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Abstract. In this paper, we investigate the behavior of the curvature of non-
developable surfaces around an umbilic point at the origin. The surfaces are of the
form z = f(x, y) where f is a nonhomogeneous bivariate polynomial with cubic
and quartic terms. We do this by looking at the continuity of the principal direc-
tions around the origin as well as the rate that the principal curvatures converge to
zero as they approach the origin. This is done by considering the eigenvectors and
eigenvalues of the shape operator. In our main result, we prove that a continuously
diagonalizable shape operator implies the existence of a path through the origin
with noncomparable principal curvatures.
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1 Introduction

Let M be a smooth surface immersed in R3. At each point p on M , the unit vectors pointing
in directions of maximum and minimum curvature are called the principal directions at
p. The maximum and minimum curvatures are called the principal curvatures. Points
in which every direction is a principal direction are called umbilics. When the principal
curvatures converge at the same rate along some path towards an umbilic, they are said to
be comparable. The bivalued vector field on the surface created with the principal directions
is called the principal distribution on M . One way to understand these definitions intuitively
is to consider an eggshell. The points on the poles of the eggshell are umbilics while every
other point has unique directions of maximum and minimum curvature. Another surface to
examine is that of a cylinder. There are no umbilics on this surface, and every point has a
minimum principal direction pointing up (or down) the shaft.

Ando has done much work with investigating the behavior of the principal distribu-
tion around isolated umbilics [1] [2]. Building on the work of Darboux [6], Sotomayor and
Gutierrez have explored the stability of the principal distribution around isolated umbil-
ics [20]. However, the surfaces used by Ando are defined by homogeneous polynomials in
two real variables. Sotomayor and Gutierrez study nonhomogeneous polynomials of two real
variables using quadratic and cubic terms with isolated umbilics. We will be focusing on
surfaces defined by nonhomogeneous quartic bivariate polynomials in two real variables in
which the umbilics need not be isolated.

We will be working with the perspective of the shape operator of our surface M . The
shape operator is defined as the negative directional derivative of the unit normal vector field
in the direction of a tangent vector vp at a point p ∈M . Since the shape operator is symmet-
ric and linear, we may ask if we are able to continuously diagonalize it in some neighborhood
Nu of an umbilic point u. If we cannot, we say the shape operator is nondiagonalizable in
Nu. For example, near the origin, the shape operator for the surface z = x3/6−xy2/2 can be

written as S =

[
x −y
−y −x

]
. The principal curvatures, which happen to be the eigenvalues of

S, are λ = ±
√
x2 + y2. As we approach the umbilic at the origin along any path, the princi-

pal curvatures vanish at a linear rate and are therefore comparable. Moreover, the principal
directions, which happen to be the eigenvectors of S, are discontinuous at the origin since
approaching the origin from the x-axis will yield [1, 0] and [0, 1] as our principal directions
while approaching along the y-axis yields [1,−1] and [1, 1]. This gives us a nondiagonaliz-
able shape operator in a neighborhood of the origin. For more details on this example, see
Example 3.1 in Section 3.

The complex analog for the shape operator is called the Levi form. The research that
inspired the work in this paper was performed by Derridj, in which he showed that if the
eigenvalues of the Levi form are positive and comparable near a point where they both tend
to zero, then the Levi form is nondiagonalizable near said point [8]. Derridj has also done
some work with block decomposable Levi forms for hypersurfaces in Cn [9] [10].

The structure of this paper is as follows: Section 2.1 will provide several definitions from
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differential geometry that are used frequently for the rest of this paper. Section 2.2 provides
a rotation of our coordinate axes in order to simplify some later computations. Section 2.3
classifies exactly what type of surfaces we will be working with for the rest of the paper.
Section 3 provides several examples showcasing how to work with the definitions from Sec-
tion 2.1. Section 4.1 guarantees the existence of comparable paths. Section 4.2 provides a
coordinate rotation similar to that in Section 2.2 as well as necessary conditions for a contin-
uously diagonalizable shape operator. Section 4.3 provides a short proof of the existence of
a noncomparable path whenever the shape operator is continuously diagonalizable. Section
5 ties the motivation for this work to the theory of PDEs for functions of several complex
variables and we discuss the possible steps to continue this investigation. Finally, Section
6 is an appendix which provides the Mathematica code used to generate the figures in the
paper.

2 Preliminaries

2.1 Definitions

Let M be a twice differentiable surface immersed in R3 parametrized by the Monge patch:

r(x, y) = [x, y, f(x, y)] .

Taking the partial derivatives with respect to x and y, denoted rx and ry, respectively, yields

rx = [1, 0, fx] and ry = [0, 1, fy] .

Now, rx and ry are in the tangent plane of any point (x, y, f(x, y)) on M . Since rx and ry
are linearly independent, they span the tangent plane and hence we can compute the field
of unit normal vectors n̂ by

n̂ =
rx × ry
|rx × ry|

=
[−fx,−fy, 1]√

1 + f 2
x + f 2

y

.

Now we are ready to define a 2 × 2 matrix of functions that completely describes the
curvature of M . The process of computing this matrix can be found in Oprea’s text on
elementary differential geometry [19].

Definition 2.1. The shape operator, denoted with S, of a twice differentiable surface in
R3 parametrized by a Monge patch r is the 2× 2 symmetric matrix[

L M
M N

]
,

where

L = rxx · n̂, M = rxy · n̂, N = ryy · n̂.
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Since the shape operator describes the curvature of M , a natural question to ask would be
about the significance of the solutions to the eigenvalue equation Sk = λk.

Definition 2.2. The eigenvectors of the shape operator, denoted with k1 and k2, are called
the principal directions.

Note that since the shape operator is a symmetric matrix, the principal directions are neces-
sarily orthogonal. At each point on M , these vectors point in the directions of maximum and
minimum curvature, where the curvature is considered positive if the surface bends toward
the unit normal, and negative if it bends away from the unit normal.

Definition 2.3. The eigenvalues of the shape operator, denoted with λ1 and λ2, are called
the principal curvatures.

The principal curvatures give the curvature in the directions that the principal directions
point. It is also worth defining another type of curvature on a surface.

Definition 2.4. The product of the principal curvatures, λ1λ2, is called the Gaussian
curvature at a point on M .

A notable feature of Gaussian curvature is that it is an intrinsic property of a surface. One
way to compute the Gaussian curvature of a surface is by finding the determinant of the
shape operator.

Definition 2.5. An umbilic point is a point on a surface in which the principal curvatures
are equal.

At an umbilic point, every direction is a principal direction and so the surface can be ap-
proximated by a sphere or a plane up to second order at these points. We say an umbilic
point is isolated if it is the only umbilic point in a neighborhood of said point.

Now, using our patch, we get

rxx = [0, 0, fxx] , rxy = [0, 0, fxy] , ryy = [0, 0, fyy]

which immediately gives us

L =
fxx√

1 + f 2
x + f 2

y

, M =
fxy√

1 + f 2
x + f 2

y

, N =
fyy√

1 + f 2
x + f 2

y

.

This paper will be solely focused on the class of surfaces defined by

z = f(x, y) = Ax3 +Bx2y + Cxy2 +Dy3 + Ex4 + Fx3y +Gx2y2 +Hxy3 + Iy4, (2.1)

where f is not identically zero. Observe that rx and ry are not orthogonal, but are close
to orthogonal for lower order terms. We will also only be working in a neighborhood of the
umbilic point at the origin. The shape operator for these surfaces is

S =
1√

1 + f 2
x + f 2

y

[
fxx fxy
fxy fyy

]
.
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Centered at t = 0, we can use the Taylor expansion
√

1 + t = 1 + t/2 +O(t2) and the fact
that the lowest order terms in fx and fy are quadratic, we can write√

1 + f 2
x + f 2

y = 1 +O(x4 + y4).

We make use of another Taylor expansion for 1
1+t

= 1− t+O(t2) centered at t = 0, so that
we can say

1

1 +O(x4 + y4)
= 1 +O(x4 + y4).

Hence,

S =
1

1 +O(x4 + y4)

[
fxx fxy
fxy fyy

]
=

[
fxx fxy
fxy fyy

] (
1 +O(x4 + y4)

)
.

It follows that in a neighborhood of the origin, the shape operator is approximated with the
Hessian of f . The study of the principal distribution fields on surfaces with isolated umbilics
has been performed by Bruce and Fidal [3]. These surfaces were defined such that the trace
of S is zero. We will not be restricting ourselves to this case. At this point, it should be
said that when computing the shape operator, we will sometimes be computing the second
partial derivatives in Cartesian coordinates and then converting to polar coordinates with
the change of variable x = r cos θ and y = r sin θ.

We will now define two properties that the eigenvalues and eigenvectors of the shape
operator can have. Understanding the relationship between the following two definitions is
the focus of this paper.

Definition 2.6. The eigenvalues λ1 and λ2 of a 2 × 2 matrix of functions are said to be
comparable along some path γ ending at an umbilic if there exists a nonzero scalar c such
that

λ1 − λ
c
≤ λ2 − λ ≤ c(λ1 − λ)

on γ, where λ is the limiting value of the eigenvalues at the umbilic.

Essentially, this means that two comparable eigenvalues have the same rate of convergence as
they approach the umbilic along some path. If the shape operator has comparable eigenvalues
along some direction and noncomparable eigenvalues along a different direction, we will say
that it has mixed eigenvalues.

Definition 2.7. A 2 × 2 matrix of functions is said to be continuously diagonalizable
around a point p if it has continuous eigenvectors in a neighborhood of p.

Since the shape operator is symmetric it can always be diagonalized point-wise, but not
always continuously. Moreover, there will always be an umbilic at the origin due to our
choice of surfaces defined by (2.1).

The following remark is a well known result from linear algebra, but we include the proof
because it gives us a nice formula for computing the principal curvatures.
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Remark 2.8. The eigenvalues of a real symmetric matrix are real.

Proof. Let A be real and symmetric so that A =

[
a b
b c

]
. The characteristic equation is

λ2 − (a+ b)λ+ ac− b2 = 0

which gives

λ =
1

2

(
a+ c±

√
(a− c)2 + 4b2

)
. (2.2)

Since a sum of two squares is nonnegative, λ must be real. �

As we move further, we will use (2.2) to compute the principal curvatures. In other words,
for f defined in (2.1), our principal curvatures become

λ =
1

2

(
fxx + fyy ±

√
(fxx − fyy)2 + 4f 2

xy

)
. (2.3)

2.2 A Convenient Rotation

We will now be considering the bivariate polynomial from (2.1). Note the absence of constant,
linear, and quadratic terms. We can get away with this since the constant and linear terms
will have no influence on the curvature of the surface, which is what we are focusing our
attention on. Furthermore, we can neglect the quadratic terms because, if we did include
them, we would simply be adding a constant multiple of the identity matrix to the shape
operator. This is due to our requirement of having an umbilic at the origin. This constant
addition will change what the principal curvatures and principal directions converge to at
the origin, but not whether or not they are comparable or continuous, respectively, while
approaching the origin. Therefore, we may effectively neglect any quadratic terms in (2.1).

Now, the first order of business is to rotate our coordinate axes to slightly depress our
polynomial. To see this rotation, we start with the change of coordinates

x = u cosϕ− v sinϕ, and

y = u sinϕ+ v cosϕ.

Taking inspiration from Sotomayor and Gutierrez’s coordinate rotation in [20], we will rotate
our xy plane so that B, the coefficient of the x2y term in (2.1), is zero. Assuming B 6= 0,
we substitute the new coordinates into (2.1) and set the coefficient of the u2v term equal to
zero to obtain

B cos3 ϕ+ (2C − 3A) cos2 ϕ sinϕ+ (3D − 2B) cosϕ sin2 ϕ− C sin3 ϕ = 0

which is equivalent to

1 +
2C − 3A

B
tanϕ+

3D − 2B

B
tan2 ϕ− C

B
tan3 ϕ = 0 (2.4)

whenever cosϕ 6= 0. Since cubic polynomials always have at least one real solution, we can
conclude that there exists some ϕ ∈ (−π/2, π/2) that solves (2.4). Hence, we may always
rotate our coordinates to make B = 0 in (2.1).
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2.3 Minding’s Theorem and Plane Isometries

Before moving on, we must first admit that it is a bit deceiving to say that we will be looking
at any surface defined by (2.1). We will not be considering a small class of surfaces in this
paper: surfaces that are isometric to a plane. These types of surfaces are called developable
surfaces. We will be making use of the following theorem.

Theorem 2.9 (Minding’s Theorem). All surfaces of the same constant Gaussian curvature
are isometric

The proof of Minding’s theorem can be found in Struik’s text on differential geometry [22].
An immediate result of Minding’s theorem is that a surface is isometric to a plane if and
only if it has Gaussian curvature that is identically zero. With this in hand, we can classify
exactly which cases (2.1) will describe a developable surface.

Theorem 2.10. A surface M defined by (2.1) is developable if and only if one of the following
cases holds

f(x, y) =


Ax3 + Ex4 if A 6= 0

Dy3 + Iy4 if A = 0 and D 6= 0

Iy4 if A = D = E = 0

E
(
x+ F

4E
y
)4

if A = D = 0 and E 6= 0.

(2.5)

Proof. We assume that M is developable, so detS is identically zero. Suppose we have
already used the above rotation to depress (2.1) so that B = 0. Now, carefully computing
detS, one will obtain

detS = 12ACx2 + 36ADxy − 4C2y2 + 12(AG+ 2CE)x3

+ 36(AH + 2DE)x2y + 12(6AI + 3DF − CG)xy2

+ 12(DG− CH)y3 + 3(8EG− 3F 2)x4 (2.6)

+ 12(6EH − FG)x3y + 6(24EI + 3FH − 2G2)x2y2

+ 12(6FI −GH)xy3 + 3(8GI − 3H2)y4.

Setting each coefficient equal to zero, the y2 term immediately implies C = 0. What remains
of the coefficients is the following system of equations.

AD = 0 8EG = 3F 2

AG = 0 6EH = FG

AH + 2DE = 0 6FI = GH

6AI + 3DF = 0 8GI = 3H2

DG = 0 24EI + 3FH = 2G2

Now, if A 6= 0, the five equations on the left imply D = G = H = I = 0. The first equation
on the right then implies F = 0 and we have satisfied the system. This leaves us with

f(x, y) = Ax3 + Ex4
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whenever A 6= 0.
Now assume A = 0 and D 6= 0. Then E = F = G = 0 by the third, fourth, and fifth

equations on the left. The right column of equations are satisfied only if H = 0 as well. This
leaves us with

f(x, y) = Dy3 + Iy4

whenever A = 0 and D 6= 0.
Next, assume A = D = 0 as well as E = 0. The leftmost equations are immediately

satisfied and the rightmost imply F = G = H = 0, leaving us with

f(x, y) = Iy4.

Finally, assume A = D = 0 and E 6= 0. Again, the left column of equations are satisfied
immediately. We can now use the first, second, and third equations on the right to solve for
G, H, and I, respectively, in terms of E and F . Explicitly, these are

G =
3F 2

8E
,H =

F 3

16E2
, and I =

F 4

256E3
.

Note that these also satisfy the last two equations. Now, by substitution, we see that

f(x, y) = E

(
x+

F

4E
y

)4

.

Conversely, assume (2.1) is defined as in (2.5). Then we simply see that, in each case,

detS = fxxfyy − (fxy)
2 = 0

and so M is developable. �

Since we are not considering any developable surfaces for the rest of the paper, we are
safe in assuming that there always exists some path γ through the origin such that detS 6= 0.
So along γ, neither of the principal curvatures are zero. It follows that if trS = 0 along
γ, then λ1 = −λ2 6= 0, yielding comparable principal curvatures along γ. This fact can be
useful while doing calculations to find paths of comparable principal curvatures.

3 Examples

Before we head into the following examples, it should be noted that the figures that follow
will attempt to allow the reader to visualize comparable principal curvatures as well as
discontinuous (or continuous) principal directions. For the figures that show information
about comparable eigenvalues, red signifies noncomparable eigenvalues while any other color
signifies comparable eigenvalues. For the figures that show information about whether the
shape operator is continuously diagonalizable, the colors will show the continuity (or lack
thereof) of the principal directions around the origin. In other words, if there is a color that
we may assign to the origin, then shape operator is continuously diagonalizable. Otherwise,
the shape operator is not continuously diagonalizabile. The Mathematica code used to
produce these figures can be found in the appendix.
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Example 3.1. Consider the monkey saddle defined by f(x, y) = x3/6 − xy2/2. Then, in
polar coordinates

S =

[
r cos θ −r sin θ
−r sin θ −r cos θ

] (
1 +O(r4)

)
.

Now, the eigenvalues are

λ1 = r +O(r5) and λ2 = −r +O(r5)

which are clearly comparable for all θ. Notice that when θ = 0, k1 = [1, 0] and k2 = [0, 1].
When θ = π/2, k1 = [1,−1] and k2 = [1, 1]. The eigenvectors are discontinuous and so
S is not continuously diagonalizable. Thus, it is possible for the shape operator to not be
continuously diagonalizable with comparable eigenvalues along any path through the origin.
The discontinuous principal directions can be visualized in Figure 1a. Notice that the origin
appears to be approaching different colors as we come in from different directions.

(a) not continuously diagonalizable (b) mixed principal curvatures

Figure 1: The surfaces from (a) Example 3.1 showing discontinuous principal directions and
(b) Example 3.2 showing a mix of comparable and noncomparable principal curvatures

Example 3.2. Now consider f(x, y) = x3/6 + y4/12. Then

S =

[
x 0
0 y2

] (
1 +O(r4)

)
which is diagonal and hence continuously diagonalizable. We can also read the eigenvalues
right from the diagonal of S. Since one is linear and the other is quadratic, they are never
comparable along any radial direction. However, if we approach along the path y =

√
x,

the eigenvalues will be comparable. Thus, there exists a surface with continuous principal
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(a) mixed principal curvatures
(b) not continuously diagonalizable

Figure 2: The surface from Example 3.3

directions as well as a mix of comparable and noncomparable principal curvatures, depending
on our choice of path to the origin. Notice that in Figure 1b there is a mix of red and other
colors. After seeing this, one may ask if we could construct an example in which the shape
operator is continuously diagonalizable and the principal curvatures are never comparable.
We answer this question in Theorem 4.2.

Example 3.3. Now consider f(x, y) = xy2/2− x4/12− y4/12. When θ = 0,

S =

[
−r2 0

0 r

] (
1 +O(r4)

)
, λ1 = −r2 +O(r5), λ2 = r +O(r5),

k̂1 =

[
1
0

]
, and k̂2 =

[
0
1

]
.

When θ = π/2,

S =

[
0 r
r −r2

]
+O(r5)

λ = ±r +O(r2) k1 =

[
1
1

]
+O(r) k2 =

[
−1
1

]
+O(r).

Thus, it is possible for the shape operator to not be continuously diagonalizable with mixed
principal curvatures. Once again, we can visualize these results in Figure 2. Figure 2a
contains a mix of both red and other colors, showing mixed principal curvatures. Figure 2b
has different colors radiating from the origin, showing discontinuous principal directions.
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Finally, we look at one last interesting example.

Example 3.4. Consider f(x, y) = y3/6 + x2y2/2. When y = 0, we get

S ≈
[
0 0
0 x2

]
λ1 = 0 λ2 = x2 k̂1 =

[
1
0

]
k̂2 =

[
0
1

]
.

Now let x = y so we get

S ≈
[
x2 2x2

2x2 x+ x2

]
and

S

[
1
0

]
= x2

[
1
2

]
6= λ

[
1
0

]
.

Now since [1, 0] does not satisfy the eigenvalue equation when x = y, S has discontinuous
eigenvectors. Let θ be fixed such that sin θ 6= 0. Making use of

√
1 + t = 1 + t/2 +O(t2), we

have the noncomparable principal curvatures

λ =
1

2
(sin θ ± |sin θ|) r +O(r2).

So there is seemingly no direction in which the shape operator has comparable eigenvalues.
However, let us consider approaching the origin along the curve y = −x2. Then

S ≈
[
x4 −2x3

−2x3 0

]
and

λ =
1

2

[
x4 ±

√
x8 + 16x6

]
= ±2x3 +O(x4).

This example gives us some insightful information. Not only do we need to consider ap-
proaching along parabolic paths when looking for comparable principal curvatures, but we
may also encounter cubic principal curvatures upon doing so. This knowledge will be useful
in the proof of Theorem 4.2. Notice that we can see a red (noncomparable eigenvalues)
parabolic curve passing through the origin in Figure 3a and we have different colors ap-
proaching the origin in Figure 3b displaying discontinuous eigenvectors.

So far, we have shown that the shape operator may be continuously diagonalizable with
mixed principal curvatures, or have discontinuous eigenvectors with mixed or always com-
parable eigenvalues. In summary,

always comparable always noncomparable mixed
diagonalizable X X X

nondiagonalizable X X X

where the X’s come from the results in the next section.
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(a) mixed principal curvatures
(b) not continuously diagonalizable

Figure 3: The surface from Example 3.4

4 Results

4.1 Comparable Paths

We start this section with a lemma we will need later. Note the use of polar coordinates.

Lemma 4.1. Let S be a 2×2 symmetric matrix of continuous functions defined in a neigh-
borhood of the origin. Let γ be a smooth curve through the origin. If detS is of order 2m
on γ, m a natural number, and trS is of order at least m on γ, then both of the eigenvalues
of S are of order m on γ.

Proof. While approaching the origin on a smooth curve γ, let

detS = ψr2m +O(r2m+1)

and
trS = φrm +O(rm+1)

where ψ ∈ R\{0} and φ ∈ R. Then the eigenvalues are

λ =
1

2

(
trS ±

√
(trS)2 − 4 detS

)
=

1

2

(
φrm +O(rm+1)±

√
(φ2 − 4ψ)r2m +O(r2m+1)

)
=

1

2

(
φ±

√
φ2 − 4ψ

)
rm +O(rm+1).

It does not matter whether φ = 0 or not, λ will always have order m. �
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Recall that if trS = 0 along γ, we still have comparable principal curvatures since
λ1 = −λ2 6= 0. So when we apply Lemma 4.1, we need not worry about trS = 0. We are
now ready to prove our first main result, which shows the generality of paths of comparable
principal curvatures.

Theorem 4.2. Let M be a non-developable surface defined by (2.1) under the rotation to
make B = 0. Then there always exists some path through the origin in which the principal
curvatures are comparable.

Proof. To prove this theorem, we will consider several different cases for the coefficients from
(2.1) and using Lemma 4.1 heavily, provide a path with comparable principal curvatures. To
this end, we let B = 0 by our previous depressing rotation, and start with the assumption
that C 6= 0. Then the second partial derivatives of (2.1) are

fxx = 6Ax+ 12Ex2 + 6Fxy + 2Gy2,

fxy = 2Cy + 3Fx2 + 4Gxy + 3Hy2, and

fyy = 2Cx+ 6Dy + 2Gx2 + 6Hxy + 12Iy2.

Referring to detS given by (2.6) and

trS = 2(3A+ C)x+ 6Dy + 2(6E +G)x2 + 6(F +H)xy + 2(G+ 6I)y2, (4.1)

we can see that when x = 0, detS is of order 2 and trS is of order at least 1. By Lemma
4.1, x = 0 is a comparable path.

Next, assume C = 0 and both A 6= 0 and D 6= 0. We can again refer to (2.6) and (4.1)
as well as apply Lemma 4.1 to see that y = x is a comparable path.

Next, assume that A = C = 0, D 6= 0, E 6= 0, and consider the parabola y = kx2 where

k 6= 0 and k 6= 3F 2 − 8EG

24DE

for reasons which will soon be clear. Notice that along this parabola, trS is of order at least
2 in x and that

detS = 3(24DEk + 8EG− 3F 2)x4 +O(x5).

Because k 6= (3F 2 − 8EG)/24DE, detS is guaranteed to be of order 4 and we may apply
Lemma 4.1 to show that this parabola is a comparable path.

Now, we let A = C = E = 0 but require D 6= 0 and F 6= 0. If we consider the parabola
y = x2, then we have

detS = −9F 2x4 +O(x5).

Since trS is of order at least 2, Lemma 4.1 tells us that y = x2 is a comparable path.
Now, we let A = C = E = F = 0 but require D 6= 0 and G 6= 0. We will also consider

the parabola y = kx2 where k = −G
3D

. With our choice of k, notice that trS is of order at
least 3. Moreover,

detS = −16G4

9D2
x6 +O(x7)
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which gives us cubic, and thus comparable, principal curvatures along this parabola by
Lemma 4.1.

Coming to the last case of this leg of the journey, we consider the case with A = C =
E = F = G = 0. Then the x-axis is a path with trivial principal curvatures since all terms
in the shape operator share a factor of y.

Now, we move back up to the case where C = 0, A 6= 0, and D 6= 0. Let us see now
what happens when we let D = 0, A 6= 0, and I 6= 0. If we look at the previous set of cases,
but replace x with y, A with D, E with I, and F with H, then the logic follows exactly the
same as before. Taking advantage of this symmetry, we are effectively done with this case.

Finally, when A = C = D = 0, (2.1) is a homogeneous degree 4 bivariate polynomial.
In this case, detS is of order 4 along some path γ through the origin. To see this, let γ be
the line y = kx. Then choose k so that detS 6= 0. Moreover, trS is of order 2 along γ. Yet
again, Lemma 4.1 makes short work of this case, showing that γ is a comparable path. �

By this theorem, we are justified in placing X’s in the always noncomparable column in
the table at the end of section 3.

4.2 Conditions for Diagonalizability

Lemma 4.3. Let M be a non-developable surface defined by (2.1). If the shape operator
is continuously diagonalizable, then there exist coordinates such that the principal directions
converge to [1, 0] and [0, 1].

Proof. Since M is not isometric to a plane, there exists some line γ through the origin that
is not a line of umbilics. Let the eigenpairs of S in a neighborhood of the origin converge to
(λ1, κ1) and (λ2, κ2) as we approach the origin along γ. Let e1 and e2 denote the standard
basis vectors. Let R be the counterclockwise rotation matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
such that

Rκ1 = e1 and Rκ2 = e2.

We define a new set of coordinates, x′ and y′ by[
x′

y′

]
= R

[
x
y

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
.

Let the shape operator in these primed coordinates be denoted by S ′. Now, the chain rule
gives us

fxx = fx′x′ cos2 θ + 2fx′y′ cos θ sin θ + fy′y′ sin2 θ,

fxy = −fx′x′ cos θ sin θ + fx′y′(cos2 θ − sin2 θ) + fy′y′ cos θ sin θ, and

fyy = fx′x′ sin2 θ − 2fx′y′ cos θ sin θ + fy′y′ cos2 θ
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which is equivalent to S = RTS ′R, or

S ′ = RSRT .

Now, since RT = R−1,

κ1 = RT e1 and κ2 = RT e2.

Recall that these are the limiting values of the principal directions as we approach the origin.
Consider the vectors k′1 and k′2 such that

k′1 = Rk1 and k′2 = Rk2.

Then

k′1 = Rk1 → Rκ1 = e1

and similarly, k′2 → e2. What is left is to show that k′1 and k′2 are the principal directions of
S ′ along γ. Now,

S ′k′1 = RSRTk′1
= RSk1

= R(λ1k1)

= λ1k
′
1.

Similarly,

S ′k′2 = λ2k
′
2.

�

For the rest of the paper, we will be working in polar coordinates. With this lemma in
hand, we will now be taking the primed coordinate system to be our canonical coordinates.
This means that whenever the shape operator is continuously diagonalizable, we can assume
that we are in the coordinate system with principal directions

k1 =

[
1 + ar
br

]
and k2 =

[
cr

1 + dr

]
.

Using 1/(1− t) =
∑∞

n=0 t
n, we can write

k1 = (1 + ar)

[
1
br

1+ar

]
= (1 + ar)

[
1

br +O(r2)

]
and since 1 + ar is a scalar multiple of k1, we can instead use the eigenvectors

k1 =

[
1

br +O(r2)

]
.



Page 90 RHIT Undergrad. Math. J., Vol. 15, No. 2

Similarly,

k2 =

[
cr +O(r2)

1

]
.

Now, since the principal directions are always orthogonal, it follows from kT2 k1 = 0 that
c = −b. Along the x-axis, the shape operator is

S =

[
6A 2B
2B 2C

]
r +

[
12E 3F
3F 2G

]
r2

and we have

kT2 Sk1 = 2Br + [3F + 2b(C − 3A)]r2 +O(r3).

So, up to lower order, to satisfy kT2 Sk1 = 0, we can find b if

B = 0 and (3A 6= C or F = 0)

When 3A = C, we can use higher order terms to solve for b. These cases, which follow from
our choice of coordinates, are what we will be calling our basic assumptions, as they will be
assumed to be true whenever the shape operator for (2.1) is continuously diagonalizable.

Basic Assumptions

B = 0 and either 3A 6= C or F = 0

Recall our convenient rotation earlier that depressed our polynomial so that B = 0. It
turns out that we get this depression for free with our rotation to these coordinates. With
all of this in our tool belt, we can now prove a very useful result.

Lemma 4.4. Let M be a non-developable surface defined by (2.1). If the shape operator is
continuously diagonalizable, then there exist coordinates such that one of the following two
cases hold:

I. C = F = G = H = 0

II. C = 0, either A 6= 0 or D 6= 0, 3FD2 + 4GAD + 3HA2 = 0,
and (6E −G)D2 + 3(F −H)AD + (G− 6I)A2 = 0.

Proof. We start by assuming that k1 = [1, b] and k2 = [−b, 1], where b is a continuous
function of r and θ such that b→ 0 as r → 0+. We will be using the fact that

kT2 Sk1 = fxy + b(fyy − fxx)− b2fxy = 0 (4.2)
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to determine what the coefficients of (2.1) must be in order to ensure that the principal
directions are the same in all other directions. To this end, if fxy 6= 0, then we can solve for
b to get

b =
fxx − fyy ±

√
(fyy − fxx)2 + 4f 2

xy

−2fxy
=

2fxy

fxx − fyy ∓
√

(fyy − fxx)2 + 4f 2
xy

.

where
fxy = 2Cr sin θ + (3F cos2 θ + 4G sin θ cos θ + 3H sin2 θ)r2

and

fyy − fxx = [(2C − 6A) cos θ + 6D sin θ]r

+ [(2G− 12E) cos2 θ + 6(H − F ) sin θ cos θ + (12I − 2G) sin2 θ]r2.

Now, for (4.2) to hold for lower order terms for any θ, we must have C = 0. More explicitly,
if fxy 6= 0,

b =
(3F cos2 θ + 4G sin θ cos θ + 3H sin2 θ)r

g(θ, r)∓
√

[g(θ, r)]2 + (3F cos2 θ + 4G sin θ cos θ + 3H sin2 θ)2r2
(4.3)

where

g(θ, r) = 3A cos θ − 3D sin θ

+ [(6E −G) cos2 θ + 3(F −H) sin θ cos θ + (G− 6I) sin2 θ]r. (4.4)

Note that g is simply (fxx−fyy)/2r. When fxy = 0 for all values of θ, we have F = G = H = 0
and (4.2) implies b = 0. This is exactly case I in the statement of the lemma. Now suppose
fxy 6= 0 for some value of θ. Note that if A = D = 0, then (4.3) is independent of r and
hence b9 0 as r → 0+ for some θ.

Now we consider the case that A 6= 0 or D 6= 0 such that the constant (with respect to
r) term in (4.4) is not identically zero. When A cos θ −D sin θ 6= 0 there will be a term in
the denominator that does not depend on r, allowing b → 0 as r → 0+. Next we ask what
happens in the direction such that A cos θ−D sin θ = 0. This is the direction, call it θ = θ0,
in which

cos θ0 =
±D√
A2 +D2

and sin θ0 =
±A√
A2 +D2

.

Notice that if fxy 6= 0 when θ = θ0,

b|θ=θ0 =
3FD2 + 4GAD + 3HA2

g(θ0, 1)∓
√

[g(θ0, 1)]2 + (3FD2 + 4GAD + 3HA2)2
. (4.5)
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Now, if the numerator is nonzero, then the denominator is certainly nonzero. However, (4.5)
is independent of r and so to enforce our requirement that b→ 0 as r → 0+, we must have

3FD2 + 4GAD + 3HA2 = 0 (4.6)

Adopting the convention that s = sin θ, c = cos θ, and σ =
√
A2 +D2, we consider ap-

proaching the origin along the curve

r = k| sin(θ − θ0)| =
k

σ
|Ds− Ac| (4.7)

for some positive real number k. Under the assumption that g(θ0, 1) 6= 0, we claim that
there exists some k such that b9 0 as θ → θ0. Showing this claim will imply discontinuous
principal directions, a contradiction. Now, plugging in our substitutions and our prescribed
path to the origin, for θ 6= θ0 we obtain

b =
g2(θ)±

√
[g2(θ)]2 + [k(3Fc2 + 4Gsc+ 3Hs2)]2

−k(3Fc2 + 4Gsc+ 3Hs2)
(4.8)

where

g2(θ) = σ
g(θ, k

σ
|Ds− Ac|)

|Ds− Ac|
= 3σ sgn(Ac−Ds) + [(6E −G)c2 + 3(F −H)sc+ (G− 6I)s2]k.

In case it is not immediately clear to the reader that the sign of Ac − Ds will be different
depending on how θ approaches θ0, observe that sin(θ − θ0) = ±(Ds − Ac)/σ. Then for θ
near θ0,

sgn(Ac−Ds) = ∓ sgn(θ − θ0).

Let us denote the numerator of (4.8) by η as well as the substitution

ω = g(θ0, 1) =
(6E −G)D2 + 3(F −H)AD + (G− 6I)A2

σ2
6= 0.

Now let

0 < k <
3σ

|ω|
.

Let us look at the two cases in which ω < 0 or ω > 0. Whenever ω < 0, we have

0 < k < −3σ/ω =⇒ 3σ + ωk > 0.

Now, as we approach along the direction in which Ac−Ds > 0, we find that

η → 3σ + ωk ± |3σ + ωk|. (4.9)
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Recall that as θ → θ0, the denominator of (4.8) approaches zero by (4.6). If there is any
hope for (4.8) to go to zero as θ → θ0, we must be in the indeterminate form 0/0. So we
must choose the minus sign in (4.9). However, when approaching along the direction in
which Ac−Ds < 0, then for b to be continuous, we must keep the minus sign and so

η → −3σ + ωk − | − 3σ + ωk|. (4.10)

Notice that since −3σ < 0 and ωk < 0, then −3σ + ωk < 0 and hence η does not approach
zero in (4.10). Now, we assume ω > 0. This argument will follow similar to the last one. So
we have

0 < k <
3σ

ω
=⇒ −3σ + ωk < 0.

Approaching along the direction in which Ac−Ds < 0, we find that

η → −3σ + ωk ± | − 3σ + ωk| (4.11)

which will equal zero only if we use the plus sign. Again, we want b to be continuous, so we
keep the plus sign when approaching along the direction in which Ac−Ds > 0. Along this
direction, we find that

η → 3σ + ωk + |3σ + ωk|. (4.12)

Notice that 3σ + ωk > 0 since 3σ > 0 and ωk > 0. This implies that as θ → θ0, η 9 0, and
thus b9 0, in either of the two cases. It follows by this contradiction that for b to approach
zero along this path, we need ω = 0, or

(6E −G)D2 + 3(F −H)AD + (G− 6I)A2 = 0.

�

4.3 Main Theorem

Now that we have the classifications for a diagonalizable shape operator, we are able to prove
(quite quickly) what was predicted in the table at the end of section 3.

Theorem 4.5. Let M be a non-developable surface given by f from (2.1) that satisfies our
basic assumptions. If the shape operator is continuously diagonalizable, then there exists
some curve through the origin with noncomparable principal curvatures.

Proof. Under the assumption that the shape operator is continuously diagonalizable, we
need to find a curve passing through the origin in which the principal curvatures are non-
comparable for both cases in Lemma 4.4. We start with case I, in which S is diagonal. Then
we can read the principal curvatures off the diagonal of S. In Cartesian coordinates, the
eigenvalues are

λ1 = (6Ax+ 12Ex2)(1 +O(x4 + y4))

λ2 = (6Dy + 12Iy2)(1 +O(x4 + y4)).
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Here, we can find a noncomparable path since approaching the origin along one of the
coordinate axes (the choice of which axis depends on the values of A, E, D, and I) will
produce a nonzero principal curvature as well as an identically zero principal curvature.
Note that A = D = E = I = 0 is forbidden since that would make 2.1 identically zero and
hence developable.

Next, we assume case II from Lemma 4.4. Let us first assume that A 6= 0. In polar
coordinates, when θ = 0,

S =

[
6Ar + 12Er2 3Fr2

3Fr2 2Gr2

]
and by (2.3) the principal curvatures are

λ = 3Ar + (6E +G)r2 ±
√

[3Ar + (6E −G)r2]2 + 9F 2r4. (4.13)

Applying the Taylor approximation trick outlined in Theorem 4.2, (4.13) becomes

λ = 3(A± |A|)r +O(r2)

which gives us principal curvatures that vanish at different rates. Now, when A = 0, this
implies D 6= 0 and we proceed in a similar fashion as above, but with θ = π/2, to obtain

λ = 3(D ± |D|)r +O(r2).

Again, these principal curvatures are noncomparable. �

5 Looking Ahead

The motivation for this paper comes from the theory of partial differential equations of
functions of several complex variables. These functions are usually defined over some domain
in Cn and it is the geometry of this domain that influences if and how we can solve the PDE.
It is therefore beneficial to study the curvature of the manifold defined by the boundary
of the domain. This is where the Levi form (the complex analogue of the shape operator)
and its eigenvalues come into play. In general, the domains in question will yield a solvable
PDE, but it is impossible to fully estimate all partial derivatives of our function. However,
having comparable eigenvalues of the Levi form for the domain enables us to fully estimate
all but one of the partial derivatives. Achieving this estimate of our function is the best case
we can hope for. This should stress the importance of being able to establish some criteria
for comparable eigenvalues. In this paper, it turned out that there are always comparable
eigenvalues.

To this end, let u be a function and f a known 1-form, both defined over some domain
Ω ⊂ Cn, and suppose we want to solve the ∂̄-problem ∂̄u = f where ∂̄ is the Cauchy-
Riemann operator. The solvability of this PDE is not in question since Kohn showed in 1964
that ∂̄u = f is solvable whenever every eigenvalue of the domain’s Levi form is positive [17]
[18]. Then in 1965, Hörmander weakened Kohn’s hypothesis by only requiring nonnegative
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eigenvalues [13]. In the same publication, Hörmander also showed that the upper bound of
the norm of u depends on the norm of f . As stated in the previous paragraph, we cannot
estimate all partial derivatives of u in general. So we would like to find a function that is
the weak derivative of u that estimates as many of u’s partial derivatives as possible. Our
best case scenario would be to find a solution that estimates the partial derivatives of u in
every direction of Cn except one. If this can be done, then we have achieved what is called
the maximal estimate. Derridj has shown that the maximal estimate can be achieved if and
only if the eigenvalues of the Levi form for the manifold ∂Ω are comparable [8]. For Derridj’s
original discussion on maximal estimates, see [7]. For a lower dimensional discussion of the
maximal estimate, refer to Straube’s lecture notes [21]. For more analysis on this topic, refer
to [11] and [14].

Charpentier and Dupain also have some nice results involving both the Levi form and
the Bergman projection. Let L2(Ω) denote the function space of square integrable functions
defined over Ω ⊂ Cn, O(Ω) denote the function space of holomorphic functions defined over
Ω, and H 2(Ω) = L2(Ω) ∩ O(Ω). Since H 2(Ω) is a subspace of L2(Ω), we can orthogonally
project functions in L2(Ω) to H 2(Ω). This is the Bergman projection. Charpentier and
Dupain showed in [5] that we can estimate all derivatives of the Bergman projection of a
function u whenever the Levi form is diagonalizable and the domain is of finite type (a
technical term that is beyond the scope of this paper). Related results can be found in [15]
and [16].

It would be nice if we could have the previous two results simultaneously. Unfortunately,
having comparable eigenvalues and having a diagonalizable Levi form are mutually exclusive
events. It is therefore important for the vigilant mathematician to know which situation
they might find themselves in. Although this paper works solely in the case where ∂Ω is a
two dimensional manifold embedded in R3, it is a good step forward in determining whether
or not the Levi form has comparable eigenvalues.

At this point, one may wonder what the next possible step in this research would be.
We could move forward by increasing the size of our surface sample space by assuming that
(2.1) is a lower order Taylor approximation for some arbitrary surface. Under our current
assumptions, having lines of umbilics was a possibility. However, there are some points that
appear umbilic with lower order terms, but are not umbilic after bringing in the higher
order terms. So with a Taylor approximation, we would be working under the assumption
of having an isolated umbilic at the origin. This was the initial ambition of this work before
moving to the case with non-isolated umbilics.

Finally, we could move even further with this work by attempting to extend our results
to manifolds in Rn. Proving this would likely require considerably more finesse than the
exhaustive methods used in this work. And of course, the work of mathematicians such as
Charpentier, Dupain, Derridj, Harrington, Raich, (see [4], [8], and [12]) and many others
provide the motivation for the ultimate goal of this research: to move up to manifolds in Cn

and push the understanding of the ∂̄ problem forward.
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6 Appendix

This appendix is dedicated to showing the reader the Mathematica 9 code used to generate
the images in the examples. Since detS = λ1λ2, it is easy to see that

λ1/λ2 = λ21/ detS.

Whenever detS = 0, we replace the eigenvalue ratio with its limiting value at the origin. The
choice of approaching along the line y = x (as apposed to the coordinate axes) is because
this was the direction that, in practice, yielded the most accurate results.

(∗Define funct ion , c a l c u l a t e second d e r i v a t i v e s ∗)

f [ x , y ] := xˆ3/6 + yˆ3/6 + xˆ4/12 − yˆ4/12 ;
fxx = D[ f [ x , y ] , {x , 2 } ] ;
fxy = D[ f [ x , y ] , x , y ] ;
fyy = D[ f [ x , y ] , {y , 2 } ] ;

(∗Define t race and determinant o f S as w e l l as o ther u s e f u l
parameters ∗)

t r = fxx + fyy ;
det = fxx ∗ fyy − fxy ˆ2 ;
A = fxx − fyy ;
B = fxy ;

(∗Compute the e i g enva l u e s o f S∗)

eva l1 = ( t r + Sqrt [Aˆ2 + 4 Bˆ2 ] ) / 2 ;
eva l2 = ( t r − Sqrt [Aˆ2 + 4 Bˆ2 ] ) / 2 ;

(∗Compute eva l 1 / eva l 2 ∗)

e v a l r a t i o = eva l1 ˆ2/( det ) ;

(∗Compute l im i t o f e v a l r a t i o as the l i n e y = x approaches the
o r i g i n from the r i g h t ∗)

y = x ;
eva l l im = Limit [ e v a l r a t i o , x −> 0 , Direction −> 1 ] ;

(∗Reset y∗)

y =. ;

(∗Resca le e v a l r a t i o and eva l l im to be in the i n t e r v a l [ 0 , 1 ] f o r the
Hue func t i on . Piecewise func t i on take s care o f any s i n g u l a r i t i e s ∗)

evalhue :=
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Piecewise [{{ (ArcTan [Log [Abs [ e v a l r a t i o ] ] ] + Pi/2)/Pi ,
det != 0 } , {(ArcTan [Log [Abs [ eva l l im ] ] ] + Pi/2)/Pi , det == 0 } } ] ;

(∗ Plo t su r f a c e in neighborhood o f the o r i g i n to v i s u a l i z e comparable
e i g enva l u e s . Red po in t s have noncomparable e i g enva l u e s wh i l e po in t s
wi th any o ther co l o r have comparable e i g enva l u e s ∗)

Plot3D [ f [ x , y ] , {x , −.25 , . 25} , {y , −.25 , . 25} ,
AxesLabel −> Automatic ,
ColorFunction −> Function [{ x , y , z } , Hue [ evalhue ] ] ,
ColorFunctionScaling −> False , BoxRatios −> {1 , 1 , . 5} ,
PlotPoints −> 50 , BaseSty le −> {FontSize −> 10} ]

(∗Compute the r a t i o o f the components o f an e i g env e c t o r o f S∗)

evec = A/(2 B) + (Sqrt [ (A/B)ˆ2 + 4 ] ) / 2 ;

(∗Normalize evec to be in the i n t e r v a l [ 0 , 1 ] f o r the Hue func t i on .
Piecewise t a k e s care o f any s i n g u l a r i t i e s ∗)

evechue := Piecewise [{{2 (ArcTan [ evec ] + Pi/2)/Pi , B != 0} , {1 ,
B == 0 } } ] ;

(∗ Plo t su r f a c e to v i s u a l i z e d d i a g o n a l i z a b i l i t y . I f a neighborhood o f
the o r i g i n i s a s i n g l e co lor , the shape opera tor i s d i a g o n a l i z a b l e .
Otherwise , the shape opera tor i s nond i a gona l i z a b l e . ∗)

Plot3D [ f [ x , y ] , {x , −.5 , . 5} , {y , −.5 , . 5} , AxesLabel −> Automatic ,
ColorFunction −> Function [{ x , y , z } , Hue [ evechue ] ] ,
ColorFunctionScaling −> False , BoxRatios −> {1 , 1 , . 5} ,
PlotPoints −> 50 ]

References

[1] N. Ando, An isolated umbilical point of the graph of a homogeneous polynomial, Geom.
Dedicata 82 (2000), 115–137.

[2] , The behavior of the principal distributions around an isolated umbilical point,
J. Math. Soc. Japan 53 (2001), 237–260.

[3] J. W. Bruce and D. L. Fidal, On binary differential equations and umbilics, Proc. Roy.
Soc. Edinburgh Sect. A 111 (1989), 147–168.

[4] P. Charpentier and Y. Dupain, Estimates for the Bergman and Szegö projections for
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