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Abstract. In 1967, Alexander Rosa introduced a new type of graph labeling called
a “graceful labeling.” This paper will provide some background on graceful labelings
and their relation to certain types of graphs called “pendant graphs.” We will also
present new results concerning a specific type of graceful labeling of pendant graphs
as well as further areas of research.
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1. Introduction

From elementary school students to university seniors, most students have some expo-
sure to graphs. The phrases “graph the function” and “based on the graph” are a common
occurrence in most standardized math courses. They conjure up images of coordinate axes
and intersecting curves, which often indicates that calculations involving slopes and area
are on the horizon. As the only exposure students have to graphs occur in geometry and
calculus-related courses, which only study graphs of this form, most students believe that
all graphs involve axes and functions. However, that is simply not true.

In fact, most types of graphs do not have coordinate axes or involve a specific function.
Outlines for essays, the game board for The Settlers of CatanR©, and fire evacuation route
plans are all examples of graphs without these characteristics. To understand why, consider
the definition of a graph.

Definition 1.1 A graph is a collection of points together with a collection of lines connecting
some subset of those points. The points are called vertices and the lines are called edges.

Notice that this definition does not incite an image students typically associate with
graphs. Instead, it seems to be more akin to childhood games and activities, such as “connect-
the-dots” puzzles and the Chinese board game Go. A closer look at the informal definition
of a graph of a function, however, shows otherwise.

Definition 1.2 The graph of a function f is the set of ordered pairs showing the values
taken by f over the domain of f .

Thus, a graph of a function can be thought of as a graph of vertices with no edges
connecting them! The curve does not look like a set of distinct vertices because there are in-
finitely many vertices “very close” together. Therefore, to a graph theorist, all of the images
in Figure 1 are considered to be graphs.

Figure 1

In the next few sections, we will discuss some of the basic properties of graphs, including
“graph labelings,” and how these can be assigned to different graphs. We will then define a
“graceful labeling” and study a few examples to understand when such a labeling exists and
how we can produce these labelings for certain types of graphs. The remainder of the paper
will then focus on “pendant graphs” and their graceful labelings. To conclude this paper,
we will see some new results as well as provide some open questions.
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2. Graph Theory Basics

The study of the properties and structures of graphs is called graph theory. Ideas and
results from graph theory have been used to help model a variety of systems, from engineer-
ing blueprints to outlining a college essay. Different properties may be more valuable for
modeling certain systems than others, so it is important to categorize graphs in terms of
their structure.

Example 2.1 Consider the graphs in Figure 2.

A B C
Figure 2

Although each graph contains 4 vertices and 6 edges (note that each arrow direction of graph
B determines an edge, so the segment connecting the top and bottom vertices is really 2
edges), some differences between the graphs are apparent. For example, graph C has a vertex
that is not connected by an edge to any other vertex in the graph. We say graph C is not
connected. To differentiate these graphs further, note the following definitions.

Definition 2.1 A graph is connected if there exists a sequence of edges (called a path) that
can be transversed from any vertex to any other vertex in the graph.

Definition 2.2 A graph is directed if the edges of the graph are assigned an initial and
terminal vertex. This is usually indicated by an arrowhead located somewhere along the
edge that points to the terminal vertex.

Definition 2.3 A graph is simple if it is an undirected graph that contains neither loops
nor multiple edges connecting the same vertices.

Definition 2.4 A pseudograph is a graph that may contain loops (i.e. an edge connecting a
vertex to itself) or multiple edges connecting the same pair of vertices.

Definition 2.5 Two vertices are adjacent if there is an edge connecting them.

Example 2.1 (cont.) To classify the graphs in Figure 2, consider whether each graph
has multiple edges connecting a pair of vertices or a loop, if the edges are directed, and
whether the graph is connected. Since graph C has a loop, three edges connecting the same
vertices, and no directions indicated along its edges, we can classify graph C as an undirected
pseudograph that is not connected. Similarly, the edges of graph B are directed, yet there is
still a path from any vertex of B to every other vertex of B. As there are two edges connecting
the top and bottom vertices, graph B is a connected, directed pseudograph. Finally, graph
A contains no loops or multiple edges and each vertex of A is adjacent to every other vertex
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of A. Therefore graph A is a simple, connected graph.

Based on these properties and others, graph theorists organize graphs into “families” of
graphs that share some predetermined traits. These families often have special names, such
as tree graphs, wheel graphs, and spraying pipe graphs. Example 2.2 defines and explains
another family of graphs, called complete graphs, which we will use later.

Example 2.2 Consider the graphs in Figure 3.

A B C
Figure 3

Graphs A, B, and C are all members of the complete graph family. To be a member of this
family, every pair of vertices in the graph must be connected by an edge. These graphs are
referred to as Kn where n is the number of vertices in the graph. Since graph A has only
one vertex, there is no pair of vertices that can be connected. Hence the lone vertex with
no edges is the complete graph K1. Graphs B and C are the complete graphs K3 and K6

respectively.

However, it should be noted that a graph can belong to more than one family. For ex-
ample, graph B is also the cycle on 3 vertices. So graph B is both the complete graph K3

and the cycle graph C3.

3. Graph Labelings

Along with its inherent structure, a graph can be assigned additional properties. This is
often accomplished by assigning labels to the vertices and edges of the graph.

Example 3.1 Suppose Figure 4 is modeling the population of frogs in a certain pond.

Figure 4

In its current state, the graph provides very little information about the size of the frog
population and how it changes over time. If we were to label the directed edges with the
birth rate and death rate of the population and the central vertex with the current frog
population, Figure 4 would become a more useful model of the frog population.

Definition 3.1 A graph labeling is an assignment of integers to the vertices, edges, or both
of a graph that is subject to certain conditions.

The suggested changes to Figure 4 are an example of a graph labeling. Specifically,
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the edges and vertices would be assigned integers that are subject to the conditions “the
directed edges are labeled with the birth rate and death rate of the population” and “the
central vertex is labeled with the current frog population,” respectively.

Example 3.2

4 3
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9
1011
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12

4

Figure 5

Figure 5 depicts another graph labeling where edges are labeled with the product of the
labels of the vertices they connect. Note that two edges are assigned the same label. This
is acceptable so long as the conditions chosen for the labeling do not require labels to be
unique.

Example 3.3 Consider the graph in Figure 6. The 6 vertices and 6 edges have been labeled
according to the following rules:

1. The edges must be labeled using each of the integers 1 through 6 once.

2. The vertices must be labeled using each of the integers 0 through 6 no more than once.

3. Every edge must be the positive difference of the vertex labels it connects.

0 6

2

1

5 3

6

42

5 3

1

Figure 6

The graph labeling shown in Example 3.3 is called a graceful labeling.
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4. Graceful Labelings

In 1967, Alexander Rosa [5] introduced a new type of graph labeling which he named a
β-labeling. As Rosa reflects in [6], it was believed these labelings would help solve Ringel’s
conjecture, which involves decomposing a complete graph into isomorphic subgraphs. This
type of labeling has since been renamed a graceful labeling and has been used to model sit-
uations in many fields, including radio astronomy, circuit design, coding theory, and X-ray
crystallography. It is formally stated in Definition 4.1.

Definition 4.1 A simple, connected graph with q edges is said to be graceful if its vertices
and edges are labeled such that:

(a) each vertex is assigned a distinct integer from the set {0, . . . , q} ,

(b) each edge is assigned a distinct integer from the set {1, . . . , q} such that the label is
equal to the absolute value of the difference of the two vertices the edge connects.

By returning to the labeling rules used in Example 3.3, it can be seen that the vertices
are assigned distinct integers from the set {0, . . . ,6} (by rule 2) and the edges are assigned
distinct integers from the set {1, . . . ,6} (by rule 1) so that each edge is the positive difference
of the vertex labels it connects (by rule 3).

The graceful labeling shown in Figure 6 is by no means the only graceful labeling for the
graph shown. In fact, this particular graph has 6 distinct graceful labelings. Other graphs
have more than 10,000 distinct graceful labelings. Yet many graphs cannot be gracefully
labeled.

Example 4.1 Reconsider the graphs from Figure 2 (shown below).

A B C
Figure 2

The definition of a graceful labeling requires a simple, connected graph. Thus, graphs B
and C do not have graceful labelings since neither is a simple, connected graph. Graph A,
however, might have a graceful labeling. In fact, an example of such a labeling is shown in
Figure 7.
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Figure 7

Finding a graceful labeling for a graph is usually accomplished through trial and error. In-
vestigators assign the vertices of the graph eligible labels and constantly check the differences
between the labels of adjacent vertices to ensure that the induced edge labels are distinct.
This process is tedious and does not efficiently find every possible graceful labeling of a
graph. Also, graph theorists tend to study families of graphs rather than individual graphs.
These families are often infinite since one can often add vertices and edges to a member of a
family to create a larger graph that still shares the same defining characteristics. Thus, since
there are usually infinitely many members of a family of graphs, proving that every graph of
a certain family has a graceful labeling cannot be accomplished by finding examples of such
a labeling for only finitely many family members.

Instead, researchers develop functions that, when given an input of q, return an ordered
set of integers. These integers, when used as vertex labels for the q vertices of a graph in
the specified order, produce a graceful labeling for the graph. By proving that the function’s
output will always induce a graceful labeling for a graph with specified characteristics (such
as belonging to a particular family of graphs), it then follows that all graphs that satisfy
those characteristics have a graceful labeling.

Example 4.2 Hebbare’s formula [4] for graceful labeling cycles Cn where n ≡ 0, 3 (mod 4)

is the sequence: 0, n, 1, n − 1, 2, n − 2, . . ., where the integer bn+1
4 c is omitted. Figure 8

shows the graceful labeling of C12 that follows this formula.
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Formulas like the one shown in Example 4.2 often rely on properties specific to the family
of graphs as well as the properties of graceful labelings. For instance, an n-cycle (or Cn)
has exactly n vertices and n edges. Since the vertices are labeled with integers from the
set {0, . . . , n}, which has n + 1 elements, exactly one of the possible vertex labels will not
appear in the graceful labeling. Also, a graceful labeling of the n-cycle requires the edges
to be labeled with distinct integers from the set {1, . . . , n}. This forces the vertex labels 0
and n to be used in the labeling and to be assigned to adjacent vertices (since n − 0 is the
only eligible difference that induces an edge label of n). These and other properties help
investigators develop new formulas for families of graphs that share these traits.

5. Pendant Graphs and Their Graceful Labelings

Definition 5.1 The corona G1 � G2 of graphs G1 and G2 is the graph obtained by taking
one copy of G1, which has p1 vertices, and p1 copies of G2, and then joining the ith vertex
of G1 by an edge to every vertex in the ith copy of G2.

Example 5.1: The following are two examples of the coronas of two graphs.

C7 �K2 C14 �K1

Figure 9

Definition 5.2 A pendant graph is a corona of the form Cn �K1 where n ≥ 3.

Example 5.2 Figure 6 and the second graph in Figure 9 are examples of pendant graphs.

Since the cycle Cn has n vertices and the complete graph K1 has 1 vertex, a pendant
graph consists of each vertex of the cycle being joined by an edge to a single vertex in the
corresponding copy of K1. The vertices of the copies of K1 are then referred to as pendant
vertices. Thus, a pendant graph has 2n vertices (n from the cycle and n from the copies of
K1) and 2n edges (n from the cycle and n edges joining the cycle to the copies of K1).

As evidenced by the graceful labeling shown in Figure 6, some pendant graphs have
graceful labelings. Graceful labelings of pendant graphs were investigated by Roberto Frucht
[1] in 1979. He found that these labelings fell into one of three categories.
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Definition 5.3 A graceful labeling of a pendant graph is of the:

1. first kind if the labels 0 and 2n are assigned to adjacent vertices of the n-gon.

2. second kind if 2n is assigned to a pendant vertex.

3. third kind if 0 is assigned to a pendant vertex.

Note that 0 and 2n cannot both be assigned to pendant vertices. This is because, like cycle
graphs, in order to get an edge difference of 2n, the vertex labels 0 and 2n must be assigned
to adjacent vertices (since 2n − 0 is the only eligible difference that induces an edge label
of 2n). Since no two pendant vertices are adjacent, 0 and 2n cannot both be assigned to
pendant vertices.

Example 5.3: Figure 10 provides examples of graceful labelings of the first, second, and
third kind.

0

4

5 10

2

12

11

7

3 1

9

6

4

1

5

8

10

12

11

3

2 9

7

6

0

6

4 8

1

11

12

5

7 3

9

2

6

2

4

7

10

11

12

1

3 5

8

9

First Kind Second Kind

12

3

8 4

11

1

0

6

7 2

5

9

9

5

4

7

10

11

12

3

1 2

6

8

Third Kind
Figure 10

Frucht was able to prove that all pendant graphs have a graceful labeling using separate
formulas for 4 different cases (one for each congruence class of n (mod 4)). However, his
formulas only produced graceful labelings of the second kind. Frucht was able to find enough
examples to conjecture that graceful labelings of the first kind exist for all pendant graphs
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as well, but he was unable to prove this claim.

In a 2013 paper [3], functions producing graceful labelings of the first kind for pendant
graphs with n ≡ 3, 4 (mod 8) were proved to exist (see Theorem 5.1 and Example 5.4).

Theorem 5.1 Let {v1, v2, . . . , vn} be the set of cycle vertices and {u1, u2, . . . , un} be the
set of pendant vertices for the pendant graph Cn �K1 where vi is adjacent to ui, vi−1, and
vi+1 if i ∈ {2, 3, . . . , n − 1}. Note that v1 is adjacent to u1, vn, as well as v2 and that vn
is adjacent to un, vn−1, and v1. If n ≡ 4 (mod 8), n > 12, the following function assigns a
vertex label f(vi) to the cycle vertex vi and assigns vertex label f(ui) to the pendant vertex
ui. The resulting labeling is a graceful labeling of the first kind for Cn �K1.

f(vi) =


0 if i = n

2n− i+ 1 if i = 1, 3, 5, . . . , n− 1
i+ 2 if i = n

2
, n
2

+ 2, n
2

+ 4, . . . , n− 2
i if i = 2, 4, 6, . . . , n

2
− 2

f(ui) =



2n− 1 if i = n
1 if i = n− 1

n
2

+ 1 if i = n− 2
2n− i+ 1 if i = 3n

4
+ 1, 3n

4
+ 3, 3n

4
+ 5, . . . , n− 4

i+ 6 if i = 3n
4
, 3n

4
+ 2, 3n

4
+ 4, . . . , n− 3

i+ 5 if i = 3n
4
− 1

i+ 4 if i = n
2
− 1, n

2
+ 1, n

2
+ 3, . . . , 3n

4
− 2

2n− i− 1 if i = 2, 4, 6, . . . , 3n
4
− 3

i+ 2 if i = 1, 3, 5, . . . , n
2
− 3

Example 5.4: Figure 11 shows the graceful labeling of the first kind for a pendant graph
with n = 20 produced by Theorem 5.1. Note that any cycle vertex can be chosen as v1 and
the labeling can proceed in either a clockwise or counterclockwise fashion without changing
the labeling. In this example, v1 (which receives the label 40) occurs at the bottom of the
cycle and the labeling proceeds in a counterclockwise fashion.
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Figure 11

6. New Results

In my investigation, I have continued the efforts of proving Frucht’s conjecture that
every pendant graph has a graceful labeling of the first kind. Although difficult, the process
became easier with the help of a Mathematica program I developed with the help of Ian
Douglas. When given an integer n, this program was able to find and list all graceful label-
ings of a pendant graph of cycle size n. The program was then modified to accept a partial
graceful labeling in addition to the size n so that the graceful labelings returned followed
the provided labeling. This decreased the number of labelings the program returned from
hundreds of thousands of possible labelings to in some cases less than 100 possibilities.

The program was used on values of n in the same congruence class (mod 8) to identify
patterns present in some of the labelings for each of these values of n. [Note that congruence
classes (mod 8) were chosen because the graceful labelings of pendant graphs with cycle sizes
n and n+ 8 appeared to be very similar.] These patterns would then be added to the partial
graceful labeling used by the Mathematica program and the program was run again for the
same values of n. This process continued until the program returned exactly one graceful
labeling for each tested n value. These labelings were then used to create a function that
would produce a graceful labeling for any value n of the same congruence class (mod 8) (or
in some cases (mod 16)). The function was then rigorously tested to ensure it was valid for
all such n before a proof for the function was written. Theorem 6.1 is an example of one of
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the results my investigation produced.

Theorem 6.1 Let {v1, v2, . . . , vn} be the set of cycle vertices and {u1, u2, . . . , un} be the
set of pendant vertices for the pendant graph Cn �K1 where vi is adjacent to ui, vi−1, and
vi+1 if i ∈ {2, 3, . . . , n − 1}. Note that v1 is adjacent to u1, vn, as well as v2 and that vn is
adjacent to un, vn−1, and v1. If n ≡ 2 (mod 8), n > 10, the following function assigns vertex
label f(vi) to the cycle vertex vi and assigns vertex label f(ui) to the pendant vertex ui.
The resulting labeling is a graceful labeling of the first kind for Cn �K1.

f(vi) =



2n− i+ 1 if i = 1, 3, 5, . . . , n
2

i if i = 2, 4, 6, . . . , n
2
− 1

n+ 2 if i = n
2

+ 1
3n
2
− 1− i if i = n

2
+ 2, n

2
+ 4, . . . , n− 3

n
2

+ 1 + i if i = n
2

+ 3, n
2

+ 5, . . . , n− 2
n
2

+ 1 if i = n− 1
0 if i = n

f(ui) =



3n
2

if i = n− 1
n if i = n

n
2

+ 2 + i if i = 3n+2
4
− 2

n
2
− 2 + i if i = 3n+2

4

i if i = 1, 3, 5, . . . , n
2

2n− i+ 1 if i = 2, 4, 6, . . . , n
2
− 1

3n
2
− 1− i if i = n

2
+ 1, n

2
+ 3, . . . , 3n+2

4
− 4

n
2
− 3 + i if i = n

2
+ 2, n

2
+ 4, . . . , 3n+2

4
− 1

n
2

+ 1 + i if i = 3n+2
4

+ 1, 3n+2
4

+ 3, . . . , n− 3
3n
2

+ 3− i if i = 3n+2
4

+ 2, 3n+2
4

+ 4, . . . , n− 2

Example 6.1: Figure 12 shows the graceful labeling of the first kind for a pendant graph
with n = 18 produced by Theorem 6.1. Note that any cycle vertex can be chosen as v1 and
the labeling can proceed in either a clockwise or counterclockwise fashion without changing
the labeling. In this example, v1 (which receives the label 36) occurs at the bottom of the
cycle and the labeling proceeds in a counterclockwise fashion.
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Proof. First, we shall verify that statement (a) of Definition 4.1 is satisfied. As no vertex
belongs to more than one line of the function, each vertex is assigned precisely one label.

Through close examination of the above function f , it can be seen that each vertex is
assigned a label from the set {0, . . . , 2n}. Specifically, the first line of f(ui) assigns the odd
integers from 1 to n

2
to unique pendant vertices of the graph. The second line of f(vi) assigns

the even integers from 2 to n
2

+ 1 to unique cycle vertices of the graph. Thus, all integers
from 1 to n

2
+ 1 are used in the graph labeling.

Similarly, the fourth line of f(vi) assigns the odd integers from n
2

+ 2 to n − 3 (since
3n
2
−1− (n

2
+2) = n−3, 3n

2
−1− (n

2
+4) = n−5, . . . , 3n

2
−1− (n−3) = n

2
+2) and the eighth

line of f(ui) assigns the even integers from n
2

+ 5 to 3n+2
4

(as 3n
2

+ 3 − (3n+2
4

+ 2) = 3n+2
4

,
3n
2

+ 3− (3n+2
4

+ 4) = 3n+2
4
− 2, . . . , 3n

2
+ 3− (n− 2) = n

2
+ 5). The odd integers from n− 1 to

5n+2
4
−4 are assigned by the fourth line of f(ui) (n

2
−3+(n

2
+2) = n−1, n

2
−3+(n

2
+4) = n+1,

. . . , n
2
− 3 + (3n+2

4
− 1) = 5n+2

4
− 4) and the even integers from 3n−2

4
+ 3 to n− 2 are assigned

by the the third line of f(ui) (3n
2
− 1 − (n

2
+ 1) = n − 2, 3n

2
− 1 − (n

2
+ 3) = n − 4, . . . ,

3n
2
− 1− (3n+2

4
− 4) = 3n−2

4
+ 3).

Clearly, the fifth and sixth lines of f(ui) assign the odd labels 5n+2
4
− 2 and 5n+2

4
and the

third line of f(vi) and last line of f(ui) assign the even labels n+ 2 and n. The seventh line
of f(ui) assigns the odd labels from 5n+2

4
+ 2 to 3n

2
− 2 (since n

2
+ 1 + (3n+2

4
+ 1) = 5n+2

4
+ 2,

n
2

+ 1 + (3n+2
4

+ 3) = 5n+2
4

+ 4, . . . , n
2

+ 1 + (n− 3) = 3n
2
− 2) and the fifth line of f(vi) assigns

the even integers from n+ 4 to 3n
2
− 1 (n

2
+ 1 + (n

2
+ 3) = n+ 4, n

2
+ 1 + (n

2
+ 5) = n+ 6, . . . ,

n
2

+ 1 + (n− 2) = 3n
2
− 1). Finally, the ninth and second line of f(ui) assign the odd labels

from 3n
2

to 2n−1 (since 2n−2+1 = 2n−1, 2n−4+1 = 2n−3, . . . , 2n−(n
2
−1)+1 = 3n

2
+2)
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and the first line of f(vi) assigns the even integers from 3n
2

+ 1 to 2n (as 2n − 1 + 1 = 2n,
2n− 3 + 1 = 2n− 2, . . . , 2n− (n

2
) + 1 = 3n

2
+ 1). Thus, all of the integers from 0 to 2n are

assigned to a unique vertex except the even label n
2

+ 3 which is omitted from the labeling.
Therefore each vertex must be assigned a unique label, which shows statement (a) is verified.

To verify statement (b) of Definition 4.1, we must calculate the differences of adjacent
vertex labels to determine the induced edge labels. We shall begin by checking the edge
labels induced by the cycle vertex labels of i and i+ 1.

When 1 ≤ i < n
2

and i is odd, the edge labels are f(vi)−f(vi+1) = (2n− i+1)− (i+1) =
2n − 2i, which produces values that start at 2n − 2 and decrease by 4 as i increases by 2
until i = n

2
− 2 (which always produces the label n). When 1 ≤ i < n

2
and i is even, the edge

labels are f(vi+1) − f(vi) = (2n − (i + 1) + 1) − (i) = 2n − 2i, which produces values that
start at 2n− 4 and decrease by 4 as i increases by 2 until i = n

2
− 1 (which always produces

the label n + 2). Therefore the sequentially increasing path of cycle edges from vertex 1 to
vertex n

2
have even edge labels 2n− 2, 2n− 4, . . . , n+ 2.

The edge label between i = n
2

and i + 1 is f(vi)− f(vi+1) = (2n− (n
2
) + 1)− (n + 2) =

3n
2
−1−n−2 = n

2
−3. When n

2
< i ≤ n−3 and i is odd, the edge labels are f(vi+1)−f(vi) =

(n
2
+1+(i+1))−(3n

2
−1−(i)) = 2i+3−n, which produces values that start at 7 and increase by

4 as i increases by 2 until i = n−3 (which always produces the label n−3). When i is even and
n
2
+1 ≤ i < n−2, the edge labels are f(vi)−f(vi+1) = (n

2
+1+(i))−(3n

2
−1−(i+1)) = 2i+3−n,

which produces values that start at 5 and increase by 4 as i increases by 2 until i = n − 4
(which always produces the label n− 5).Therefore the sequentially increasing path of cycle
edges from vertex n

2
+ 1 to vertex n− 2 have odd edge labels 5, 7, . . . , n− 3.

The edge label from n − 2 to n − 1 is f(vn−2) − f(vn−1) = (n
2

+ 1 + (n − 2)) − (n
2

+
1) = n − 2, from n − 1 to n is f(vn−1) − f(vn) = (n

2
+ 1) − (0) = n

2
+ 1, and from

n to 1 is f(v1) − f(vn) = (2n − (1) + 1) − (0) = 2n. Thus, the cycle edge labels are
5, 7, 9, . . . , n− 3, n− 2, n

2
− 3, n

2
+ 1, n+ 2, n+ 4, . . . , 2n.

Next, we shall check the edge labels induced by the cycle and pendant vertex labels for
each i. When 1 ≤ i ≤ n

2
and i is odd, the edge labels are f(vi)− f(ui) = (2n− i+ 1)− (i) =

2n− 2i + 1, which produces values that start at 2n− 1 and decrease by 4 as i increases by
2 until i = n

2
(which always produces the label n + 1). When i is even and 1 ≤ i ≤ n

2
− 1,

the edge labels are f(ui)− f(vi) = (2n− (i) + 1)− (i) = 2n− 2i+ 1, which produces values
that start at 2n − 3 and decrease by 4 as i increases by 2 until i = n

2
− 1 (which always

produces the label n + 3). Therefore the pendant-cycle edges for 1 ≤ i ≤ n
2

have odd edge
labels 2n− 1, 2n− 3, . . . , n+ 1.

The pendant-cycle edge when i = n
2

+ 1 is f(vi) − f(ui) = (n + 2) − (3n
2
− 1 − (n

2
+

1)) = n + 2 − (n − 2) = 4. When n
2

+ 2 ≤ i ≤ 3n+2
4
− 1 and i is odd, the edge labels

are f(ui) − f(vi) = (n
2
− 3 + (i)) − (3n

2
− 1 − (i)) = 2i − n − 2, which produces values

that start at 2 and increase by 4 as i increases by 2 until i = 3n+2
4
− 1 (which always

produces the label n
2
− 3). When i is even and n

2
+ 3 ≤ i ≤ 3n+2

4
− 4, the edge labels are

f(vi)− f(ui) = (n
2

+ 1 + (i))− (3n
2
− 1− (i)) = 2i− n+ 2, which produces values that start

at 8 and increase by 4 as i increases by 2 until i = 3n+2
4
− 4 (which always produces the

label n
2
− 5).Therefore the pendant-cycle edges for even i where n

2
+ 1 ≤ i ≤ 3n+2

4
− 4 have
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edge labels 4, 8, 12 . . . , n
2
− 5 and for odd i where n

2
+ 2 ≤ i ≤ 3n+2

4
− 1 have edge labels

2, 6, 10, . . . , n
2
− 3. Thus the even labels from 2 to n

2
− 3 are induced.

When i = 3n+2
4
− 2, the pendant-cycle edge is assigned f(ui)− f(vi) = (n

2
+ 2 + (3n+2

4
−

2)) − (n
2

+ 1 + (3n+2
4
− 2) = 1 and when i = 3n+2

4
, the pendant-cycle edge is assigned

f(vi)− f(ui) = (n
2

+ 1 + (3n+2
4

))− (n
2
− 2 + (3n+2

4
)) = 3. The edge labels assigned when i is

odd and 3n+2
4

+ 1 ≤ i ≤ n− 3 are f(ui)− f(vi) = (n
2

+ 1 + (i))− (3n
2
− 1− (i)) = 2i+ 2− n,

which produces values that start at n
2

+5 and increase by 4 as i increases by 2 until i = n−3
(which always produces the label n− 4). Similarly, when i is even and 3n+2

4
+ 2 ≤ i ≤ n− 2

are f(vi) − f(ui) = (n
2

+ 1 + (i)) − (3n
2

+ 3 − (i)) = 2i − 2 − n, which produces values that
start at n

2
+ 3 and increase by 4 as i increases by 2 until i = n− 2 (which always produces

the label n− 6). Thus the even labels from n
2

+ 3 to n− 4 are induced.
Finally, when i = n−1, the pendant-cycle edge is labeled f(ui)−f(vi) = (3n

2
)−(n

2
+1) =

n−1 and when i = n, the pendant-cycle edge is labeled f(ui)−f(vi) = (n)− (0) = n. Thus,
the edge labels are unique and are from the set {1, . . . , 2n}, so statement (b) is satisfied.
Therefore the pendant graph is gracefully labeled.

Remark 6.1 Graceful labelings of the first kind exist for those pendant graphs with values
of n smaller than the restriction given in Theorem 6.1. For these small values of n, some
vertices belong to multiple portions of the piecewise function. A graceful labeling can be
produced using the function from Theorem 6.1 by letting the first label a vertex is assigned
by the formula to be the label of that vertex (i.e. vertex labels are then assigned in the
order they are listed in the piecewise function). For example, in the pendant graph n = 10,
the vertex u6 corresponds to both i = 3n+2

4
− 2 and i = n

2
+ 1. By following the rule stated

above, this vertex is assigned the label f(u6) = 10
2

+ 2 + (3(10)+2
4
− 2) = 5 + 8 = 13.

7. Conclusion and Open Questions

When Alexander Rosa [5] introduced his new β-labelings in 1967, he believed they would
help solve Ringel’s conjecture. Little did he know that graceful labelings would be used in a
much broader scope. Over the past 45 years, graceful labelings have been used to model a
variety of situations in several fields.

Finding graceful labelings for a specific graph or model, however, is often difficult. So, re-
searchers have created formulas that produce a graceful labeling for specific types of models,
which saves time and energy. Recently, new formulas have been found to provide graceful
labelings of the first kind for pendant graphs of cycle size n ≡ 2, 3, 4 (mod 8). Other for-
mulas (which are still being verified) seem to produce graceful labelings of the first kind for
pendant graphs with cycle sizes n ≡ 5, 6 (mod 8). No such formulas have yet been identified
for those of cycle size n ≡ 0, 1, 7 (mod 8).

Other open questions involve adapting these or other formulas to find functions that
produce graceful labelings for other similar families of graphs. For example, are unicyclic
graphs, which are graphs that contain exactly one cycle, graceful so long as the cycle Cn is
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of size n ≡ 0, 3 (mod 4)? Could the graceful labeling formulas for pendant graphs (which
are a type of unicyclic graph) be adapted to help prove this conjecture? Are there other
formulas that produce graceful labelings for pendant graphs that would be more beneficial
in certain applications?

There are many more unanswered questions concerning graceful labelings of graphs. The
interested reader can find more conjectures and results for graceful and other types of graph
labelings in a survey by Gallian [2].
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