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IRREDUCIBILITY AND FACTORS OF POLYNOMIALS IN
NOETHERIAN INTEGRAL DOMAINS

Benjamin E. Anzis

Abstract. Let R be a Noetherian integral domain, and let f be a polynomial with coeffi-
cients in R. A question of great importance is whether f is irreducible. In this paper, we
give a sufficient condition for f to be irreducible by looking at the content ideal of f . This
result is then extended to show a connection between the height of a polynomial’s (proper)
content ideal and the maximal number of irreducible factors it can possess.

Acknowledgements: The author is grateful to the referees for their valuable input and corrections,
which improved the exposition of the paper.
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1 Introduction
When dealing with a polynomial, a question of great interest is whether it is irreducible over a
certain ring. Recall that a polynomial f is irreducible over a ring R if, whenever f is written as a
product

f = g · h
with g, h ∈ R[t], then either g or h is a unit. The notion of irreducibility is of great importance in
several areas of mathematics, notably cryptography, since irreducible polynomials play a role in
R analogous to that of primes in the integers, Z. Because of that connection, cryptosystems (most
notably RSA) based upon the difficulty of factoring large numbers have “cousin” cryptosystems
based upon the difficulty of factoring complicated polynomials into irreducibles over a ring. As
well, irreducible polynomials are used to build finite fields, which are essential for elliptic curve
cryptography.

Gauss was the first to introduce irreducible polynomials as objects of study in connection with
primitive polynomials. He subsequently proved a lemma bearing his name, which states that if a
polynomial in Z[t] is irreducible over Z[t] then it is irreducible over Q[t]. Since then, finding ways
to test whether a polynomial is irreducible has garnered much attention from mathematicians. A
notable example of such a test is Eisenstein’s criterion, which establishes a test for irreducibility
over Q[t], and uses Gauss’ Lemma.

It is well-known that in a ring R a polynomial a + bt ∈ R[t] is irreducible over R if and only
if a and b do not share a common factor. This suggests a connection between “independence” of
the coefficients of a polynomial (which we measure by taking the height of the content ideal of the
polynomial) and the irreducibility of that polynomial. In this paper, we prove such a connection
for polynomials of higher degree over an arbitrary Noetherian integral domain and then extend
it to show an even larger link between this “independence” and the maximal possible number of
irreducible factors in any factorization of the polynomial.

In section 2, we provide background from commutative algebra. In section 3, we prove a
preliminary result concerning the irreducibility of a specific class of polynomials which we then
extended in section 4 to provide an upper bound on the number of irreducible factors any poly-
nomial possesses in any factorization. Finally, in section 5, we provide example uses of the main
results in section 3 and 4.

2 Background
We assume the basics of abstract algebra. For the necessary background, we refer the reader to the
text by Hungerford [2]. We also make use of the following concepts from commutative algebra.
For more detail, we refer the reader to the text by Sharp [3].

Definition 2.1. A ring R is said to be Noetherian if, for any chain of ideals

J1 ⊆ J2 ⊆ · · ·

in R, there exists an i ∈ N so that Ji = Ji+n for all n ∈ N.



RHIT UNDERGRAD. MATH. J., VOL. 15, No. 2 PAGE 17

Definition 2.2. The radical of an ideal I in a commutative ring R, denoted
√
I , is the set

√
I = {a ∈ R : am ∈ I for some m ∈ N}.

It is also an ideal of R.

Definition 2.3. The variety of an ideal I in a ring R, denoted V ar(I), is the set

V ar(I) = {P a prime ideal of R | P ⊃ I}.

Definition 2.4. The height of an ideal I , denoted ht(I), is defined to be

ht(I) = min
P∈V ar(I)

ht(P ),

where ht(P ) for P prime is the maximum length n of a chain of prime ideals

P1 ( P2 ( · · · ( Pn ( P.

Definition 2.5. The content ideal of a polynomial f = a0 + · · ·+ ant
n ∈ R[t], written cont(f), is

the ideal
cont(f) = 〈a0, . . . , an〉 ⊆ R.

Theorem 2.6 (Krull’s Generalized Principal Ideal Theorem). (See [3, Theorem 15.4]) Let R be
a commutative Noetherian ring and let I be a proper ideal of R which can be generated by n
elements. Then ht(I) ≤ n.

3 Preliminary Result
In this section, we prove a preliminary result that shows a certain class of polynomials are irre-
ducible.

Let f = a0 + · · · + ant
n ∈ R[t] be a polynomial of degree n ≥ 1, where R is a Noetherian

integral domain. Let cont(f) = 〈a0, . . . , an〉 be the content ideal of f .

Proposition 3.1. If ht(cont(f)) = n+ 1, then f is irreducible over R.

Remark 3.2. Note that ht(cont(f)) = n+ 1 ≥ 2 implies that cont(f) is a proper ideal.

Proof. Assume that f is reducible over R. Then there exists g = b0 + b1t + · · · + bpt
p and

h = c0 + c1t+ · · ·+ cqt
q ∈ R[t] neither of which is a unit (with bq, cp 6= 0) such that

f = g · h.

We will establish a contradiction after proving the following claims.

Claim 1: p, q ≤ n− 1.
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Assume without loss of generality that q = n. Then, since R is an integral domain, p = 0 and
therefore

f = a0 + a1t+ · · ·+ ant
n = b0(c0 + c1t+ · · ·+ cnt

n).

Then, cont(f) ⊂ 〈b0〉 and hence ht(cont(f)) ≤ 1 by Theorem 2.6. Therefore, ht(cont(f)) =
n+ 1 ≤ 1, so n = 0, contradicting the assumption that n ≥ 1.

Claim 2:
√

cont(f) is a proper ideal of R.
If
√
cont(f) = R, then 1 ∈

√
cont(f). Hence, for some n1 ∈ Z≥1, 1n1 = 1 ∈ cont(f), and

so cont(f) is not a proper ideal. This contradicts the assumption that ht(cont(f)) = n+ 1.

Claim 3 (Gauss’ Lemma [1, Exercise 3.4]): cont(g) · cont(h) ⊆
√

cont(f).
By ([3, Lemma 3.48]), √

I =
⋂

P∈V ar(I)

P.

For every prime ideal P of R, P [t] is a prime ideal of R[t]. If cont(f) ⊆ P , then f = g·h ∈ P [t]
and hence g ∈ P [t] or h ∈ P [t]. Therefore cont(g) ⊆ P or cont(h) ⊆ P , so cont(g)·cont(h) ⊆ P .
Since this is true for arbitrary P ⊇ cont(f),

cont(g) · cont(h) ⊆
⋂

P∈V ar(I)

P =
√
I.

Now, we return to the proof of the proposition. From Claims 2 and 3, we have that one of
cont(g) or cont(h) is a proper ideal of R. For otherwise 1·1 = 1 ∈ cont(g)·cont(h) ⊆

√
cont(f),

contradicting Claim 2.
Assume without loss of generality that cont(g) ( R. Since cont(f) ⊆ cont(g), we have

ht(cont(f)) ≤ ht(cont(g)). However, ht(cont(g)) ≤ p+1 by Krull’s Generalized Principal Ideal
Theorem. Therefore,

ht(cont(f)) = n+ 1 > deg(g) + 1 = p+ 1 ≥ ht(cont(g)) ≥ ht(cont(f)),

a contradiction. Recall that the first equality is by hypothesis. Hence, there does not exist such g,
and therefore f is irreducible over R.

Remark 3.3. 1) If f were allowed to have degree n = 0 in the statement of the proposition,
f = a2 ∈ R[t], for some non-unit 0 6= a ∈ R, would satisfy the conditions of this result, as
cont(f) = 〈a2〉 ⊂ R has height equal to 1. Obviously f is reducible in R[t], so the condition that
deg(f) ≥ 1 is necessary for f to be irreducible.

2) In the proposition, note that cont(f) is required to be a complete intersection of full
(maximum) height, that is, it is generated by ht(cont(f)) elements of R. This is maximal,
since by Theorem 2.6, ht(cont(f)) ≤ deg(f) + 1, and Proposition 3.1 requires equality. Let
f = x2 − y2t2 ∈ R[x, y][t]. Note that cont(f) = 〈x2, y2〉, which is a complete intersection
of height 2. However, f is reducible over R[x, y], since f = (x + yt)(x − yt). Therefore, the
condition that cont(f) be a complete intersection of full height is necessary for f to be irreducible.
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4 Main Result
The next result is an extension of Proposition 3.1.

Theorem 4.1. f = a0 + · · · + ant
n ∈ R[t] be a polynomial of degree n ≥ 1, where R is a

Noetherian integral domain. Suppose ht(cont(f)) = ` with ` ≥ 2. Then any factorization of f
into irreducible factors has at most n− `+ 2 terms.

Proof. We will prove this theorem by proving that f possesses an irreducible factor of degree
≥ `− 1.

If f is irreducible, then it is such a factor. Therefore, assume that f is reducible. Then, there
exists g1, h1 ∈ R[t] not units such that

f = g1 · h1.

By the argument of Proposition 3.1, one of cont(g1) or cont(h1) is a proper ideal of R. Assume
without loss of generality that cont(g1) ( R. Then ht(cont(f)) = ` ≤ ht(cont(g1)), since
cont(f) ⊆ cont(g1).

If g1 is irreducible, then it is an irreducible factor of f with ht(cont(g1)) ≥ ` so that by Theorem
2.6, deg(g1) ≥ `− 1.

On the other hand, if g1 is reducible, then applying the same argument used above to g1 yields
g2 such that g1 = g2 · h2 with cont(g2) ( R and ht(cont(g2)) ≥ ht(cont(g1)) ≥ `. Again, assume
that g2 is reducible (for otherwise, it would be the irreducible factor of f we are looking for); then,
repeatedly applying the same argument gives gj+1 where gj = gj+1 · hj+1 with cont(gj+1) ( R
and ht(cont(gj+1)) ≥ ht(cont(gj)).

Consider the sequence {deg(g1), deg(g2), . . .}. Clearly, this is a monotonic decreasing se-
quence that it is bounded below by `− 1, i.e.

deg(gj) ≥ deg(gj+1) ≥ · · · ≥ `− 1.

By the Monotone Convergence Theorem, this sequence converges, say at the index k. Then, since
R is an integral domain,

deg(gk) = deg(gk+1) + deg(hk+1),

so deg(hk+1) = 0. Hence, hk+1 = r ∈ R.
If r is not a unit, then ` = ht(cont(f)) ≤ ht(〈r〉) ≤ 1, contradicting the assumption ` ≥ 2.

Therefore, hk+1 is a unit and gk is not reducible. Hence gk is an irreducible factor of f of degree
≥ `− 1.

To conclude the proof, note that the condition ` ≥ 2 ensures that all irreducible factors of
f have degree ≥ 1. Hence, the number of terms in any factorization of f into irreducibles is
≤ n− deg(gk) + 1, which is ≤ n− `+ 2.

5 Two Examples
Example 5.1. Consider the polynomial

f = (x+ 1) + (y + 2)t+ 2(x+ y + 3)t2 + 4zt3 ∈ R[t]
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where R = Z[x, y, z]. Then

cont(f) = 〈x+ 1, y + 2, 2(x+ y + 3), 4z〉 = 〈x+ 1, y + 2, 4z〉.

Now, 〈x+1, y+2, 4z〉 ( 〈x+1, y+2, 2z〉 ( 〈x+1, y+2, z〉 is a chain of ideals of maximum length,
since 〈x+1,y+2,z〉

〈x+1,y+2,2z〉
∼= 〈x+1,y+2,2z〉
〈x+1,y+2,4z〉

∼= Z/2Z, a field. Hence, ht(cont(f)) = ht(〈x+ 1, y + 2, z〉) = 3,
since 〈x+ 1, y + 2, z〉 is the only prime ideal in the chain.

Since Z is a unique factorization domain and therefore every factorization of f into irreducibles
is the same, f has at most 2 irreducible factors by Theorem 4.1.

Example 5.2. Consider the polynomial g = x + yt + zt2 in the same integral domain as be-
fore. Then, ht(cont(g)) = 3, since 〈x, y, z〉 is a maximal (and therefore prime) ideal of height 3.
Because deg(g) + 1 = 3, g is irreducible by Proposition 3.1.
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