Rose-Hulman Undergraduate Mathematics Journal

Volume 14 .
Issue 1 Article 7

Directed Graphs of Commutative Rings with Identity

Christopher Ang
Michigan State University, angchris@msu.edu

Alex Shulte
University of St. Thomas, schu0276@stthomas.edu

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation

Ang, Christopher and Shulte, Alex (2013) "Directed Graphs of Commutative Rings with Identity," Rose-
Hulman Undergraduate Mathematics Journal: Vol. 14 :Iss. 1, Article 7.

Available at: https://scholar.rose-hulman.edu/rhumj/vol14/iss1/7


https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol14
https://scholar.rose-hulman.edu/rhumj/vol14/iss1
https://scholar.rose-hulman.edu/rhumj/vol14/iss1/7
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol14%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol14/iss1/7?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol14%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages

ROSE-
HULMAN

UNDERGRADUATE
MATHEMATICS
JOURNAL

Sponsored by

Rose-Hulman Institute of Technology
Department of Mathematics

Terre Haute, IN 47803

Email: mathjournal@rose-hulman.edu

http://www.rose-hulman.edu/mathjournal

DIRECTED GRAPHS QF
COMMUTATIVE RINGS WITH IDENTITY

Christopher Ang? Alex Schulte”

VoLUME 14, No. 1, SPRING 2013

#Michigan State University
PUniversity of St. Thomas



RoOSE-HULMAN UNDERGRADUATE MATHEMATICS JOURNAL
VOLUME 14, No. 1, SPRING 2013

DIRECTED GRAPHS ?F COMMUTATIVE RINGS
WITH IDENTITY

Christopher Ang Alex Schulte

Abstract. The directed graph of a ring is a graphical representation of its additive
and multiplicative structure. Using the directed edge relationship (a,b) — (a +
b,a - b), one can create a directed graph for every ring. This paper focuses on the
structure of the sources in directed graphs of commutative rings with identity, with
special concentration in the finite and reduced cases.
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1 Introduction

The use of graph theory to obtain ring theoretic information has been extensive; some
examples are zero-divisor graphs [9], total graphs [7], and commuting graphs [8]. Digraphs
of rings were considered by Lipkovski in [6], and by Hauskin and Skinner in [5]. Hauskin and
Skinner were able to show, among other results concerning the general structure of digraphs of
commutative rings, that from the digraph of a commutative ring we may determine whether
the ring is an integral domain, and also whether a given ideal is prime. They also gave two
examples of rings which were non-isomorphic, but which have directly isomorphic digraphs.

This paper is a continuation of the work done by Hauskin and Skinner, and we will be
using the same conventions and notations used in their paper. Where necessary, results from
that paper will be reproduced here. In this paper we place special emphasis on sources and
looped vertices, since in a digraph these are the most readily identifiable vertices, and in
order for two digraphs to be directly isomorphic the number of sources and looped vertices
in both digraphs must be the same.

In Section 2, we will give the necessary background to understand the paper. We will
explore sources in finite fields in Section 3, with a couple of results given for integral domains.
In Section 4, we will show that there is a fair amount of structure retained between the
digraph of a ring and the digraphs of its factor rings. In Section 5, we will show that given
a digraph of a ring, it is possible to tell whether the underlying ring is reduced or not, and
how many fields the ring is “made up of.” This leads to the main conjecture of the paper,
that unique finite reduced rings, up to isomorphism, produce unique digraphs. Finally, in
the last Section we will give some ideas for further inquiry.

2 Background

Throughout, R will denote a commutative ring with identity. While it is only feasible to
graph finite rings, results are given for all rings, unless otherwise specified. By an ideal, it
is meant a proper ideal of a ring. We will denote the finite field of order p™, p prime, by
GF(p"). An element a € R is a zero-divisor if and only if there exists a non-zero b € R such
that ab = 0.

For a graph G, the set of vertices is denoted V(&) and the set of edges is denoted E(G),
where an element in E(G) is a pair u,v with u,v € V(G). Edges are often denoted u — v.
It is said that G’ is a subgraph of G if V(G') C V(G) and E(G') = {v—w : v,w € V(G)
and v —w € F(G)}. Note that what we have defined is typically referred to as an induced
subgraph. If aq,as,...,a, are vertices in GG, then a; — ay — - -+ — a,, denotes a walk in G. A
path is a walk consisting of distinct vertices. A connected graph is one in which there is a
path between any two distinct vertices. A connected component of a graph G, denoted C, is
a maximal connected subgraph of G (For a graph theory reference, see [3]). A directed edge
is an ordered pair of vertices, which we will denote as u — v, for u,v € V(G). We will also
say that u points at v to mean that there exists a directed edge u — v. A directed graph, or
digraph for brevity, is a graph where all edges are directed edges.
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Let D be a digraph. A vertex in D has incoming degree n if there are n distinct vertices

pointing to it. A source is a vertex with incoming degree zero. If a1, as,...,a, are vertices
in D, then a; — as — --- — a, denotes a directed walk in D from vertex a;, to vertex a,,
where a; is directionally adjacent to a;yq for 1 < i < n —1. If ay,as,...,a, are distinct,

then the directed walk is a directed path. A cycle of length n is a directed walk of the form
a; — ag — -+ — a, — ai, where a; — as — --- — a,, is a directed path. A looped vertex is
a vertex a such that (a,a) is a directed edge. Any digraph has a canonical graph obtained
by replacing all directed edges u — v with a corresponding undirected edge u —v. A digraph
is connected if its canonical graph is connected, and a component of a digraph is a connected
component if in the canonical graph the corresponding component is a connected component.

For a ring R, the digraph of R, denoted W(R), is the graph with V(¥(R)) = R x R, and
for (a,b),(c,d) € V(V(R)), Y(R) contains the directed edge (a,b) — (¢, d), if and only if
a+b=cand a-b=d. The set of all sources in the digraph of a ring is denoted S(¥(R)).
As an example, see Figure 1 for the digraph of Zg.

Figure 1: ¥(Zs)
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3 Finite Fields and Integral Domains

In this Section we consider digraphs of finite fields as well as integral domains, beginning by
classifying certain types of sources. As a byproduct of this investigation, we also compute
the incoming degree of certain types of sources in digraphs of integral domains. Finally, we
show that one can count the number of sources in the digraph of a finite field if one knows
the order of the field. Before moving on to results, it is first necessary to restate a couple of
propositions from Number Theory as statements in Algebra. The reader should be able to
deduce these results after referring to [4, Theorem 22.2].

Lemma 3.1. Let F = GF(p"), where p is an odd prime, and n € N.
1. If p" = 4k + 1 where k € N, then there exists ¢ € F such that ¢ = —1.

2. If p* = 4k + 3 where k € N, then there does not exist a ¢ € F such that ¢ = —1.
Furthermore, for a € F, there exists a b € F such that a = b* if and only if —a # 2
for any c € F

The following two results give necessary and sufficient conditions for when vertices of the
form (0,a) are sources in the digraph W(F') of the finite field F'. These conditions depend
on the congruence class of |F'| modulo 4. Note that since (0,0) — (0,0) is a directed edge
in U(R) for any ring R, (0,0) will always have an incoming degree of at least one, and thus
can never be a source in the digraph of any ring.

Theorem 3.2. Let p be a prime and n € N such that p" = 4k + 1 for some k € N. Then
(0,a) # (0,0) is a source in W(GF(p")) if and only if a # b* for any b € GF(p").

Proof. (=) Let a = b? for some b € GF(p"). By Lemma 3.1, since p" is a prime power of the
form 4k +1, there exists a ¢ € GF(p") such that ¢*> = —1. Thus the vertex (bc, —bc) points to
the vertex (0, —(bc)?). Since GF(p") is commutative and ¢ = —1, —(bc)? = —b*c* = b? = q,
and so (0, —(bc)?) = (0,a). Thus (0, a) is not a source.
(<) Suppose now that (0, a) is not a source. Then there exists a vertex (b, —b) which points
to (0,a). That is, —b* = a. By Lemma 3.1 there exists ¢ € GF(p") such that ¢* = —1. Then
—b* = 2 = (be)? = a.

[

Theorem 3.3. Let p be a prime and n € N such that p" = 4k + 3 for some k € N. Then
(0,a) is a source in W(GF(p™)) if and only if there exists a non-zero b € GF(p") such that
a = b

Proof. (=) Assume that a # b* for any b € GF(p"). Then, by Lemma 3.1, there exists ¢ €
GF(p") such that ¢*> = —a. Then —c? = a and the vertex (¢, —c) points to (0, —c?) = (0,a).
Thus (0, a) is not a source in W(GF(p")).
(<) Suppose now that (0,a) is not a source in W(GF(p")). Then there exists a vertex
(¢, —c) € U(GF(p")) such that (¢,—c) — (0,a) is a directed edge. Thus —c? = a, and by
Lemma 3.1 there does not exist a b € GF(p") such that a = b%.

0



RHIT UNDERGRAD. MATH. J., VoL. 14, No. 1 PAGE 89

Corollary 3.4. In a finite field F' of odd order, there are |F|2_1 sources of the form (0,a) in

Proof. Let |F|= gq. Since F' is a finite field, there exists an r € A = (F\{0},-) such that
|| = ¢ — 1. Thus, any element of A may be represented by a distinct power of r. If r™ = b2,
then m = 2 + k(¢ — 1), where k € Z. Since ¢ is odd, 2 | (¢ — 1), and thus 2 | m. The set
of numbers which form the distinct powers of r is {1 2,3,...,q—2,q— 1}. Of these, exactly
half are divisible by two. Thus there are exactly %1 powers of r which are equal to b? for
some b € F, and %t powers of  which are not equal to b? for any b € F. By Theorems 3.2

and 3.3, there are |F| L sources of the form (0, a). O

The following two theorems examine what possible incoming degrees a vertex may have
in a digraph of a domain. They allow the counting of the total number of sources in a
digraph of a finite field, and will be referred to in Section three when examining digraphs of
factor rings.

Theorem 3.5. Let D be an integral domain with a € D. Then the vertex (2a,a*) in ¥(D)
has incoming degree 1.

Proof. Tt is always the case that (a,a) — (2a,a?), and thus (2a,a?) has incoming degree of
at least 1.

Let char D # 2, and suppose (b, b) — (2a, a?) for some b € D. Then 2b = 2a, and by the
cancellation property a = b.

Now suppose that char D = 2, and again suppose that (b,0) — (2a,a?). If a = 0,
then a®> = 0 = v?, and thus b = 0; if b = 0, then @ = 0. If a,b # 0, then a® = b2, so
a?—b*=(a—0)>=0, hence a — b =0, and a = b.

Finally, suppose (c d) — (2a,a?), where c, d are distinct elements in D. Then ¢+ d = 2a
and cd = a®. Then ¢? + 2c¢d + d* = 4a?, and so ¢ — 2cd + d* = (¢ — d)* = 0, hence ¢ = d,
Contradlctlng our assumption. Thus (2a, a?) has incoming degree of one.

]

Theorem 3.6. Let D be an integral domain. Then all non-source vertices in W(D) which
are not of the form (2a, a?®) have incoming degree 2.

Proof. Suppose (¢, d) is a vertex which is not of the form (2a, a?) and is not a source. Then
(c,d) = (e+ f,ef), for some e, f € D with e # f. Then the vertices (e, f) and (f,e) both
point at (¢, d), thus the incoming degree of (¢, d) is at least 2.

Suppose now that there exists a vertex (g,h) € ¥(D) such that (g,h) & {(a,b), (b,a)}
and (g,h) — (¢,d). If g = b, then (h,g) = (a,b) and (g,h) = (b,a), and thus the vertices
(g,h), (h,g) are not distinct from (a,b), (b,a). Similarly when h =a, g = a, or h =b.

Thus, a,b, g, h are all distinct in D. Then
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a+b=c=g+h (3.1)
and
ab=d = gh. (3.2)

Then a? + 2ab + b* = g*> + 2gh + h%. Using (3.2) this equation becomes a® + 2ab + b* =
g% + 2ab + h?%, so that a® — g* = h? — b?, hence (a + g)(a — g) = (h+ g)(h — g). Then since
a—g = h—>b by equation (3.1), (a+g)(h—b) = (h—0b)(h+b), and since h # b by assumption,
a+ g = h+b. Adding (3.1) to this last equation yields 2a = 2h. If char D # 2, then a = h,
a contradiction.

Suppose then that char D = 2. Then from equations (3.1), (3.2), ab = gh and a = b+g+h.
Substituting the second into the first yields b* + bg + bh = gh, so b*> + bg = hb + hg. Since
char D = 2 and b # g by assumption, b(b+ g) = h(b+ g), thus b = h, a contradiction. Thus
no such vertex (g, h) exists. O

The previous two theorems give insight into the structure of both finite and infinite
domains, and, as previously stated, they permit the counting of the total number of sources
in a finite field, as the next result shows.

2

Theorem 3.7. Let F be a finite field. Let g = |F|. Then |S(¥(F))| = 2.

Proof. All vertices in W(F') which are not sources will be of the form (2a, a?) or (a+0b, ab) for
distinct a,b € F. Counting the number of vertices of these two forms will yield the desired
result.

By Theorem 3.5 vertices in W(F) of the form (2a,a®) have incoming degree of one, and
are pointed at only by the vertex (a,a). There are ¢ distinct vertices of the form (a,a), thus
there are g vertices of the form (2a, a?).

Let a,b € F be distinct. By Theorem 3.6 vertices in W(F') of the form (a + b, ab) have
incoming degree of 2, and are pointed to by the vertices (a,b) and (b,a). Since there are ¢?
vertices in W(F) and of these there are g vertices of the form (a,a), there are ¢* — ¢ vertices
of the form (a,b). Now since each vertex of the form (a + b, ab) is pointed at only by two
vertices, and there ¢*> — ¢ vertices which point to vertices of the form (a + b, ab), there are
% vertices of the form (a + b, ab).

Thus there are LQ—q + ¢ = 29 vertices in U(F) which are not sources. Therefore there

2 2 2
_ ¢+a _ ¢°—q

are ¢° 5 5 vertices which are sources. O

Example 3.8. Consider the digraph of GF(4) (see Figure 2). Note that the vertices of
the form (2a, a?) have incoming degree one, and all other non-source vertices have incoming
degree 2. Also since |GF(4)| = 4, there are 6 sources in W(GF(4)).
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Figure 2: U(GF(4))

Q x+1,1 @1, Ot—O0, X+ l&—X, X

X, X+1

X, 1 1, x+1
Ty 1, x

X, O——0, x——x+1,x+1

4 Digraphs of Factor Rings

Just as information about a ring may be obtained by examining its factor rings, so too may
information about the digraph of a ring be obtained from examining the digraphs of its
factor rings. The following results are powerful tools in this regard.

Lemma 4.1. Let R be a ring, and I be an ideal of R. Then (a+1,b+1) — (c+1,d+1) is
a directed edge in W(R/I) if and only if for each iy,iy € I there exists some is, iy € I such
that (a + 11,b + ig) points at (¢ + i3,d + iy).

Proof. (=) Let (a+1,b4+1) — (c+1,d+I) be a directed edge in W(R/I). Then a+b+1 = c+1
and ab + 1 = d+ I. Now consider (a + i1,b + is) in W(R) for some iy,io € I. Then
(a +11,b+ is)points at (a + b+ i1 + ia, ab + ais + biy + i1i2).



PAGE 92 RHIT UNDERGRAD. MATH. J., VoL. 14, No. 1

Nowa+b+iy+is€ca+b+1=c+ 1 and ab+ aig + biy + 1129 € ab+ 1 =d+ I. Thus
there exists 43,74 € I such that (a 4 i1,b+ iy) points at (¢ + i3, d + i4).
(<) Suppose that for each iy,iy € I there exists some i3,i4 € I such that (a + iy,b + is)
pOiIltS&t <C+i3,d+’i4). Thena+b+i1+i2:c+i3 andab+ai2+bi1+i1i2:d+i4.
Then (a+b+1)N(c+1I)#Bsoa+b+1=c+I. Similarly, ab+ I = d+ I. Thus
(a+1,b+1I)— (c+I,d+1)is a directed edge in W(R/I). O

Part of the structure which is preserved from the digraph of the factor ring are the
sources, as the next result demonstrates.

Theorem 4.2. Let R be a ring and I be an ideal of R. Then (a + I,b+ I) is a source in
U(R/I) if and only if (a +i1,b+ is) is a source in V(R) for all iy,iy € I.

Proof. (=) Suppose that (a 4+ I,b+ I) is a source in W(R/I) and suppose that for some
i1,12 € I there exists a vertex (¢, d) that points to (a+1i1,b+is) in W(R). Then c+d = a+1iy
and ¢d = b+1iy. Hence c+d+1=a+1 and ed+ I =b+ 1. Then (c+ I,d+ I) points to
(a+1,b+1I)in W(R/I), a contradiction. Thus, (a + i1,b + i2) is a source in W(R) for all
’il, 19 € 1.

(<) Suppose now that (¢ + I,d + I) points to (a + I,b+ I) in W(R/I). Then by Lemma
4.1, there exist iy, i9,143,44 € I such that (¢ + iy,d + i) — (a +i3,b+i4) is a directed edge
in U(R). O

The previous result shows that sources are preserved when moving from the digraph of
the factor ring to the ring itself. However, it is not always the case that a non-source vertex
in the digraph of the factor ring will correspond to non-source vertices in the digraph of the
ring, as the following example will show.

Example 4.3. Consider Zg and its maximal ideal (2). In W(Zs/(2)) the vertex (14 (2),0+
(2)) has incoming degree two. However, in W(Zg) the vertex (5,2) is a source. Thus, local is
a necessary condition, as illustrated in Figures 3 and 4.
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Figure 3: ¥(Zg/(2))

@(2), (2)&—(2),1+ (2)&—1+ (2),1+ (2)

Figure 4: W(Zg)

5 0,1 3,4
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The following Theorem will show what conditions are necessary for a non-source vertex
in the digraph of a factor ring to correspond to non-source vertices in the digraph of the
ring.

Theorem 4.4. Let R be a finite local ring with maximal ideal M. If (a + M,b+ M) has
incoming degree 2 in W(R/M), then (a + mi,b + mso) is not a source in V(R) for any
my,mo € M.

Proof. Suppose that (a+ M, b+ M) has incoming degree 2 in W(R/M). Since R/M is a finite
field and (a + M,b+ M) is not of the form (2e + M, e* + M) for some e € R, by Theorems
3.6 and 3.5, there exist vertices (¢ + M,d+ M) and (d + M,c+ M) with c+ M # d+ M
that point at (a + M,b+ M).

Now suppose for the sake of contradiction that there exists a source of the form (a +
my,b+msy) in U(R). Then, by the pigeon hole principle there exists @ € a-+M,b € b+ M such
that (¢,d) — (a,b) and (¢4 ms,d+my) — (@,b), where ¢,é+ms € c+M;d,d+my € d+ M
and either ms3 # 0 or my # 0.

Suppose that mg = 0. Then a = ¢+ d = &+ d + my, and thus m4 = 0, a contradiction.
A similar contradiction occurs if my = 0. Thus, it may be assumed that ms, my # 0. Then
¢+d = ¢+d+ms~+my, hence ms = —my. Also, éd = ¢éd+ émy + dms +msmy, which implies
emy+dms+msmy = 0. Replacing ms with —my, and reorganizing will yield (¢—d)my = m2.

Now since R is local, my is nilpotent, and Z(R) = M [2, Theorem 2.3]. Let n be the
least positive integer such that m7} # 0, but mj™ = 0. If n = 1, then (¢ — d)my = m2 = 0,
which implies that (¢ — d) € Z(R). Thus ¢+ M = d + M, a contradiction. If n > 1, then

in which case (¢ —d)" € Z(R), and thus (¢ — d) € Z(R). Again, ¢+ M =d+ M, a
contradiction.

Thus there cannot be a vertex (a + mi,b + mg) which is a source in W(R) for any
mi, Mo € M. ]

Example 4.5. Consider Zs and the ideal (4). In W(Zs/(4)) the vertex (0+ (4),3 + (4)) has
incoming degree two. However, in W(Zg) the vertex (4,7) is a source. Thus, the ideal must
be the maximal ideal. Figures 5 and 6 will demonstrate this.
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Figure 5: W(Zs/(4))
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Figure 6: W (Zs)
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The following Theorem shows that in order for a vertex in the digraph of the factor to
correspond only to non-source vertices in the digraph of the ring, it must have an incoming
degree of two.

Theorem 4.6. Let R be a finite local ring with mazimal ideal M. Let n denote the least
positive integer such that M™ = {0}. Of the vertices of the form (2a+my, a®+my) in ¥(R),

M]|?
where my,my € M, at least |M|* — % are sources.

Proof. By Lemma 4.1, since (a + M,a+ M) — (2a + M,a* + M) in U(R/M), there exist
my, me,mz,mg € M such that (a + mq,a + ma) — (2a + mz,a? + my) in U(R). Now let
be M C{c|cM ={0}}. Then (a+m; +b,a+my—b) — (2a + ms,a® + my), where
a+mi #a+my+ b, and a + mg # a + mg — b for any non-zero b.

Now, for any distinct b,c € M™ !, a+m,+b # a+m;+c, and thus each distinct b € M™~!
will yield a distinct vertex in W(R) of the form (a + my + b,a + mo — b). Thus there are
| M1 distinct vertices of the form (a+my +b, a+msy—b) which point to (2a+ms, a®+my).

Now, there are |M|? vertices of the form (a+ my,a+mz) in U(R) and likewise there are
| M|? vertices of the form (2a+ms, a®+my). If (2a+mg, a®+my) is not a source it is pointed
to by at least |M™!| vertices of the form (a + m1,a + my), hence at least |M|]* — M%',Ql'
vertices of the form (2a + mg, a® + my) are sources in W (R). O

5 Reduced Rings

This final Section will examine digraphs of reduced rings. A reduced ring is one in which
there are no nonzero nilpotent elements—elements = € R such that 2" = 0, for some n € N.
We see that by [1, Theorem 8.7] it is possible to decompose any reduced ring into a direct
product of fields.

It is necessary at this point to generalize a couple of definitions and results by Hauskin
and Skinner [5, Definition 6.1]. Let W(R; X Ry X -+ X R,,) be the digraph of the direct
product of rings. The subgraph U({0} x {0} x --- x {0} x R; x {0}--- x {0}) is called the
canonical subgraph of R; in V(R X Ry X -+- x R,) and is denoted by W'(R;). The digraphs
of two rings, U(R) and U(S5), are directly isomorphic, denoted W(R) 77 W(S), if and only if
there exists a bijection f : V(¥ (R)) — V(¥(S)) such that for any two vertices a,b € V(R)
a — b if and only if f(a) — f(b) with f(a), f(b) € ¥(S5). The following theorem shows some
of the structure of a canonical digraph.

Theorem 5.1. [5, Theorem 6.2]

Let W(Ry X Ry X+ - -xX Ry,) be the digraph of the ring R = Ry X RoX-- X R,,, let C be the union of
all connected components whose intersection with V'(R;) is non-empty, and let v € V(V(R))
with v # (0,0,...,0). Then, C 7 V(R;) if and only if v — ((0,0,...,0),(0,0,...,0)) is not a
directed edge in V(R).

Proof. (=) Suppose C 7z V(R;). This implies |C| = |¥(R;)|, and since |V'(R;)| = |V(R;)],
W' (R;)| = |C|. Thus v € V(V'(R;)) if and only if v € V(C).
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Every element of W'(R;) has the form ((0,0, ...,0, z;,0, ..., 0), (0,0, ...,0,¥;,0, ...,0)) where
x;,yi € R;. A vertex not an element of V(V'(R;)), say
((0,0,...,0,2;,0,...,0,2;,0, ...,0), (0,0, ...,0,¥;,0, ...,0,9;,0, ...,0)), where i # j can only point
at a vertex of W'(R;) if x; + y; = 0 and x; - y; = 0. This means that
((0,0,...,0,2;,0,...,0), (0,0, ..., 0,4;,0, ..., 0)) points at ((0,0,..,0), (0,0, ..., 0)).

(<) Now suppose that for all j # i there does not exist (0,0) # (z;,y;) € V(¥(R)))
such that (z;,y;) points at (0,0). Thus z; +y; # 0 or x; - y; # 0 for all (x;,y;) # (0,0).
Since every element of W'(R;) has the form ((0,0,...,0,z;,0,...,0), (0,0, ...,0,¥;,0,...,0)), this
implies that there cannot be a ((z1,22,...,Zn), (Y1, Y2, -, ¥n)) € W(R; X Ry X ... X R,)
which is not an element of V(U'(R;)) such that ((xi,z2,...,2n), (Y1,Y2,...,yn)) points at
((0,0, ...,0), (0,0, ..., 0)). 0

The next Theorem shows that one can determine whether a ring is reduced or not merely
by observing the structure of its digraph. Note that an unlabeled digraph is one whose vertex
coordinates are not given.

Theorem 5.2. Let V(R) be an unlabeled digraph of a ring R. Then R is reduced if and only
if W(R) has a connected component consisting of a looped vertet.

Proof. (<) Let R be reduced. All looped vertices have the form (a,0) in W(R). If a # 0,
then (0,a) is a vertex distinct from (a,0) which points to (a,0). In the case where a = 0,
(a,0) = (0,a); thus (0,0) is the only looped vertex which could be a connected component.
Hence if W(R) has a connected component consisting of a looped vertex, it must be the
vertex (0,0). Then there does not exist any vertex (a,b) € V(¥(R)), with a # 0,0 # 0,
which points at (0,0). Suppose R is not reduced. Then there exists a non-zero x € R
such that for some minimal n € N, 2" = 0. Then 2"~ ! # 0 and (z"!, —z"7') — (0,0), a
contradiction.
(=) If (a,b) — (0,0), this means that a = —b, and thus —a® = 0. Thus a* = 0. Since R is
reduced, a = 0 and thus (a,b) = (0,0).

[

The previous two theorems allows one to conclude that in a reduced ring R, the digraph
of a finite field which is part of the direct product of R appears in V(R).

Corollary 5.3. Let R = F; X Fy x --- X F,, be a reduced ring expressed as a direct product
of n fields. Let C; be the set of connected components in W(R) whose union with V' (F};) is
non-empty. Then C; 77 V(F;).

The next few theorems explore the structure of looped vertices in digraphs of reduced
rings. Recall that the only vertices which are looped in W(R) are of the form (a,0).

Theorem 5.4. Let R = Fy X Fy x --- x F,, be a reduced ring, where F; is a field. Then there
exists a looped vertex of incoming degree 2* in W(R) for each 0 < a < n.



RHIT UNDERGRAD. MATH. J., VoL. 14, No. 1 PAcGE 99

Proof. Case 1: Let a = 0. Since R is reduced, by Theorem 5.2, (0,0) has incoming degree
1.

Case 2: Let 1 < a < n. Consider the vertex Q = ((z1, 2, ...,%4,0,0,...0), (0,0, ...,0)) in
U(R), where z; # 0 for each i € {1,2,...,a}. Note that ) is a looped vertex. Now any vertex
of the form ((y1,92, .., Ya, 0,0, ...,0), (wy, wa, ..., w,, 0,0, ...,0)), where {y;,w;} = {0, z;}, will
point to (), and there are no other vertices which point to (). Furthermore there are 2% such
vertices. 0

The previous theorem allows one to identify the number of finite fields in the composition
of any reduced ring, provided that the ring is a finite direct sum of finite fields. The following
proposition gives a counting argument for the looped vertices of incoming degree 2. Similar
arguments can be made for the number of looped vertices of higher incoming degrees.

Proposition 5.5. Let R be a reduced ring such that R = F| X Fy x --- X F,,, where F;
is a field. Then the number of looped vertices with incoming degree 2 in V(R) is equal to
Pt = 14+py* =1+ +pir — 1 where | F| = pyt.

Proof. There are pi* — 1+ p3*> — 1+ + p%» — 1 looped vertices of the form
((0,0,...,0,2;0,...,0), (0,0, ...,0)), where z; # 0. Any looped vertex of this form will be
pointed to by itself and the vertex ((0,0, ...,0), (0,0, ...,0,x;,0,...,0)). It remains to be shown
that looped vertices of this form are the only vertices with incoming degree 2. Since R is
reduced, by 5.2 ((0,0,...,0),(0,0,...,0)) has incoming degree 1.

Now any other looped vertex will have the form ((z1, xs, ..., 2,), (0,0, ...,0)), where at least
two of the x;’s are non-zero. The set of vertices which point to ((x1, 2, ..., z,), (0,0, ...,0))
are of the form ((y1,vy2, .., Yn), (w1, wa, ..., w,)) where {y;, w;} = {0,2;}. Thus the incoming
degree will be 2™, where m is the number of non-zero z;’s. Since m > 2, there are no other
looped vertices of incoming degree 2 other than the ones of the form
((0,0,...,0,2;0,...,0),(0,0,...,0)).

6 Future Research

Because the idea of directed graphs is relatively new, future research could be taken in a
number of different directions. We offer the following conjecture as one avenue:

Conjecture 1. Let R, S be finite reduced rings. Then V(R) 77 W(S) if and only if R = S.

This conjecture seems to the authors to be true from a number of different accounts. In
addition to determining the number of 1-cycles of incoming degree two, one could repeat
such a counting argument for any 1-cycle of incoming degree 2%, for n > a > 0, where n
is the number of finite fields in the reduced ring. The two reduced rings, in order to be
directly isomorphic, need to have the same number of 1-cycles of each incoming degree in
both digraphs. Furthermore, the number of sources in both digraphs must be the same.
Theorem 3.7 gives the number of sources in a finite field, and [5, Theorem 6.3] permits one
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to count the number of sources in a direct product when one knows the number of sources in
each constituent ring. Thus it is possible to count the number of sources in a reduced ring.
So in order for the digraphs of two reduced rings to be directly isomorphic, they must have
the same number of sources, and this number is obtainable. It seems highly implausible for
two finite reduced rings to satisfy these conditions, yet not be isomorphic.

Some other questions that could be explored are as follows:

Question 1. Can an infinite path or cycle be defined or described?

Question 2. How many sources does a connected component have and are there bounds on
this number?

Question 3. What sort of ring structure do the sources in a digraph retain?
Question 4. Is there a mazimal length of a cycle in a finite commutative ring with identity?

Question 5. What is the structure of a subring that is not an ideal in V(R)?

References

[1] Atiyah, M., Introduction to Commutative Algebra, Westview Press, (1994).

[2] Axtell, M., Stickles, J., Trampbachls, Zero-Divisor Ideals and Realizable Zero-Divisor
Graphs, (2008).

[3] Bollobas, B., Modern Graph Theory, Springer, New York, (1998).

[4] Gallian, J., Contemporary Abstract Algebra, Houghton Mifflin Company, Boston, MA,
(2006).

[5] Hauskin, S., Skinner, J., Directed Graphs of Commutative Rings, Pre-print, (2011).
[6] Lipkovski, A.T., Digraphs associated with finite rings, Pre-print, (2010).

[7] Akbari, S. Kiani, D. Mohammadi, F. Moradi, S.: The total graph and regular graph of
a commutative ring. J. Pure Appl. Algebra 213(12), 2224-2228 (2009)

[8] Akbari, S. Mohammadian, A. Radjavi, H. Raja, P.: On the diameters of commuting
graphs. Linear Algebra Appl. 418(1), 161-176 (2006)

[9] Anderson D.F., Axtell M., Stickles J.: Zero-divisor Graphs in Commutative Rings: A
Survey. Edited by Fontana et al, Com



	Directed Graphs of Commutative Rings with Identity
	Recommended Citation

	tmp.1484498887.pdf.F1wRd

