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KLEIN LINKS AND BRAIDS

David Freund Sarah Smith-Polderman

Abstract. We introduce the construction of Klein links through an alteration to
the orientation on the rectangular representation of a torus knot. We relate the
resulting Klein links to their corresponding braid representations, and use these
representations to understand the relationship between Klein links and torus knots
as well as to prove relationships between several different Klein links.
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1 Introduction to Klein Links

A commonly studied class of links in knot theory is the class of torus knots. A torus knot,
such as the one in Figure 2, is created by wrapping a piece of string around a torus (Figure
1) without self-intersection and then gluing the two ends together. A general torus knot
generalizes this process by wrapping multiple pieces of string around a torus. A torus knot
that wraps m times around the longitude of the torus and n times around the meridian of
the torus is called the (m,n)-torus knot [1].

Meridian

/!

Longitude

Figure 1: Torus surface [3].

Figure 2: (3, 1)-torus knot.

The algorithmic construction process for the torus knots give rise to numerous properties.
For instance, the (m,n)-torus knot and (n, m)-torus knot are equivalent [1]. Another classic
result is that the (m,n)-torus knot has ged(m,n) components and so the (m,n)-torus knot
is a knot only if ged(m,n) =1 [1, 5].

Suppose we take a torus with any torus knot on it and cut the torus along the meridian
curve. We can deform the resulting surface into a cylinder. Next, by cutting the cylinder
along the longitude curve, we obtain an oriented rectangle. An example of this process is
demonstrated in Figure 3. Notice that the arrows on the vertical edges of the rectangle are
both pointing upward while the arrows on the horizontal edges are both pointing to the
right, indicating that the corresponding edges have matching orientation. All torus knots
have this basic form. The m strand connections on the left and right sides of the rectangle
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correspond to m crossings of the longitude on a torus while the n strand connections on the
top and bottom of the rectangle correspond to n crossings of the meridian on a torus.

Figure 3: The cylindrical and rectangular representations of the (3, 1)-torus knot.

Let us alter the rectangular representation of the torus by reversing the orientation of the
top horizontal edge while leaving everything else the same. When we identify the vertical
edges of the rectangle, we create a cylinder (Figure 4). Since the top and bottom of our
cylinder have opposite orientations (as shown in Figure 4) and we must identify the bottom
circle with the top of the cylinder, we deform the bottom end of the cylinder and pass it
through itself. In four dimensions, this self-intersection does not occur and it results in
the formation of a surface known as the Klein bottle [7]. There are many different three-
dimensional representations of the Klein bottle, such as the one in Figure 5.

Figure 4: The rectangular and cylindrical representations of the (3, 1)-torus knot with op-
posite orientation.

For the remainder of this article, we will discuss our findings and results from reorienting
the rectangular representation of the (m,n)-torus knot to form a related link on a Klein
bottle. We have termed the resulting links Klein links. In the formation of these Klein
links, there are several necessary standardizations to create a consistent link.

1. Three-Dimensional Representation: We have opted to use a three-dimensional
representation of the Klein bottle for the Klein links because links in four dimensions are
trivial; all such links reduce to the unlink [1, 6]. Hence, there are no nontrivial results that
can be produced by examining these links on the four-dimensional Klein bottle.

2. Construction Standardizations: It is important to clarify the specific construction
of the three-dimensional Klein bottle that we use to construct the Klein links. Starting with
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Figure 5: The three-dimensional representation of the Klein bottle.

the rectangle, we create a cylinder by folding the right side of the rectangle backwards, and
attaching the left and right sides to create the left vertical side of the cylinder. Thus, the left
side of the rectangle becomes the front of the cylinder while the right side of the rectangle
becomes the back of the cylinder. Finally, the bottom and top circles of the cylinder are
identified as described above. Figure 5 helps to illustrate this particular representation of
the Klein bottle.

We chose to place the hole that results from the cylinder intersecting itself in the upper left
hand corner of the rectangular representation, as shown in Figure 6. With this placement,
all of the strands on the left edge of the rectangle must travel under the hole while all
of the strands on the top edge of the rectangle must travel over the hole. The strands
must continue to follow this pattern when translated on the cylinder and later the three-
dimensional representation of the Klein bottle. The consistency of this hole placement is
crucial in the formation of our Klein links; changing this placement would result in different
crossings and therefore a different link.

Figure 6: Hole placement on the rectangular representation of the Klein bottle.

Figure 7 demonstrates the construction of a (3,2)-Klein link from a (3,2)-torus knot;
Figure 8 does a similar demonstration for the (4, 3)-Klein link.

One must realize that this specific construction of the Klein bottle and our careful place-
ment of the hole are crucial in guaranteeing that our Klein links are well defined. It can
be verified that alternate hole placements create different crossings and produce different
links. We have not yet explored alternative constructions of the Klein bottle or other hole
placements; and we do recognize that possible alternative constructions and various hole
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S=

Figure 8: The creation of the (4, 3)-Klein link.

placements need to be explored further. We believe it may be useful to look at the Klein
bottle in its higher dimensional form, instead of the rectangular form that we use. Our Klein
links are, in fact, links on a “punctured” Klein bottle. Again, the location of the “punc-
ture” in relation to the link strands will be an important investigation. However, it should
also be pointed out that this particular construction of the Klein bottle and our current
hole placement prove to be particularly valuable in how these links lend themselves to braid
representations.

In the next section, we introduce braid theory as another method of representing links
in the plane. In Section 3, we demonstrate that Klein links have a predictable braid repre-
sentation and, in Section 4, use this to show the equivalence of certain Klein links and that
some Klein links have simpler braid forms. Finally, in Section 5, we summarize our results



PAGE 76 RHIT UNDERGRAD. MATH. J., VoL. 14, No. 1

and suggest further avenues of Klein link research.

2 Introduction to Braids

A braid is intuitively described as a collection of interwoven strings. We give here only a
brief introduction to braids; a more thorough development of braids can be found in [1].
Given a braid, we obtain a link by closing the braid as shown in Figure 9. The closed braid
is formed by attaching the bottom strands to the corresponding top strands. Conversely,
according to a classical result called Alexander’s Theorem, every link can be represented as
a braid [1]. The significance of this correspondence is that questions of knot theory can be
related to braids.

._.
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Figure 9: A mathematical braid and its closed braid representation.

Suppose we have a braid with n strings, numbered 1,2,...,n from left to right. Then
we can describe the braid algebraically using a finite set of generators. A braid generator
visually corresponds to a crossing in a braid. In general, o; denotes the ith string of a braid
crossing over the (i+1)st string and o; ' represents the ith string crossing under the (i + 1)st
string, as shown in Figure 10.

i i+l 1 i+l
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Figure 10: Braid generators.

The composition of braid generators forms a braid word, which serves as a name for the
particular braid. The braid word, when read from left to right, represents the corresponding
crossings in a braid progressing from top to bottom. For example, the braid in Figure 9 has
braid word oy 'o; oy oyoio

More importantly, braid generators generate a group of n-string braids under the com-
position operation with identity 1 [1, 4]. Including the standard group axioms, there are
three types of geometric manipulations that we can apply to alter the appearance of a braid
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without changing the braid type, depicted in Figure 11. Each of these moves naturally
correspond to algebraic manipulations of the braid word:

11+l 2 1 1+l 142

11+l 1+l

il R

N
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il i i+
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Figure 11: Three geometric braid operations that preserve braid type.

Move 1 For all i, oy0; ' =1 =0, ‘0.
Move 2 For all i <n, 0,0,110; = 0,110:0;11.
Move 3 When |i — j| > 1, 0,0; = 0j0;.

Each of these braid moves preserve the braid type as well as the link type of the closed
braid [1]. However, there are two additional operations which preserve only the link type of
the closed braid and are depicted in Figure 12:

Conjugation For any braid on n strings with braid word B, B = 0;Bo; ' = o; ' Bo; for
1< <n.

Stabilization For an n-string braid word B, B = Bo,, = Bo,,".

Note that we have used equality to relate the braid words before and after each operation.
For the three braid moves, this is technically a braid equivalence statement, but it is a
statement regarding closed braid equivalence for the final two operations. Given that we
are more interested in the closed braid form, we will use equality to relate braid words
according to closed braid equivalence. The significance of these five operations is summarized
in a classical result known as Markov’s Theorem: any two braids with equivalent closed
braid representations are related by a finite sequence of braid moves, conjugations, and
stabilizations [1].
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1 i+l 1 i+l 1 n 1 n n+l
B = B B = B
.| N
P <

Figure 12: Conjugation (left) and stabilization (right).

The final definition we require for braids, although it truly extends to all links, is the
notion of a mirror image. Given a braid word B, the mirror image of B replaces every
generator with its inverse. In classical knot theory, this can create an important distinction
between links: some links are equivalent to their mirror image while others are not [1].

3 Representing Klein Links as Braids

A commonly-stated connection between braids and torus knots is that the (m,n)-torus knot
has a predictable braid word, T'(m,n) = (o102 -0,-1)™, which is depicted in Figure 13
[1]. We are able to establish this result relatively simply: identify the vertical edges of
the rectangular representation of a torus knot to form a cylinder with strands on it. The
remaining edges of the diagram are now represented as circles and, pinching them into lines,
form the bars of a braid. Removing the remainder of the cylinder, the strands laying on the
cylinder become strings of a braid and we obtain a braid representation of a torus knot.

Figure 13: The general braid representation for 7'(m,n).

Analogously, we can use the rectangular diagram for a Klein bottle to develop the braid
word which corresponds to the (m, n)-Klein link. First, we consider the rectangular diagram
that corresponds to the (m,n)-torus knot, which consists of m identification points on the
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vertical edges of the rectangle and n on the horizontal edges. By identifying the vertical
edges, we have recreated the braid word representation for the (m,n)-torus knot.

Changing the orientation of the bottom horizontal edge to create the diagram for a (m, n)-
Klein link, we must twist the bottom bar of the braid 180°. In order to stay consistent
with Klein link formation, the bar is twisted to the left (clockwise as we look down the
cylinder). This composes the braid word for the (m,n)-torus knot with the half-twist,
n—1
H(a;}la;}2 ---0;1). (Note that this is the mirror image of the twist, A,, given in [4].)
i=1
This composition is depicted in Figure 14. Thus a braid word for the (m,n)-Klein link is

K(m,n) = (0102 05-1)" (0, 10,2507 o 0,y - 05 o5 h) -0,y

§

A

Torus Braid

;

Figure 14: Twist used to present K(m,n).

This formation of a Klein link allows us to see its relation to what are called twisted
torus knots. Introduced in [2], the twisted torus knot has additional full twists of a subset of
strings at the bottom of the n-string torus knot braid. The Klein link as a braid is a related
case where at the bottom of the torus knot braid all of the strings are twisted 180° (one-half
of a full twist).

4 Results

Having introduced Klein links and their braid word representation, we will demonstrate sev-
eral patterns that arise due to the Klein link construction. First, we will show an immediate
relationship between certain torus knots and Klein links.

Theorem 4.1. A (m,2)-Klein link is equivalent to a (m — 1,2)-torus knot.
Proof. By definition, K(m,2) = (o)™ (o;") =o' =T(m — 1,2). O

To cleanly establish deeper results involving Klein links, we require additional notation.
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Definition 4.1. For 1 <[ <k, let I'i; = 0101410112 - - Op.

As a consequence, it naturally follows from group properties that Fl_kl =0, 10,;11 0y !

Using this notation, the general form of the braid word for the (m,n)-Klein link becomes

K(m,n) = FTn—IFI_,}L—IF;JlL—I e F;il,n—l'
Another consequence of this notation makes use of the fact that braids have a group structure.
Lemma 4.2. For1 <k <n, Fljnf‘;’; =I'1 k1.
Proof. By definition and repeated application of braid move 1,
FMF,;}% = (o109 0,) (0, ot o) = o109 oy = Dy

[]

In the case k = 1, the previous Lemma would produce the empty braid word. With this
property, we can demonstrate a recursive relation for the (1, n)-Klein links and establish the
equivalence of certain Klein links. We begin by showing that the (1, n)-Klein link is related
to the (0,n — 1)-Klein link.

Theorem 4.3. If n > 1, then the (1,n)-Klein link is the disjoint union of the unknot and
the (0,n — 1)-Klein link.

Proof. As shown in Figure 15, we can apply Lemma 4.2 to obtain

K(L n) = Fl,nflri,ﬁ,lr;’}lil . 1= F27,71171 ot

n—1n— n—1ln—1-

When the braid is closed, the first string forms the unknot and so it can be removed
without affecting the remaining braid. Relabeling the generators, we obtain

F1_,711—2 T F;EQ,n—Q = K(O> n— 1)-

Therefore, the (1, n)-Klein link is the disjoint union of the unknot and the (0,n—1)-Klein
link. [l

Our next major result simplifies K (n, n) significantly by repeatedly applying the following
lemma.

Lemma 4.4. Let B be the braid word for an n-string braid which consists of braid generators
using strings numbered k 4+ 1 or higher, where k is fived with 2 < k < n — 1. Then

I p—1B = Bl'y j—1.
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Figure 15: K (1,n) represented in general braid form (left) and as a simplified braid (right).

Proof. Since every braid generator in B uses strings numbered k + 1 or greater and |(k +
1) —i| >1fori=1,2,...,k — 1, we may interchange o; with any braid generator in B by
braid move 2. Then, in the first step, we can move o,_; past B to obtain

Fl,kle = Fl,kakalB = Fl,k72Bak71-

Similarly, in the jth step for j > 2, we can move another generator from I'; ;_; past B
to obtain

Ip—i Bl jrip—1 = Dip—jo10k—j Bl j i1 = Dip—jm1 Bog— U1 k-1
=11 Bl 1.
After the (k — 1)st iteration, we have I'y 1B = BI'y ;1. O

While Lemma 4.4 is a specific case of the commutativity of certain composed braid words,
generalizing braid move 3, its particular statement is useful in our next theorem.

Theorem 4.5. For alln > 0,
K(”v n) =Tipalipno T = (0102 T Unfl)(Ule T Uan)(Ulo—Q - 'Un73) s (01)-
Proof. Let us consider the (n,n)-Klein link. By Lemma 4.2

K(n,n) = F?,nflriiflrgnllfl T ngl,nfl = F?,;Llflriifl T Frjil,nfl'
Applying Lemma 4.2 again, F17n_1F2_7711_1 =TI'1,. Take By = F?:%L_l X 'Fr_Lil,n—l' Then by
Lemma 44, ]_—‘17132 = B2F171 and so

K(n,n) =T7,2 Bl 1.
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In general, set By, = F,;ilm_l e Fﬁim—l- Then by Lemmas 4.2 and 4.4,

Fl,n—lrlzi_lBk =I'1 y—1Br = Bil'y j—1.
Hence in the kth step, the (n,n)-Klein link has a braid representation of the form
Fi;]ilBkFLk—lrl,k—Z R ERE

So in the (n — 1)st step, B,—1 = 1 and so K(n,n) =Ty ,_1I'1n—o---T'11 as desired. O

Our final two results make use of Theorem 4.5 to demonstrate the equivalence, or near
equivalence, of certain Klein links. We go on to relate the (0,n)- and the (n,n)-Klein links.

Theorem 4.6. The (0,n)-Klein link and the (n,n)-Klein link are mirror images of the same
link.

Proof. Applying Theorem 4.5, K(n,n) = I'1 ,_1I'1 o+ -T'11. If we consider the current
projection of the braid and one obtained by looking at the braid from the back, we are
looking at the same braid with relatable generators (see Figure 16).

/ﬁ

/\/

\,_\/\.‘

Figure 16: Two braid representations of K (n,n).

When the braid is closed, this alternate projection does not change the resulting link.
The braid word associated with this alternate projection is

K(n,n) = (0p-10n—2- - 01)(0pn-10n—2 - 02)(On_10n_2- - 03) - - Op_1.
Now consider the mirror image of this braid word:
(0, hh00 o D)o, 0,y 0y ) (0, 0,y o5 ot = K(0,n).

Therefore, the (0,n)-Klein link and the (n,n)-Klein link are mirror images of the same
link. O

Finally, we conclude by showing that the (n,n)- and (n,n — 1)-Klein links are equivalent.
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Theorem 4.7. The (n,n)-Klein link and the (n,n — 1)-Klein link are equivalent links.

Proof. Successively applying Theorem 4.5 and conjugation, a braid representation of the
(n,n)-Klein link is
K(”a n) = Fl,nflrl,an T F1,1 = Fii_g(rl,nflrl,an e 'Fl,l)rl,nd
= (Fii_er,n—l)(Fl,n—Q Tyl e

Now we apply Lemma 4.2 and stabilization to the resulting braid word to obtain

K(m n) = (Fiylz_QFI,n—l)(Fl,n—2 s Fl,l)rl,n—Q = Un—l(F1,n—2 ce F1,1)F1,n—2
= (Fl,nf2 S Fl,l)Fl,nf}

Finally, we use conjugation again to obtain K (n,n) =TI, o(I'1n—2---T'11).
For the (n,n — 1)-Klein link, we use group properties and Theorem 4.5 to get
K(n,n—1) = F?,anFi}llejSLfQ t 'P;il,nq
= Flﬂ—?(r?;zl—QFl_,?lm—lFQ_le—Q T F;ilm—l)
=1, 02K(n—1n-1)
=Tino(Tin—2lips---Ti1).

Thus K(n,n) = K(n,n —1). O

5 Conclusions

Our recent results have established a framework for viewing Klein links that uses the plane
instead of 3-dimensional space. We have shown that, similar to (m,n)-torus knots, (m,n)-
Klein links have a predictable braid word and we have used this to show the equivalency
of a small class of Klein links. Based on established similarities to torus knots, we expect
that other link invariants should be formulaic for Klein links as well. This includes crossing
number, linking number and braid index.
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