the plane with density e−1/r,
by Morgan and Pratelli [MP, Thm. 7.11] it suffices to show that for all c > 0 and ρ > 0,
there exists an R > ρ such that

e−1/R ≤ 1− e−cR.

(Morgan and Pratelli actually define density to be positive, but do not make use of this
property in proving Theorem 7.11.) But this is true, as for R large enough, e−1/R ≤ 1 −
1/(2R), which is clearly less than 1− e−cR for R large enough.

For any smooth density eφ, an isoperimetric curve is smooth [M3, 3.10]. For equilibrium,
the generalized curvature must be constant (see Def. 2.1).

Proposition 2.6. A smooth curve r(θ) in the plane with density e−1/r has generalized cur-
vature

κ−1/r =
r + 1− r′′

r
√
r2 + r′2

+
r′2(r + r′′)

r(r2 + r′2)3/2
=
r3 + r2 + 2r(r′)2 + (r′)2 − r′′r2

r(r2 + (r′)2)3/2
, (2)

or equivalently in Cartesian coordinates:

κ−1/r =
f ′′(x)

(1 + f ′(x)2)3/2
− x · f ′(x)− f(x)

(1 + f ′(x)2)1/2(x2 + f(x)2)3/2
. (3)

Proof. Setting φ = −1/r in the equation derived in Corwin et al. [Co, Prop. 3.6], which
describes curves of constant generalized curvature for density eφ, gives the desired result.

Remark 2.7. Equation (2) is singular at the origin. While an isoperimetric curve in the
plane with density e−1/r must be smooth away from the origin, its behavior at the origin
is not well understood. A conjectured isoperimetric curve, computationally derived from
Equation 2.6(2), can be seen in Figure 1.

The following propositions begin to describe possible behaviors of isoperimetric curves
through the origin.

Proposition 2.8. Suppose that C is an isoperimetric curve that passes through the origin.
Then C can be written as a radial function of θ, the angle with the x−axis.

Proof. See Figure 4. Suppose C is a curve enclosing a region R, and C is not a function
of θ. Then there exists a ray L emanating from the origin that intersects C transversely in
at least two points neither of which is the origin. Pick some segment s of this ray that lies
outside the interior of R. Then s must split C into two parts, C1 and C2, and s ∪ C1 and
s∪C2 must each be the boundary of a region in the plane. One of these regions will contain
R. Say that s ∪ C1 contains R. Then we have constructed a curve that has strictly more
area than the original region, but, since straight lines are the shortest paths from a point to
the origin, s ∪ C1 has less perimeter than C, giving a contradiction.
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O O

Figure 4: A curve that passes through the origin and is not a radial function of angle with
respect to the x-axis is not isoperimetric.

Corollary 2.9. All isoperimetric curves through the origin are one-sided differentiable at
the origin.

Proof. Let C be defined as the radial function r = r(θ). Suppose r(θ0) = 0. Then as
θ → θ0 from one side, the secant lines are just the rays from the origin, and they approach
the tangent line θ = θ0. Thus, the secant lines have a limit, and so the curve is one-sided
differentiable at the origin.

By using the Cartesian differential equation for constant generalized curvature, we can
get more:

Proposition 2.10. All isoperimetric curves through the origin must be one-sided C1 there.

Proof. Write the curve as the graph of a function f(x) = y, and rotate such that f ′(0) = 0.
Then being a radial graph implies that f(x)/x < f ′(x), and so f ′(x) · x − f(x) > 0. But
then by Equation (3), ∂φ/∂n > 0. So, in order for κφ > 0, we must have f ′′(x) > 0. But
this implies that f is C1.

Proposition 2.11. Suppose that {y = f(x)} is a curve defined for a > x ≥ 0 (a ≤ ∞)
with constant generalized curvature κ−1/r, f(0) = 0, f ′(0) = 0, and f ′′ is continuous at the
origin. Then f ′′(0) = 0, and f(x) = ax3 + h3(x)x3 for some h3 where limx→0 h3(x) = 0.

Proof. Since f is C2, use Taylor’s Theorem to write

f(x) =
f ′′(0)

2
x2 + h2(x)x2

f ′(x) = f ′′(0)x+ h′2(x)x2 + 2h2(x)x,
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where limx→0 h2(x) = 0. By Equation (3), the only way that anything could be singular at
zero is in the second term, which is the ∂φ/∂n summand. Now consider the following:

∂φ

∂n
=

x(f ′′(0)x+ h′2(x)x2 + 2h2(x)x)− f ′′(0)x2/2 + h2(x)x2

(1 + f ′(x)2)1/2
(
x2 + x4

(
f ′′(0)2

4
+ f ′′(0)h2(x) + h2(x)2

))3/2
=

x2(f ′′(0)/2 + h2(x)) + x3h′2(x)

(1 + f ′(x)2)x3(1 + x2(f ′′(0)2/4 + f ′′(0)h2(x) + h2(x)2))3/2
.

From this equality, it is clear that for all ε > 0, there exists δ > 0 such that if x < δ, the
following inequality holds, letting f ′′(0)/2 = C:

C + h2(x)

x
+ h′2(x) ≥ ∂φ

∂n
≥ 1

ε

C + h2(x)

x
+ h′2(x).

Since limx→0 ∂φ/∂n has a finite limit, it follows that

lim
x→0

C + h2(x)

x
+ h′2(x) = K <∞.

It then follows that for all ε′ > 0, there exists δ′ > 0 such that if x < δ′ then

a− ε′ < C + h2(x)

x
+ h′2(x) < a+ ε′.

Therefore,
x(a− ε′) < C + (x · h2(x))′ < x(a+ ε′).

Integrating yields
1

2
x2(a− ε′) < Cx+ xh2(x) <

1

2
x2(a+ ε′),

and we divide by x to get

1

2
x(a− ε′) < C + h2(x) <

1

2
x(a+ ε′).

Both the left and the right sides of this inequality approach zero, and h2 approaches zero as
x→ 0; therefore, C = f ′′(0)/2 = 0, and

1

2
(a− ε′) < h2(x)

x
<

1

2
(a+ ε).

Thus limx→0 h2(x)/x = limx→0 h
′
2(x) = a/2. Applying Taylor’s theorem to h2(x) gives

h2(x) = ax+ h3(x)x,

where limx→0 h3(x) = 0. Substituting this back into the original equation for f(x) yields
that f(x) = ax3 + h3(x)x3.
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Proposition 2.12. An isoperimetric curve that satisfies the hypotheses of Proposition 2.11
cannot have a cusp (0-degree angle) at the origin.

Proof. Let γ be a constant generalized curvature curve with a cusp at the origin. Orient it
so that the common tangent line is the x-axis. Then by Proposition 2.11, the top part of the
curve must be ax3 to third order and the bottom half is −bx3, where a, b > 0, as in Figure
5. Then the Euclidean distance between A and B is equal to (a + b)x3 (again, up to third
order).

If the region bounded by this curve contains the points in the small curvilinear triangle,
then lines OA and OB will be shorter than the curves and will contain more area, so the
region cannot be isoperimetric. Therefore, assume that the region is above the upper line
and below the lower line. If the line AB is shorter than the sum of OA and OB, then adding
the line AB and removing the curves AO and BO will decrease perimeter while adding area.

Note that if p ∈ AB, then φ(p), the density at p, must be less than the density at the
endpoints because the density is increasing. Thus, letting c = a+b, the total weighted length
of AB, h(x), must satisfy

h(x) ≤ (a+ b)x3e−(x
2+c2x6)−1/2

up to third order. On the other hand,

OA+OB ≥ 2

∫ x

0

e−1/rdr = 2e−1/xx− 2Γ(0, 1/x),

again up to third order, where Γ is the incomplete gamma function Γ(a, x) =
∫∞
x
ta−1e−tdt.

Taking the third-order Taylor expansion of this near x = 0 yields

OA+OB ≥ e−1/x(2x2 − 4x3).

Taking this and dividing it by our estimate for h(x) gives the following:

exp(−1

x
+

1

(x2 + c2x6)1/2
)
2x2 − 4x3

x3
.

As x → 0, the exponential part goes to 1, while the rational part goes to infinity. Further-
more, since higher order terms are negligible, this estimate holds for x near zero. Thus the
length AB must be shorter than the sum of OA and OB, and the original curve could not
have been isoperimetric.

Dahlberg et al. [D, Prop. 3.12] show that an isoperimetric curve in the plane with density
rp has one maximum and one minimum of radius. Following Dahlberg et al., the following
proposition proves the same result for the plane with density e−1/r.

Proposition 2.13. In an isoperimetric curve around the origin that is not a circle around
the origin, there must be exactly two extrema of distance from the origin. Furthermore, the
point at minimum distance from the origin must be a global minimum of curvature.
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Figure 5: An isoperimetric curve in the plane with density e−1/r cannot have a zero-degree
angle at the origin. Here A and B are sufficiently close to O so that AB has less weighted
perimeter than does the cusped curve, as shown in Proposition 2.12.

Proof. We follow the proof of Dahlberg et al. [D, Prop. 3.12]. By Dalhberg et al. [D, Cor.
2.6, Prop. 2.5], any constant generalized curvature curve γ that is not a circle has finitely
many critical points of r, and furthermore, all of these critical points are strict extrema.
Without loss of generality, suppose that there are two maxima of distance from the origin.
Suppose additionally that the maximum distance is r0. Then take a circle around the origin
of radius r0− ε. This will intersect γ in at least four points. These four points generate four
sectors of the region. Rearrange the sectors so that the two regions containing the maxima
are next to each other, and note that the boundary curve remains continuous. This new
region has the same area but now has a non-differentiable boundary. Therefore, it cannot
be stationary, and the original region could not have been isoperimetric.

Let p1 be the point on γ closest to the origin. At this point, −∂φ/∂n = 1/|p1|2. Let
p be any point on γ. Then −∂φ/∂n(p) ≤ 1/|p1|2 with equality if and only if p = p1, by
the previous part. Thus, in order to keep generalized curvature the same, κ(p) > κ(p1) if
p 6= p1.

We note that Chung et al. [Chu, Prop. 2.22] similarly show that a component of an
isoperimetric curve in the plane with density er that is not a circle about the origin has
one maximum and one minimum of radius, although of course the Log-Convex Density
Conjecture implies that isoperimetric curves in the plane with density er are in fact circles
about the origin.

Remark 2.14. The question remains as to what angle an isoperimetric curve makes at the
origin. Consider two points located at a distance r from the origin, separated by angle ϕ.
Figure 6 gives a graphical representation, computed with Mathematica, of when the line
segment between the two points has greater perimeter than two line segments connecting
each point to the origin. Unfortunately, for small angles and radii, Mathematica cannot
compute the curve’s behavior at the origin. Figure 7 shows angle at the origin vs. area for
constant generalized curvatures such as half of those pictured in Figure 3.

To further investigate the angle at the origin, we examine circular sectors at the origin
that are perimeter minimizing among other sectors with the same area. We thank Bill Huber
for help with Mathematica in the following proposition.
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Figure 6: The shaded region indicates where a line segment between two points has less
perimeter than the line segments connecting the two points to the origin. The horizontal
axis represents the angle in radians between the points, and the vertical axis represents
distance from the origin.
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Figure 7: Angle at the origin vs. area for some constant-generalized-curvature curves, as
pictured in Figure 3.
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Proposition 2.15. As area approaches zero, the angle of the perimeter-minimizing circular
sector at the origin of the given area approaches one radian, as indicated by Figure 7.

Proof. The following two formulas for area and perimeter in terms of angle ϕ and ρ are easily
derivable:

A(ρ, ϕ) = ϕ

∫ ρ

0

re−1/rdr

P (ρ, ϕ) = 2

∫ ρ

0

e−1/rdr + ϕρe−1/ρ.

We use Lagrange multipliers to compute which values of ρ and ϕ minimize perimeter for
given area. To do this, we differentiate:

∂A

∂ρ
= ϕρe−1/ρ

∂A

∂ϕ
=

∫ ρ

0

r−1/rdr

∂P

∂ρ
= e−1/ρ

(
2 + ϕ+

ϕ

ρ

)
∂P

∂ϕ
= ρe−1/ρ.

Applying the method of Lagrange multipliers gives the following equation:

∂A

∂ρ

∂P

∂ϕ
=
∂A

∂ϕ

∂P

∂ρ∫ ρ

0

re−1/rdr

(
2 + ϕ+

ϕ

ρ

)
= ρ2ϕe−1/ρ,

where the common e−1/ρ has already been canceled. Mathematica exactly integrates the
integral on the left hand side:∫ ρ

0

re−1/rdr =
1

2

[
e−1/ρ(ρ− 1)ρ− Ei(−1/ρ)

]
,

where Ei(z) = −
∫∞
−z e

−t/tdt. The term e−1/ρ now cancels from both sides, leaving

1

2

[
ρ(ρ− 1)− e1/ρEi(−1/ρ)

](
2 + ϕ+

ϕ

ρ

)
= ρ2ϕ.

The only problematic term remaining is e1/ρEi(−1/ρ). Since we are only concerned with its
behavior near the origin, approximate it by its fourth-order Maclaurin series computed by
Mathematica:

e1/ρEi(−1/ρ) ≈ −ρ+ ρ2 − 2ρ3 + 6ρ4.

Substituting this above and simplifying yields

2(ϕ− 1) + 3ρ(2 + ϕ) = 0.

As ρ→ 0, ϕ→ 1. (See Figure 7).
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Figure 8: While not isoperimetric, curves of the form a sin1/2(2θ) and a sin(
√

2 · θ) are the
best explicitly known candidates for very small areas.
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Figure 9: The curve r = sin2(θ), scaled to have the same area as the unit circle through the
origin, has less perimeter.

Remark 2.16. For a very small given area, the best explicitly known curves of the form
a sinb(cθ) are b = 1/2, c = 2 and b = 1, c =

√
2, with a chosen to enclose the given area. For

example, to enclose area equal to that of the circle of diameter .01 passing through the origin,
the curves a sin1/2(2θ) and a sin(

√
2 · θ) (see Fig. 8) both have perimeter 9.25114 · 10−47,

while the circle has perimeter 9.26748 · 10−47 (although finding a curve that encloses area
more efficiently than the circle is not difficult, see Fig. 9). However, these curves do not
have constant generalized curvature, so they are not isoperimetric.

The curves described above are not optimal for larger areas. For example, neither beats
the circle of diameter 10 through the origin. When b is fixed at 1, the optimal value of c
is conjectured to approach 1 as the area enclosed approaches infinity. Similarly, when c is
held constant at 1 and area goes to infinity, the best value of b appears to approach 1. This
is expected, as the plane with density e−1/r increasingly resembles the Euclidean plane at
greater distances from the origin.
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