
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal 

Volume 14 
Issue 1 Article 9 

Generic Polynomials for Transitive Permutation Groups of Degree Generic Polynomials for Transitive Permutation Groups of Degree 

8 and 9 8 and 9 

Bradley Lewis Burdick 
The Ohio State University, burdick.28@buckeyemail.osu.edu 

Jonathan Jonker 
Michigan State University 

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj 

Recommended Citation Recommended Citation 
Burdick, Bradley Lewis and Jonker, Jonathan (2013) "Generic Polynomials for Transitive Permutation 
Groups of Degree 8 and 9," Rose-Hulman Undergraduate Mathematics Journal: Vol. 14 : Iss. 1 , Article 9. 
Available at: https://scholar.rose-hulman.edu/rhumj/vol14/iss1/9 

https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol14
https://scholar.rose-hulman.edu/rhumj/vol14/iss1
https://scholar.rose-hulman.edu/rhumj/vol14/iss1/9
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol14%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol14/iss1/9?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol14%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages


Rose-
Hulman
Undergraduate
Mathematics
Journal

Sponsored by

Rose-Hulman Institute of Technology

Department of Mathematics

Terre Haute, IN 47803

Email: mathjournal@rose-hulman.edu

http://www.rose-hulman.edu/mathjournal

Generic Polynomials for
Transitive Permutation Groups

of Degree 8 and 9

Bradley Lewis Burdicka Jonathan Jonker b

Volume 14, No. 1, Spring 2013

aThe Ohio State University
bMichigan State University



Rose-Hulman Undergraduate Mathematics Journal

Volume 14, No. 1, Spring 2013

Generic Polynomials for Transitive
Permutation Groups of Degree 8 and 9

Bradley Lewis Burdick Jonathan Jonker

Abstract. We compute generic polynomials for certain transitive permuta-
tion groups of degree 8 and 9, namely SL(2,3), the generalized dihedral group:
C2 ⋉ (C3 × C3), and the Iwasawa group of order 16: M16. Rikuna proves the ex-
istence of a generic polynomial for SL(2,3) in four parameters in [13]; we extend
a computation of Gröbner in [5] to give an alternative proof of existence for this
group’s generic polynomial. We establish that the generic dimension and essential
dimension of the generalized dihedral group are two. We establish over the rationals
that the generic dimension and essential dimension of SL(2, 3) and M16 are four.
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1 Introduction

Since Galois first proved his correspondence theorem the main conjecture of Galois theory
has been to construct Galois extensions with any given Galois groups. This conjecture is
called “the inverse Galois problem.” An early advancement of Noether, since named the
“Noether Problem,” gives a computational solution to the inverse Galois problem. Suppose
a group G can be faithfully represented as a subgroup of GLn(k), then we extend the action
of G to the field of rational functions in n variables, k(x), by composition, i.e. if f ∈ k(x),
then g(f) = f ◦ g−1. Noether’s problem is then concerned with k(x)G, the subset fixed by
the action of G, and it can be phrased as follows.

Noether’s Problem: Is k(x)G rational, i.e. does there exist an algebraically inde-
pendent k-basis for k(x)G?

Over a number field, to have a solution to Noether’s problem implies a solution to the inverse
Galois problem (it follows from Hilbert’s irreducibility theorem). But having a solution to
Noether’s problem is actually a more stringent property than having a solution to the inverse
Galois problem. In 1969, Swan [14] showed that C47 fails to have a solution for the former,
yet all cyclic groups are Galois groups over the rationals and so have a solution for the latter.

So perhaps Noether’s problem is too crude. When thinking of Galois extensions as
splitting fields of polynomials it becomes natural to ask an intermediate question. One
might call it the “generic polynomial problem,” and it phrased as follows.

Generic Polynomial Problem: Is there a generic polynomial for G over k?

Where by “generic,” we mean that all Galois extensions with a certain group G over a field
k are the splitting field of the polynomial (see Definition 2.1). One might hope that all
groups for which there exists Galois extensions have generic polynomials, but this is not the
case. For instance, C8 has no generic polynomial over the rationals, though there are most
definitely Galois extensions with group C8 [12].

We restrict our attention to answering the generic polynomial problem for three groups
of interest, namely SL2(F3), C2 ⋉ (C3 × C3), and M16. We will introduce our notation and
procedure in Section 2. The final three sections are each devoted to an individual group,
its background in the generic polynomial question, and then the computations necessary to
exhibit its generic polynomial. The significant facts of our results can be stated as follows.

Results 1.1. There exists a generic polynomial for C2 ⋉ (C3 ×C3) in two parameters (4.6)
and for M16 and SL2(F3) in four parameters (3.6,5.10). Moreover, over Q the generic and
essential dimensions for C2⋉ (C3×C3) are two (4.9,4.11) and for M16 and SL2(F3) are four
(5.11,3.9).
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2 Background

Throughout this paper G will be a finite group, and k will be a field assumed to have
characteristic relatively prime to the order of the group being considered (namely neither
two nor three). For ease of notation we will give the following notation and presentations to
our three groups of interest.

Γ1 = SL2(F3), Γ2 = C2 ⋉ (C3 × C3) = 〈x, y, z|x2 = y3 = z3, xyx = y2, xzx = z2〉,

Γ3 =M16 = 〈x, y|x2 = y8, xyx = y5〉.

Where the special linear group’s presentation is implicit. The notation and definitions in-
troduced in Section 1 will be maintained through the paper.

The purpose of this paper is to answer the generic polynomial problem for Γ1, Γ2, and
Γ3 over k of characteristic relatively prime to the group’s order. As stated, the generic
polynomial of G over k provides every polynomial whose splitting field over k has as a
Galois group a subgroup of G. To be precise:

Definition 2.1. A monic, separable polynomial P (x, T ) ∈ k(x)[T ], where x is a vector of
length n, is a generic polynomial for G over k if the following conditions are met.

1. Gal(P/k(x)) ∼= G.

2. If m/l is Galois with group G and k ⊆ l, then m is the splitting field for P (a, T ) for
some a ∈ ln.

While the explicit polynomial can vary depending on choice of transcendence basis for k(x),
the second condition gives a map from any one generic polynomial to another. Thus, while
our problem is to prove the existence of such polynomials, uniqueness is very much opposed
to genericness. Instead, generic polynomials provide an arithmetic function on finite groups.

Definition 2.2. The minimal length of the vector x in Definition 2.1 is called the generic
dimension of G over k and is denoted gdk(G). If there is no generic polynomial for G over
k, then gdk(G) = ∞.

Since having a generic polynomial is a weaker condition then satisfying the Noether
problem, it is also harder to establish the existence of one. An elementary example is given
by Artin-Schreier theory.

Example 2.3. xp − x− t ∈ Fp[x, t] is Cp-generic over Fp [11].

To establish that this was a generic polynomial is nonconstructive, whereas to establish that
Cp satisfies the Noether problem over Fp only requires the construction of a transcendence
basis.

Though the focus of this paper is the existence of generic polynomials, our main work
is actually the computations involved in solving Noether’s problem for these groups. The
following theorem of Kemper and Mattig will do all the theoretical work needed to prove
that the polynomials we exhibit are generic. The theorem proves that an answer to Noether’s
Problem implies the existence of a generic polynomial. The theorem is constructive.
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Theorem 2.4. [10, Theorem 3] Let G be a finite group and V an m-dimensional, faithful
linear representation of G over a field k. If x is a basis for V , then k(V ) := k(x). Assume that
k(V )G = k(v), where v is a transcendence basis. Choose a finite G-stable subset M ⊆ k(V )
such that k(V ) = k(V )G(M). If

f(T ) :=
∏

y∈M

(T − y) ∈ k(V )G[T ],

then f(T ) is a polynomial with coefficients in k(v) and is a generic polynomial for G over k.

Our procedure will follow the construction in this theorem. For each group, we will
define a representation (the theorem does not specify a choice of representation). Then we
will determine the fixed field. Since each group we are interested in is solvable, we will
consider the subnormal series. We will compute the fixed fields of each successive group
in the subnormal series, and this will resolve with the fixed field of the full group. After
completing this process we will have shown that each group satisfies the Noether problem,
and by Theorem 2.4 we conclude that a generic polynomial exists.

We would also like to exhibit the smallest possible generic polynomials in the sense that
the number of parameters in minimal. There is a concept related to generic dimension called
essential dimension.

Definition 2.5. [7] The essential dimension of a group G over a field k is denoted as follows.
If V is the regular representation of G, then

edk(G) = min{trdegkE : G acts faithfully on E ⊆ k(V )}.

Where a group need not have a defined generic dimension, every group has finite essential
dimension. The following lemma is well known, and an open conjecture strengthens it to
equality.

Lemma 2.6. [6, Proposition 8.2.10] edk(G) ≤ gdk(G).

We will use this lemma to verify that equality holds for each of our groups and that our
polynomials are indeed minimal.

3 A Generic Polynomial for SL2(F3) in Four Parameters

Let Γ1 be the special linear group of degree two over the field of order three. We will compute
the generic polynomial by the method of Kemper and Mattig.

We begin by defining a faithful linear representation of Γ1 in dimension 4 over k (of
characteristic not 2 nor 3). Let {x1, x2, x3, x4} be a basis of V such that the following act
by left multiplication of column vectors.

i :=









0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0









, τ :=









1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0









,
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Proposition 3.1. 〈i, τ〉 ∼= Γ1.

Proof. Using the fact that Γ1
∼= C3⋉Q8 (where C3 acts on the quaternion group by permuting

i, j, and k), one may check that i, j := τiτ−1, and k := τjτ−1 interact as the usual generators
of Q8 and that τ generates a disjoint cyclic subgroup of order three inside GL4(k) and
conclude that 〈i, τ〉 ∼= C3 ⋉Q8

∼= Γ1.

At the time [6] was written, the existence (or nonexistence) of a generic polynomial had
been established for groups of order ≤ 32 except for Q16 (the generalized quaternions) and
Γ1. For Q16, the Noether problem has since been answered in the negative, and the generic
polynomial problem has been answered in the negative over the rationals as noted in [8] as a
result of [4] . It would seem that Γ1 remains the last unknown for groups of order ≤ 32, but
in an unpublished work [13], Rikuna proves an affirmative answer of Noether’s problem for
Γ1. If true, this would imply the existence of a generic polynomial. We proceed in a similar
but simpler manner. As noted above, Γ1

∼= C3 ⋉ Q8, and both C3 and Q8 are known to
satisfy Noether’s problem [6], [5]. We utilize these facts to make easy work of the heretofore
stubborn group SL2(F3).

3.1 The Fixed Field of Γ1

Our choice of representation is meant to coincide with the result of Gröbner. If A :=
〈i, j, k〉, then A ∼= Q8 and has the representation used in [5]. We will provide the basis of
k(x1, x2, x3, x4)

A, and examine the action of 〈τ〉 on this basis. After finding the fixed points
of this action, the computation of k(x1, x2, x2, x4)

Γ1 will be complete.

3.1.1 The Fixed Field of A

The following theorem was computed entirely in Gröbner’s paper [5].

Theorem 3.2. [5, Formula 9] If A has the representation given above, then
k(x1, x2, x3, x4)

A = k(j1, j2, j3, j4) where ji is as follows.

j1 = −
2(x2x3 − x1x4)(−x1x3 + x2x4)

x1x3 + x2x4

j2 =
x21 + x22 − x23 − x24
x1x3 − x2x4

j3 = −
x2x3 + x1x4
−x1x3 + x2x4

j4 = 2(x21 + x22 + x23 + x24)
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3.1.2 The Fixed Field of 〈τ〉

Let us now consider the action of τ induced on {j1, j2, j3, j4} by acting on each yi. One may
check that it is described as follows.

τ : (j1, j2, j3, j4) →

(

j1j4(4j1 + j1j
2
2 + 4j1j

2
3 + j2j3j4)

2j3(4j21 + j21j
2
2 + 4j21j

2
3 + j24)

,
j1j2j3 − j4
j1(1 + j23)

,
j1j2 + j3j4
2j1(1 + j23)

, j4

)

.

Since this is highly nonlinear (save for the action on j4, which is constant), finding a basis
for the field k(j1, j2, j3, j4)

〈τ〉 would seem arduous. As mentioned, if τ were to act by cyclic
permutation, then a basis for the field of invariants is well known [6]. The solution set,
τ(j1, j2, j3, j4) = (j1, j2, j3, j4), is a rational curve over k(j4). This suggests that τ would be
conjugate to a linear action. Indeed the miracle is that we can reduce our problem to such
an action via the following lemma.

Lemma 3.3. If (r1, r2, r3, r4) = (j2, τ(j2), τ
2(j2), j4), then k(j1, j2, j3, j4) =

k(r1, r2, r3, r4).

Proof. It suffices to express j1 and j3 in terms of r1, r2, r3, and r4. A calculation shows the
following.

j1 = −
r4(−8 + r1r2r3)

2

(16 + 4r21 + r21r
2
2)(4r2 + 2r1r3 + r2r23)

j3 =
2r1r2 + 4r3 + r21r3

−8 + r1r2r3
.

We now have k(x1, x2, x3, x4)
A = k(r1, r2, r3, r4) and the action of τ simplified to the

following.
τ : (r1, r2, r3, r4) 7−→ (r2, r3, r1, r4).

Now we may cite the following theorem.

Lemma 3.4. [6, Section 2.1] k(r1, r2, r3, r4)
〈τ〉 = k(d1, d2, d3, d4), where

d1 =
(r1 − r2)

2(r2 − r3) + (r1 − r2)(r2 − r3)
2

(r1 − r2)2 + (r1 − r2)(r2 − r3) + (r2 − r3)2

d2 =
(r1 − r2)

3 − 3(r1 − r2)(r2 − r3)
2 − (r2 − r3)

3

(r1 − r2)2 + (r1 − r2)(r2 − r3) + (r2 − r3)2

d3 = r1 + r2 + r3

d4 = r4

Since A E Γ1, we have that k(x1, x2, x3, x4)
Γ1 = (k(x1, x2, x3, x4)

A)Γ1/A. This proves the
following theorem.

Theorem 3.5. k(x1, x2, x3, x4)
Γ1 = k(r1, r2, r3, r4).
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3.2 A Generic Polynomial of Γ1 in Four Parameters

To apply Theorem 2.4 we need only to choose a Γ1-stable subset V that satisfies k(x1, x2, x3, x4)
Γ1(V) =

k(x1, x2, x3, x4). The easiest choice is the set generated by {x1, x2, x3, x4} under the action
of Γ1. This is just V = {±x1,±x2,±x3,±x4}. Then we let h be as follows.

h(T ) :=
4
∏

i=1

(T 2 − y2i ) ∈ k(x1, x2, x3, x4)
Γ1 [T ].

Now one may replace the coefficients of h with functions in k(r1, r2, r3, r4). Then h(T ) =
j(T ) ∈ k(x1, x2, x3, x4)

Γ1 [T ]. Our computations have yielded an explicit j(r1, r2, r3, r4, T ),
which these margins are too narrow to contain. We do, however, have the following existence
theorem.

Theorem 3.6. j ∈ k(r1, r2, r3, r4)[T ] is an even, degree 8 generic polynomial in four param-
eters for SL2(F3) over k.

3.2.1 The Minimality of j

We have answered the generic polynomial problem for Γ1 by answering the Noether problem.
We would additionally like to say that j is minimal, minimal in the sense of degree and the
number of parameters. The minimal degree of the polynomial depends on the permutation
group’s degree, and Γ1 is indeed a degree 8 permutation group. We will now establish that
j has the minimal number of parameters, i.e. that j realizes gdk(Γ1). Theorem 3.6 already
provides an upper bound for gdk(Γ1), namely 4. The following will be used to conclude in
Theorem 3.9 that the number of parameters of j is indeed the generic dimension.

Lemma 3.7. [6, Proposition 8.2.7] If H ≤ G, then edk(H) ≤ edk(G).

Theorem 3.8. [9, Theorem 4.1] Let G be a p-group and k a field of characteristic differ-
ent from p containing a primitive p-th root of unity. Then edk(G) coincides with the least
dimension of a faithful representation of G over k.

Theorem 3.9. edQ(Γ1) = gdQ(Γ1) = 4.

Proof. As we have remarked, Q8 →֒ Γ1, so from Lemma 3.7, edQ(Q8) ≤ edQ(Γ1). We apply
Theorem 3.8 to Q8 over Q. Indeed Q8 is a 2-group and Q contains the square roots of unity.
We find then that edQ(Q8) is the least degree of a faithful representation of Q8 over Q. This
is known to be 4. So we have that 4 = edQ(Q8) ≤ edQ(Γ1) ≤ gdQ(Γ1) ≤ 4.
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4 A Generic Polynomial for C2 ⋉ (C3 × C3) in Two Pa-

rameters

Let Γ2 be the generalized dihedral group of the elementary abelian group of order nine. We
will compute the generic polynomial by the method of Kemper and Mattig.

We begin by defining a faithful linear representation of Γ2 in dimension 4 over k (of
characteristic not 2 nor 3). Let {x1, x2, x3, x4} be a basis of V such that the following act
by left multiplication of column vectors.

ζ :=









1 −1 0 0
0 −1 0 0
0 0 1 −1
0 0 0 −1









η :=









0 −1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1









θ :=









1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 −1









.

Proposition 4.1. 〈ζ, η, θ〉 ∼= Γ2.

Proof. One may check that ζ2 = η3 = θ3 = 1, and that ζηζ = η2 and ζθζ = θ2.

This action can then be compressed faithfully to a subfield of transcendence degree 2. If
we let x = x1/x2 and y = x3/x4, and let Γ2 act on numerators and denominators indepen-
dently, one may check that this defines the following actions.

ζ : (x, y) 7−→ (1− x, 1− y) η : (x, y) 7−→

(

1

1− x
, y

)

θ : (x, y) 7−→

(

x,
1

1− y

)

.

This is no longer a linear representation of Γ2. We will first find the field fixed by this action,
k(x, y)Γ2 , and then use it to compute the field fixed by the linear action, k(x1, x2, x3, x4)

Γ2 .
The result will allow us to compute a generic polynomial with 2 rather than 4 parameters.

4.1 The Fixed Field of Γ2 Acting on k(x, y)

We proceed first by considering the normal subgroup of index 2 isomorphic to C3 × C3

generated by η and θ. Once this is done we consider the action of Γ2/〈η, θ〉 = 〈ζ〉 on
k(x, y)〈η,θ〉 to establish the generators of the full fixed field.

4.1.1 The Fixed Field of 〈η, θ〉

Since the orbits of x and y under η and θ are disjoint (i.e. only intersecting at x and y), we
may consider the fixed fields of the subgroups 〈η〉 and 〈θ〉 separately. Indeed since η acts on
(x, y) identically to how θ acts on (y, x), we need only compute k(x, y)〈η〉 to find the basis
of k(x, y)〈η,θ〉.

Lemma 4.2. k(x, y)〈η,θ〉 = k(x+ η(x) + η2(x), y + θ(y) + θ2(y))
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Proof. By symmetry, it suffices to prove that k(x, y)〈η〉 = k(x + η(x) + η2(x), y). Since
x+η(x)+η2(x) is the trace of x with respect to 〈η〉, it is contained in k(x, y)〈η〉. We define a
polynomial over k(x+ η(x)+ η2(x), y)[T ] that x satisfies. Note this trace is written in terms
of x as follows.

x+ η(x) + η2(x) =
−x3 + 3x− 1

(1− x)(x)
.

So x satisfies the following equation of rational functions and similarly the equivalent poly-
nomial equation.

−T 3 + 3T − 1

(1− T )(T )
= x+ η(x) + η2(x) ⇐⇒ −T 3 + 3T − 1− (x+ η(x) + η2(x))(1− T )(T ) = 0.

So x is a root of a cubic polynomial over k(x+ η(x) + η2(x), y), and

[k(x, y) : k(x+ η(x) + η2(x), y)] ≤ 3.

Moreover since k(x, y) over the fixed field is a degree three extension, we have

[k(x, y) : k(x+ η(x) + η2(x), y)] = [k(x, y) : k(x, y)〈η〉][k(x, y)〈η〉 : k(x+ η(x) + η2(x), y)]

= 3[k(x, y)〈η〉 : k(x+ η(x) + η2(x), y)] ≤ 3.

Thus we have that [k(x, y)〈η〉 : k(x+ η(x) + η2(x), y)] = 1.

4.1.2 The Fixed Field of 〈ζ〉

For ease of notation we make the following our transcendence basis of k(x, y)〈η,θ〉.

u := x+ η(x) + η2(x) v := y + θ(y) + θ2(y).

For ease in future computation we relabel again.

a := u− ζ(u) b := v − ζ(v).

It is clear that k(x, y)〈η,θ〉 = k(a, b), now with the added bonus that ζ(a, b) = (−a,−b).

Lemma 4.3. k(u, v)〈ζ〉 = k(a2, ab).

Proof. Note that ζ(a2, ab) = ((−a)2, (−a)(−b)) = (a2, ab), so k(a2, ab) ⊆ k(u, v)〈ζ〉. Further-
more T 2− a2 ∈ k(a2, ab)[T ] is irreducible with splitting field k(u, v), so [k(u, v) : k(a2, ab)] =
2. Since [k(u, v) : k(u, v)〈ζ〉] = 2, we must have that k(u, v)〈ζ〉 = k(a2, ab).
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4.1.3 The Fixed Field of Γ2 Acting on k(x, y)

Combining all the work thus far, we have proved the following theorem.

Theorem 4.4. k(x, y)Γ2 = k(a2, ab).

Peeling back substitutions we get the following transcendence basis of k(x, y)Γ2 in terms
of x and y.

a2 =
(−2 + x)2(1 + x)2(−1 + 2x)2

(−1 + x)2x2

ab =
(−2 + x)(1 + x)(−1 + 2x)(−2 + y)(1 + y)(−1 + 2y)

(−1 + x)x(−1 + y)y
.

4.2 The Fixed Field of Γ2

Consider the following functions.

c =
x1x2(x1 + x2)

x21 + x1x2 + x22
, and d =

x3x4(x3 + x4)

x23 + x3x4 + x24
.

One may check that c, d ∈ k(x1, x2, x3, x4)
Γ2 . We would like to express k(x1, x2, x3, x4)

Γ2 in
terms of a2, ab, c, and d.

Theorem 4.5. k(x1, x2, x3, x4)
Γ2 = k(a2, ab, c, d).

Proof. We apply the special case of Lüroth’s Theorem phrased at the end of [6, §1.1] to c
and d. Since they are homogeneous of degree 1 we may conclude the following.

k(x1, x2)
〈η〉 = k(x, c)〈η〉 = k(x)〈η〉(c) and k(x3, x4)

〈θ〉 = k(y, d)〈θ〉 = k(y)〈θ〉(d).

And since η and θ only act nontrivially on respectively {x1, x2} and {x3, x4}, we may conclude
the following.

k(x1, x2, x3, x4)
〈η,θ〉 = k(x, y)〈η,θ〉(c, d).

Now since k(x, y, c, d) ⊆ k(x1, x2, x3, x4), we have the following.

9 = [k(x1, x2, x3, x4) : k(x1, x2, x3, x4)
〈η,θ〉]

= [k(x1, x2, x3, x4) : k(x, y, c, d)][k(x, y, c, d) : k(x1, x2, x3, x4)
〈η,θ〉]

= [k(x1, x2, x3, x4) : k(x, y, c, d)][k(x, y, c, d) : k(x, y)
〈η,θ〉(c, d)]

= [k(x1, x2, x3, x4) : k(x, y, c, d)](9).

So k(x1, x2, x3, x4) = k(x, y, c, d). And finally:

k(x1, x2, x3, x4)
Γ2 = k(x, y, c, d)Γ2 = k(x, y)Γ2(c, d) = k(a2, ab, c, d).
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4.3 A Generic Polynomial of Γ2 in Two Parameters

Having found the fixed field of the action of Γ2, we may now apply Theorem 2.4. In order to
do so, we need a Γ2-stable subset N such that k(x1, x2, x3, x4)

Γ2(N ) = k(x1, x2, x3, x4). Since
c and d are already in k(x1, x2, x3, x4)

Γ2 , adjoining any set containing x and y works. So in
order to get a Γ2-stable subset containing x and y, we just let N = {g(x), g(y) : g ∈ Γ2}.
Since η and θ act trivially on y and x respectively, there are only 12 distinct elements of N .
Regardless, we have that the following polynomial can be written in terms of a2 and ab.

f(T ) :=
∏

ν∈N

(T − ν) ∈ k(x, y)Γ2 [T ].

Now one may replace the coefficients of f with functions in k(a2, ab). If we let ξ1 := a2 and
ξ2 := ab, then f(T ) = g(T ) ∈ k(x, y)Γ2 [T ] where g is as follows.

g(T ) = −
1

16ξ1
(−4 + 12T + 3T 2 − 26T 3 + 3T 4 + 12T 5 − 4T 6 + T 2ξ1 − 2T 3ξ1 + T 4ξ1)

(−T 2ξ22 + 2T 3ξ22 − T 4ξ22 + 4ξ1 − 12Tξ1 − 3T 2ξ1 + 26T 3ξ1 − 3T 4ξ1 − 12T 5ξ1 + 4T 6ξ1).

This however is not irreducible, and one would expect a generic polynomial for Γ2 to
have degree nine, since Γ2 ≤ S9. One can choose a better Γ2-stable subset satisfying the
conditions of Theorem 2.4; take for instance W = {g(xy−1 + ζ(xy−1)) : g ∈ Γ2}. Then

φ(T ) :=
∏

µ∈W

(T − µ) ∈ k(x, y)Γ2 [T ]

can be factored so that φ(T ) = ψ(T ) ∈ k(ξ1, ξ2) where ψ is as follows.

ψ(T ) = −(−64T 9ξ32 − 32T 8ξ1ξ
3
2 + 288T 8ξ32 − 4T 7ξ21ξ

3
2 + 84T 7ξ21ξ

2
2 + 128T 7ξ1ξ

3
2 +

36T 7ξ42 + 396T 7ξ32 + 24T 6ξ31ξ
2
2 + 12T 6ξ21ξ

3
2 − 324T 6ξ21ξ

2
2 + 8T 6ξ1ξ

4
2 − 32T 6ξ1ξ

3
2 −

180T 6ξ42 − 3540T 6ξ32 + T 5ξ41ξ
2
2 − 21T 5ξ41ξ2 − 64T 5ξ31ξ

2
2 − 38T 5ξ21ξ

3
2 + 126T 5ξ21ξ

2
2 −

24T 5ξ1ξ
4
2 − 136T 5ξ1ξ

3
2 + 189T 5ξ42 + 2655T 5ξ32 − 2T 4ξ51ξ2 − 2T 4ξ41ξ

2
2 + 36T 4ξ41ξ2 −

2T 4ξ31ξ
3
2 + 46T 4ξ31ξ

2
2 + 90T 4ξ21ξ

3
2 + 330T 4ξ21ξ

2
2 − 6T 4ξ1ξ

4
2 − 932T 4ξ1ξ

3
2 + 288T 4ξ42 +

10458T 4ξ32+T
3ξ61+2T 3ξ51ξ2+5T 3ξ41ξ

2
2+18T 3ξ41ξ2+4T 3ξ31ξ

3
2−40T 3ξ31ξ

2
2−62T 3ξ21ξ

3
2+

765T 3ξ21ξ
2
2+52T 3ξ1ξ

4
2+2222T 3ξ1ξ

3
2−495T 3ξ42−17256T 3ξ32−2T 2ξ51ξ2−4T 2ξ41ξ

2
2+

6T 2ξ41ξ2−2T 2ξ31ξ
3
2 +62T 2ξ31ξ

2
2 +34T 2ξ21ξ

3
2 −1278T 2ξ21ξ

2
2 −6T 2ξ1ξ

4
2 −1076T 2ξ1ξ

3
2 −

54T 2ξ42+2448T 2ξ32−36Tξ41ξ2−80Tξ31ξ
2
2−68Tξ21ξ

3
2−132Tξ21ξ

2
2−24Tξ1ξ

4
2−88Tξ1ξ

3
2+

252Tξ42+5040Tξ32+8ξ31ξ
2
2+16ξ21ξ

3
2−72ξ21ξ

2
2+8ξ1ξ

4
2−176ξ1ξ

3
2−72ξ42+800ξ32)(64ξ

3
2)

−1

Then as a direct result of Theorems 2.4 and 4.4 we have proved the following theorem.

Theorem 4.6. ψ(T ) ∈ k(ξ1, ξ2)[T ] is an odd, degree 9 generic polynomial for C2 ⋉ (C3 ×
C3) over k.
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4.3.1 The Minimality of ψ

We have successfully answered the generic polynomial problem for Γ2 by answering the
Noether problem. We again note that ψ has the minimum degree as a permutation group of
degree 9. We would also like to show that ψ is indeed a minimal generic polynomial in the
sense that gdk(Γ2) = 2. The following lemmas will be used to prove this in Theorem 4.9.

Lemma 4.7. [6, Proposition 8.1.4] If there is a generic polynomial for G over k in one
parameter, then G →֒ PGL2(k).

Lemma 4.8. [1, Lemma 2.1] If G ≤ PGL2(k) and G ∼= Cr
p , then r ≤ 1 if p is odd and r ≤ 2

if p is 2.

Theorem 4.9. gdk(Γ2) = 2.

Proof. By Lemma 4.8 and Lemma 4.7, we know that gdk(Γ2) 6= 1 lest (C3×C3) →֒ PGL2(k).
Since Γ2 is nontrivial, gdk(Γ2) 6= 0 by [7]. Finally, Theorem 4.6 provides explicitly a generic
polynomial in two parameters.

We make one further note along this line of thought. As mentioned in Section 2 we would
like to verify that edk(Γ2) = gdk(Γ2). We will use the following lemma to conclude this in
Theorem 4.11.

Lemma 4.10. [2, Lemma 7.2] If the essential dimension for G over k is one, then G →֒
PGL2(k).

Theorem 4.11. edk(Γ2) = gdk(Γ2) = 2.

Proof. By Lemma 4.10 and 4.8, we know that edk(Γ2) 6= 1 lest C3 × C3 →֒ PGL2(k). Since
Γ2 is nontrivial, edk(Γ2) 6= 0. And by Lemma 2.6, 1 < edk(Γ2) ≤ gdk(Γ2) = 2.

5 A Generic Polynomial for M16 in Four Parameters

Let Γ3 be the Iwasawa group of order 16. We will compute the generic polynomial by the
method of Kemper and Mattig.

We begin by defining a faithful linear representation of Γ3 in dimension 4 over k (of
characteristic not 2). Let {x1, x2, x3, x4} be a basis of V such that the following act by left
multiplication of column vectors.

σ :=









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









and ρ :=









0 0 0 −1
0 0 1 0
0 1 0 0
1 0 0 0









.

We will proceed by finding a basis for the fixed field of k(x1, x2, x3, x4), and then apply
Theorem 2.4.
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Proposition 5.1. 〈σ, ρ〉 ∼= Γ3.

Proof. One may check that σ2 = ρ8 = 1 and σρσ = ρ5.

Γ3 was called a modular 2-group by Iwa-
sawa in his classification of finite groups with
modular subgroup latices [3, Ex. 8], thus the
notation M2n . A lattice is modular if for any
element x ≤ y and any element z the identity
x∨ (z∧y) = (x∨z)∧y holds. One may check
that Γ3 with the given presentation has the
subgroup lattice on the right and that this
lattice is modular. In [11], Ledet exhibits a
generic polynomial for Γ3 in 5 parameters.

〈ρ, σ〉

〈ρσ〉

〈ρ2σ〉

〈ρ4σ〉

〈1〉

〈ρ2, σ〉

〈ρ4, σ〉

〈σ〉

〈ρ〉

〈ρ2〉

〈ρ4〉

Among abelian groups of this order, any with C8 as a subgroup has no generic polynomial
over Q [6]. one sees that there is difficulty for a generic polynomial to exist. It is an
established fact that an abelian group with C8 as a subgroup has no generic polynomial over
Q [6, §2.6]. The dihedral and quasi-dihedral groups, do have generic polynomials, but the
generalized quaternion group Q16 does not. To lower the number of parameters in Ledet’s
result we note the subnormal series 〈ρ4, σ〉 E 〈ρ2, σ〉 E Γ3.

5.1 The Fixed Field of Γ3

Determining the fixed field of such a group action is in general computationally hard, and
though there are computer programs that can compute invariants, they do not produce
transcendence bases. Thus the method we employ is iterative. We proceed by finding
an invariant basis of a normal subgroup H and repeat for the group Γ3/H. This process
terminates with the full basis since Γ3 is indeed solvable.

To eliminate the action of σ we begin by considering the subgroup H1 = 〈σ, ρ4〉 ∼= V4.
Since there are only three elements of order two in Γ3 and since any single order two element
is the product of the other two, there is only one subgroup isomorphic to V4, and thus it is
normal. After determining the fixed field of H1, we pass to the quotient G1 = Γ3/H1

∼= C4.
Note that G1 = 〈ρ〉, where ρ is the quotient class. In the body of this section we will drop the
over-line, since ρ and ρ will be acting the same just that ρ will act on elements previously
fixed by the quotient subgroup. Rather than considering the whole group G1 (since the
action will be quite complicated by this time), we consider the unique subgroup of order 2
denoted by H2 = 〈ρ2〉 ∼= C2. After establishing the fixed field of this subgroup we pass to
one final quotient, G2 = G1/H2 = 〈ρ〉 ∼= C2. Note that G2 is also isomorphic to the quotient
group of Γ3 with respect to the unique normal subgroup of index 2, N = 〈σ, ρ2〉 ∼= C2 × C4.
After finding the fixed field of G2, we will have finished the computation.
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5.1.1 The Fixed Field of H1

Let H1 := 〈σ, ρ4〉. Note that in the specified representation ρ4 = −I. First focusing on σ, we
see that we want to group x1 with x2 and x3 with x4 since each couple shares a sign under
the action. So x1x2 and x3x4 are fixed by both σ and ρ4, but we also should have all the
squares x2i . For convenience we choose to add x2x

−1
1 and x4x

−1
3 .

Lemma 5.2. k(x1x2, x3x4, x2x
−1
1 , x4x

−1
3 ) = k(x1, x2, x3, x4)

H1.

Proof. First we check explicitly that our proposed field is fixed by the action H1.

σ : (x1x2, x3x4, x2x
−1
1 , x4x

−1
3 ) 7−→ (x1x2, (−x3)(−x4), x2x

−1
1 , (−x4)(−x3)

−1).

ρ4 : (x1x2, x3x4, x2x
−1
1 , x4x

−1
3 ) 7→ ((−x1)(−x2), (−x3)(−x4), (−x2)(−x1)

−1, (−x4)(−x3)
−1).

So indeed k(x1x2, x3x4, x2x
−1
1 , x4x

−1
3 ) ⊆ k(x1, x2, x3, x4)

H1 . To see that equality holds,
it suffices to check that k(x1, x2, x3, x4)/k(x1x2, x3x4, x2x

−1
1 , x4x

−1
3 ) is an extension with

group H1. We note that (T 2 − x1x2(x2x
−1
1 ))(T 2 − x3x4(x4x

−1
3 )) has roots ±x2 and ±x4,

and thus the splitting field has group V4 (changing the signs of the roots). Furthermore
k(x1x2, x3x4, x2x

−1
1 , x4x

−1
3 )(x2, x4) = k(x1, x2, x3, x4).

We relabel indeterminates to avoid index overload.

t1 := x1x2, t2 := x3x4, t3 := x2x
−1
1 , t4 := x4x

−1
3 .

The action of ρ is now of order four (generating G1 = G/H1) on k(t1, t2, t3, t4):

ρ : (t1, t2, t3, t4) 7−→ (−t2, t1,−t
−1
4 , t3).

5.1.2 Eliminating t1 and t2

At this point one notices that we no longer are dealing with a linear action, so finding an
invariant basis is going to get sticky. One notices however that G1 continues to act linearly
on k(t1, t2), so we would hope to first deal with these. Indeed if we let L = k(t3, t4) then
we can think of k(t1, t2, t3, t4) as a two dimensional vector space over L, i.e. k(t1, t2, t3, t4) ∼=
Lt1+Lt2. The action of G1 on this, as a vector space, is now semi-linear, i.e. ρ(wt1+ zt2) =
ρ(w)ρ(t1) + ρ(z)ρ(t2). We would like to say that we can pick a new basis of this space that
is preserved by ρ. We have the following lemma from classical invariant theory.

Lemma 5.3. [6, Invariant Basis Lemma] Let M/K be a finite Galois extension with group
G, and let W be a finite-dimensional M-vector space on which G acts semi-linearly. Then
W has an M-basis invariant under G.

In our instance we let k(t3, t4)/k(t3, t4)
G1 to be M/K and W = k(t3, t4)t1 + k(t3, t4)t2.

The proof of the lemma provides a method of constructing the basis. Given a representation
r there is a matrix B =

∑

ρ r(ρ)ρ(C) (where C is some invertible matrix that exists due to
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Hilbert’s Theorem 90 [11]) such that B applied to the basis gives an invariant basis. In our
instance we know that

r(ρ) =

(

0 −1
1 0

)

, and let C =

(

t3 0
0 t3

)

.

The importance of C is only that B be invertible; it is otherwise arbitrary.

Corollary 5.4. v1 = (t−1
3 + t3)t1 + (t−1

4 + t4)t2 and v2 = (−t−1
4 − t4)t1 + (t−1

3 + t3)t2 are a
G1 invariant L-basis of W .

Proof. We directly apply the construction given in the proof of Lemma 5.3 in [6, p. 21].

B =
3

∑

i=0

(

0 −1
1 0

)i

ρi(t3)

(

1 0
0 1

)

=

(

(t−1
3 + t3) (t−1

4 + t4)
(−t−1

4 − t4) (t−1
3 + t3)

)

.

It is now clear that k(t1, t2, t3, t4)
G1 = LG1(v1, v2), and after the following corollary we

will restrict our attention to the action of G1 on k(t3, t4).

Corollary 5.5. k(t1, t2, t3, t4)
G1 = k(t3, t4)

G1(v1, v2)

5.1.3 The Fixed Field of H2

H2 = 〈ρ2〉, and ρ2 acts on k(t3, t4) as follows

ρ2 : (t3, t4) 7−→ (−t−1
3 ,−t−1

4 ).

We proceed by finding a spanning set for k(t3, t4)
H2 and refining that to a basis.

Lemma 5.6. k(t3, t4)
H2 is generated by {t3 − t−1

3 , t4 − t−1
4 , (t3 + t−1

3 )(t4 + t−1
4 )}

Proof. First we explicitly check that the field generated above is contained in k(t3, t4)
H2 .

The first two elements are the traces of t3 and t4 respectively and thus contained in the fixed
field. Also ρ2 fixes (t3 + t−1

3 )(t4 + t−1
4 ), since

ρ2 : (t3 + t−1
3 )(t4 + t−1

4 ) 7→ (−t−1
3 +−t3)(−t

−1
4 +−t4).

Note that k(t3, t4)/k(t3, t4)
H2 is a degree two extension. However k(t3, t4)/k(t3− t−1

3 , t4−
t−1
4 ) is degree four, since the following polynomial of degree four defines the extension:

p(X) = (X2 − (t3 − t−1
3 )X − 1)(X2 − (t4 − t−1

4 )X − 1).

So k(t1, t2)
H2 is the intermediate extension of degree two. Let q be as follows.

q(X) = X2 − ((t3 − t−1
3 )2 + 4)((t4 − t−1

4 )2 + 4).

One sees that q has (t3 + t−1
3 )(t4 + t−1

4 ) as a root, and so

[k(t3 − t−1
3 , t4 − t−1

4 , (t3 + t−1
3 )(t4 + t−1

4 )) : k(t3 − t−1
3 , t4 − t−1

4 )] = 2.

Thus k(t3 − t−1
3 , t4 − t−1

4 , (t3 + t−1
3 )(t4 + t−1

4 )) = k(t3, t4)
H2 .
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Note however that this set is not a transcendence basis since q is an algebraic relation
between the three. Now we begin the process of finding a basis from this set. To prevent
confusion, we relabel indeterminates again.

a1 = t3 − t−1
3 , a2 = t4 − t−1

4 , a3 = (t3 + t−1
3 )(t4 + t−1

4 ).

We have the following algebraic relation between the three given by q.

a23 − (a21 + 4)(a22 + 4) = 0.

We may think of this as a conic over k(a1) in the variables a2 and a3. From a trick of geometry
we know that we can parameterize conics with a single variable. We do so by parameterizing
the projection onto the a2-axis. We pick the obvious rational point (a1, a

2
1 + 4). Now we

parameterize the line between this point and an arbitrary point (2z, 0) (2z is chosen for ease
in later computation) on the a2-axis.

l(t) = (1− t)(a1, a
2
1 + 4) + t(2z, 0).

The nontrivial intersection of this line with the conic should give a single generator of
k(a1)(a2, a3). So one solves the following in terms of t.

(l(t)2)
2 − ((l(t)1)

2 + 4)(a22 + 4) = 0.

One finds that t = 0 or t = (2 + a1z)(1 + a1z − z2)−1. Now we plug this t back into l(t) to
get a new generic point on the conic.

(a2, a3) =

(

−
−a1 + 4z + a1z

2

−1− a1z + z2
,−

(4 + a21)(1 + z2)

a+ a1z − z2

)

.

This proves the following claim.

Lemma 5.7. k(t3, t4)
H2 = k(a1, z).

We now want to put this back in terms of t1 and t2, to define the action of ρ on z and
a1. To solve for z in these terms we set the a3 component of the above generic point equal
to the definition of a3 and solve for z:

−
(4 + a22)(1 + z2)

a+ a2z − z2
= (t3 + t−1

3 )(t4 + t−1
4 ).

One finds that there is a choice of two solutions; we pick the following.

a1 = (t3 − t−1
3 ), z =

−t3 − t4
−1 + t3t4

.



RHIT Undergrad. Math. J., Vol. 14, No. 1 Page 129

5.1.4 The Fixed Field of G2

Since we have found the fixed field of H2 we may now consider the action of G2 = G1/H2.
Finding k(a1, z)

G2 will complete the computation of k(x1, x2, x3, x4)
Γ3 .

Note that ρ now acts with order two on a1 and z as follows:

ρ : (a1, z) 7−→

(

(z2 − 1)a1 + 4z

za1 + (1− z2)
,−z−1

)

.

The action of ρ on a1 is relatively complicated compared to the action on z, but it is just
the Möbius transformation corresponding to the following class in PGL2(k(z)).

[

(z2 − 1) 4z
z (1− z2)

]

∼

[

−(1 + z2) 0
0 (1 + z2)

]

.

This diagonalized matrix’s companion matrix applied to a1 (as a Möbius transformation)
will give a new basis element that ρ will act on nicely. For aesthetic purpose, let z := z1,
then let

z2 :=

[

− 2
z1

2z1
1 1

]

(a1) = −
(a1 − 2z1)z1
2 + a1z1

.

Now one can see that ρ(z2) = −z−1
2 , and z2 and z1 are still a basis of k(t1, t2)

H2 .
The question now is to find a basis for k(z1, z2)

G2 . We have that G2 = 〈ρ〉 and ρ(z1, z2) =
(−z−1

1 ,−z−1
2 ). But this is completely analogous to §5.1.3, only with the symbols (t1, t2)

replaced by (z1, z2). So, we have already symbolically found a basis of the fixed field, and it
is given by a1 and z with the substitutions of (t3, t4) 7→ (z1, z2).

w1 = z1 − z−1
1 , w2 =

−z1 − z2
z1z2 − 1

.

Corollary 5.8. k(a1, z)
G2 = k(w1, w2).

5.1.5 The Fixed Field of Γ3

Combining all of our efforts thus far, we remember that k(t1, t2, t3, t4)
Γ3 = k(t3, t4)

G1v1 +
k(t3, t4)

G1v2. Along with the conclusion of Corollary 5.8 we have shown the following.

Theorem 5.9. k(x1, x2, x3, x4)
Γ3 = k(v1, v2, w1, w2).

Peeling back the various substitution, v1, v2, w1, w2 can be written in terms of x1, x2,
x3, x4 as follows.

v1 = x2

1 + x2

2 + x2

3 + x2

4

v2 =
x1x2x3

x4

+
x1x2x4

x3

−
x1x3x4

x2

−
x2x3x4

x1

w1 =
−4x1x2x3x4 + x2

1
(x2

3
− x2

4
) + x2

2
(−x2

3
+ x2

4
)

(x2x3 + x1x4)(−x1x3 + x2x4)

w2 = −
(x2x3 + x1x4)(x1x3 − x2x4)(x2(−x3 + x4) + x1(x3 + x4))

x3

1
x3x4(−x3 + x4) + x3

2
x3x4(x3 + x4) + x1x2

2
(x3

3
− 2x2

3
x4 + 2x3x2

4
− x3

4
) + x2

1
x2(x3

3
+ 2x2

3
x4 + 2x3x2

4
+ x3

4
)
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5.2 A Generic Polynomial of Γ3 in Four Parameters

To apply Theorem 2.4 we need only to choose a Γ3-stable subsetM that satisfies k(x1, x2, x3, x4)
Γ3(M) =

k(x1, x2, x3, x4). The easiest choice is the set generated by {x1, x2, x3, x4} under the action
of Γ3. This is just M = {±x1,±x2,±x3,±x4}. Then we let f be as follows.

f(T ) =
4
∏

i=1

(T 2 − x2i ).

This polynomial can be written in terms of the functions k(v1, v2, w1, w2). Actually comput-
ing such a polynomial is not feasible due to the complexity of the fixed field, however we do
have the following existence theorem.

Theorem 5.10. There exists an even, degree 8 generic polynomial g(T ) ∈ k(v1, v2, w1, w2)[T ]
for M16 in four parameters over k.

5.2.1 The Minimality of g

We have answered the generic polynomial problem for Γ3 by answering the Noether problem.
Since Γ3 is a permutation group of degree 8, g has the minimal degree, and we will conclude
that g also has the least number of parameters.

Theorem 5.11. edQ(Γ3) = gdQ(Γ3) = 4.

Proof. We apply Theorem 3.8 to Γ3 over Q. Indeed, Γ3 is a 2-group, and Q contains the
square roots of unity. Thus edQ(Γ3) is the least degree of a faithful representation of Γ3 over
Q. This is known to be 4. So by Lemma 2.6, 4 = edQ(Γ3) ≤ gdQ(Γ3) ≤ 4.
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