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Volume 14, No. 1, Spring 2013

aNorthern Arizona University



Rose-Hulman Undergraduate Mathematics Journal

Volume 14, No. 1, Spring 2013

Trees of Irreducible Numerical Semigroups

Taryn M. Laird and José E. Martinez

Abstract.A 2011 paper by Blanco and Rosales describes an algorithm for construct-
ing a directed tree graph of irreducible numerical semigroups of fixed Frobenius
numbers. This paper will provide an overview of irreducible numerical semigroups
and the directed tree graphs. We will also present new findings and conjectures
concerning the structure of these trees.

Acknowledgements: We would like to give a special thanks to our mentor, Jeff Rushall,
for his help and guidance, and to Ian Douglas for sharing his expertise in programming.



Page 58 RHIT Undergrad. Math. J., Vol. 14, No. 1

1 Introduction

There are many problems in which we unknowingly encounter numerical semigroups in
mathematics. Two of the most well known examples of these problems are the coin problem
and the postage stamp problem. Here is one of many such puzzles.

Example 1.1. Suppose we are given an infinite number of 4 cent, 6 cent, and 9 cent coins.
We would like to determine the largest amount of exact change that we cannot make using
combinations of these coins.

In order to find this maximum number, we must consider all possible combinations of
the coins. That is,

{all possible amounts of change} = {4k1 + 6k2 + 9k3|k1, k2, k3 ∈ N}
= {0, 4, 6, 8, 9, 10, 12, 13, 14, 15, 16, ...}

Since we have made 4 consecutive integer amounts (12 cents, 13 cents, 14 cents and 15
cents) we know that all integer amounts greater than 15 cents can be made by adding more
4 cent coins to these consecutive amounts. This means that the largest amount of exact
change we cannot make is 11 cents.

The next problem is similar to Example 1.1, but it has an important difference.

Example 1.2. Suppose we are given an infinite number of 4 cent and 14 cent coins and we
again wish to find the largest amount of change that we cannot make with these coins.

We again consider all possible combinations of the coins:

{all possible amounts of change} = {4k1 + 14k2|k1, k2 ∈ N}
= {0, 4, 8, 12, 14, 16, 18, ...}

Note that we can never make an odd amount of change with our coins. This means that
there cannot be a largest un-makeable amount.

The infinitely large set of change amounts in the first example is called a numerical semi-
group, and the largest uncreatable number is called the Frobenius number of the numerical
semigroup.

We now ask if there are other sets of coin denominations that have a largest un-makeable
amount of 11 cents. It turns out that other such sets of denominations do share the same
largest unmakeable amount and a special subset of the corresponding numerical semigroups
can be recursively constructed in a directed tree graph.

In the following sections of the paper we will first define numerical semigroups and certain
properties that are important to both the numerical semigroups themselves and the directed
tree graphs. We will then briefly examine how numerical semigroups are connected to com-
munative ring theory. In section 4 we will present an algorithm that creates the directed
tree graphs and construct a few examples. To conclude the paper, we will present some new
results that help describe the structure of these directed tree graphs.
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2 Numerical Semigroups

We first need a solid grasp of what a numerical semigroup is, and more precisely, what
it means to be an irreducible numerical semigroup.

Definition 2.1. A numerical semigroup is a subset S of the nonnegative integers N that
satisfies the following:

1. S contains 0.

2. S is closed under addition.

3. N\S is finite.

We say {a1, a2, ..., an} is a generating set for S if S ={k1a1+k2a2+...+knan|k1, k2, ..., kn ∈ N},
and we call each ai a generator of S. If no proper subset is a generating set for S, we say
{a1, a2, ..., an} is the minimal generating set and we write S = 〈a1, a2, ..., an〉, 0 < a1 < a2 <
... < an.

Example 2.1. Consider the numerical semigroup generated by 5, 6 and 13. Then

S = 〈5, 6, 13〉 = {5k1 + 6k2 + 13k3|k1, k2, k3 ∈ N}
= {0, 5, 6, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, ...}
= {0, 5, 6, 10, 11, 12, 13, 15,→}

The arrow indicates that all integers greater than 15 are in S.

Associated with every numerical semigroup are two important integers which are impor-
tant for our studies.

Definition 2.2. The Frobenius number of a numerical semigroup S, denoted F (S), is the
largest integer not in S. The multiplicity of S, denoted m(S), is the smallest positive element
of S.

Example 2.2. Consider once again the numerical semigroup generated by 5, 6, and 13.
That is,

S = 〈5, 6, 13〉 = {0, 5, 6, 10, 11, 12, 13, 15,→}

Here F (S) = 14 as it is the largest integer not in S, and m(S) = 5, as 5 is the smallest
positive element in S.

Next we define the two special types of numerical semigroups that are the focus of our
research.
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Definition 2.3. A numerical semigroup S is said to be symmetric if and only if F (S) is odd
and if x ∈ Z /∈ S, then F (S)− x ∈ S.

Example 2.3. Consider, S = 〈6, 7, 10, 11〉 = {0, 6, 7, 10, 11, 12, 13, 14, 16,→}. Here F (S) =
15, which is odd, as required. In addition, for every integer x /∈ S we have F (S)− x ∈ S as
depicted in Figure 1 below. For example, if x = 8, we have 15 − 8 = 7 ∈ S, and the same
can be verified for all elements in Z /∈ S. Thus S is symmetric.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1

Definition 2.4. A numerical semigroup S is said to be pseudosymmetric if and only if F (S)

is even and if x ∈ Z /∈ S, then either x = F (S)
2

or F (S)− x ∈ S.

Example 2.4. Again consider S = 〈5, 6, 13〉 = {0, 5, 6, 10, 11, 12, 13, 15,→}. As previously
discussed, F (S) = 14 is even as required. As indicated in Figure 2, for every integer x /∈ S

we have either x = F (S)
2

or F (S)− x ∈ S, and so S is pseudosymmetric.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2

The reason for our emphasis on symmetric and pseudosymmetric numerical semigroups
will be made clear in the remaining sections of the paper.
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2.1 Irreducible Numerical Semigroups

Definition 2.5. A numerical semigroup S is irreducible if it cannot be expressed as an
intersection of two numerical semigroups that properly contain S. For a given Frobenius
number F , the set of all irreducible numerical semigroups with Frobenius number F is
denoted I(F ).

In [2], Branco and Rosales showed that a numerical semigroup is irreducible if and only
if it is symmetric or pseudosymmetric. The following theorem [1] defines a certain numerical
semigroup unique to every Frobenius number.

Theorem 2.1. For every positive integer F , there exists a unique irreducible numerical
semigroup C(F ) whose generators are all larger than F

2
. Moreover,

C(F ) =

{
{0, F+1

2
,→}\{F} if F is odd,

{0, F
2

+ 1,→}\{F} if F is even.

=

{
〈F+1

2
, F+3

2
, ..., F − 1〉 if F is odd,

〈F
2

+ 1, F
2

+ 2, ..., F − 1, F + 1〉 if F is even.

Example 2.5. Using Theorem 2.1 we will now construct C(15).

C(15) = {0, 15 + 1

2
,→}\{15}

= {0, 8, 9, 10, 11, 12, 13, 14, 15, 16,→}\{15}
= {0, 8, 9, 10, 11, 12, 13, 14, 16,→}
= 〈8, 9, 10, 11, 12, 13, 14〉

Note that when F is odd, C(F ) is generated by an interval of consecutive integers of N.
This type of numerical semigroup, first investigated by Garćıa-Sánchez and Rosales in [3],
led to a new characterization of symmetry for interval-generated numerical semigroups. The
interested reader can consult [3] for more information.

3 Graph Theory Necessities

The remainder of this paper will focus on graphs of families of specific numerical semi-
groups that share a common Frobenius number. Therefore, a brief review of basic graph
theory terminology is appropriate.

Definition 3.1. A graph is a collection of points called vertices and lines called edges that
connect pairs of vertices. Two vertices are adjacent if an edge connects them.
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Definition 3.2. A tree graph is a graph in which there is a unique sequence of alternating
edges and vertices “connecting” each pair of vertices. A directed tree graph is a tree graph
in which there is a direction associated with each edge.

Example 3.1. In Figure 3 we see an example of a directed tree graph. We will reference
this tree in order to clearly define the terms that we use to describe tree graphs.

S1

S2 S3 S4

S5 S6 S7

S8

Figure 3

The designated vertex from which the tree appears to “hang” - i.e., the vertex (S1) at
“the top” of the tree - is called the root of the tree. The level of a vertex is the length of
the path from the vertex to the root. For instance, in Figure 3 the level of S2 is 1, and we
say that S2 is in the first level. The height of a tree is the maxiumum level in the tree. Note
that the height of the tree in Figure 3 is 3. Given any pair of adjacent vertices, the vertex in
the greater level is called the child of the vertex in the smaller level. For example, in Figure
3, S3 is a child of S1, and S5, S6, and S7 are the children of S2. A vertex with no children is
called a leaf. A branch is the shortest “path” from the root to a leaf. As a result, the longest
branch in a tree is equvalent to the height of the tree. Note that in Figure 3 the longest
branch is the path from S1 to S8 passing through S2 and S6.

4 Directed Tree Graphs

In an attempt to catalogue all symmetric and pseudosymmetric numerical semigroups
with a fixed Frobenius number, Blanco and Rosales [1] developed an algorithm for system-
atically finding all such irreducible numerical semigroups.

Theorem 4.1. Let F be a positive integer. Then the elements of I(F) comprise a directed
tree graph, denoted G(I(F)), with root C(F). If S is an element of I(F), then the children of
S are (S\{x1}∪{F −x1}), (S\{x2}∪{F −x2}), ..., (S\{xr}∪{F −xr}), where {x1, ..., xr} is
the set of minimal generators of S such that for each x ∈ {x1, ..., xr} the following conditions
are satisfied:

1. F
2
< x < F

2. 2x− F /∈ S
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3. 3x 6= 2F

4. 4x 6= 3F

5. F − x < m(s).

When a minimal generator, x, of S ∈ (G(I(F )) satisfies the five conditions, we say that
x spawns a child of S, that child being (S\{x} ∪ {F − x}). A minimal generator of a given
vertex that does not spawn a child is said to be barren.

Example 4.1. In order to build G(I(11)), the directed tree graph associated with Frobenius
number 11, we begin by constructing the root, C(11):

C(11) = {0, F (S) + 1

2
,→}\{F} = {0, 6, 7, 8, 9, 10, 12,→}

= 〈6, 7, 8, 9, 10〉.

Using Theorem 4.1 and checking each minimal generator we find that the following generators
spawn the given irreducible numerical semigroups in G(I(11)).

x1 = 8 : (〈6, 7, 8, 9, 10〉\{8}) ∪ {3} = {0, 3, 6, 7, 9, 10, 12,→} = 〈3, 7〉
x2 = 7 : (〈6, 7, 8, 9, 10〉\{7}) ∪ {4} = {0, 4, 6, 8, 9, 10, 12,→} = 〈4, 6, 9〉
x3 = 6 : (〈6, 7, 8, 9, 10〉\{6}) ∪ {5} = {0, 5, 7, 8, 9, 10, 12,→} = 〈5, 7, 8, 9〉
These irreducible numerical semigroups are the children of the root C(11) in G(I(11)).

By applying the same algorithm we find that, in G(I(11)), 〈3, 7〉 is barren, whereas 〈4, 6, 9〉
has one child, 〈2, 13〉, and 〈5, 7, 8, 9〉 has one child, 〈4, 5〉 spawned by 9 and 7, respectively.
The entire tree G(I(11)) is shown in Figure 4 below.

〈6, 7, 8, 9, 10〉

〈5, 7, 8, 9〉 〈4, 6, 9〉 〈3, 7〉

〈4, 5〉 〈2, 13〉

66 77 88

77 99

Figure 4

The following images of specific directed tree graphs were generated by a program written
in Mathematica and compiled in QTikZ. For simplicity, the tree vertices are labels of the
form S1, S2, S3, etc. (corresponding to the order in which they were found by the program)
and the minimal generator from which each child spawned is not shown.
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Example 4.2. Figure 5 below is an image of G(I(16)). It should be noted that this tree is
isomorphic to G(I(18)), and in all likelihood they are the only such pair of isomorphic trees
in the entire family G(I(F )) for F > 11.

S1

S2 S3 S4

S5S6 S7

Figure 5

Example 4.3. Figure 6 is an image of G(I(30)).

S1

S2 S3 S4 S5 S6 S7

S8S9S10 S11

S12

S13 S14 S15 S16

S17S18 S19

S20 S21 S22 S23 S24

S25 S26S27 S28S29 S30 S31 S32

S33 S34S35 S36

Figure 6

The tree in Figure 6 shows many of the obvious characteristics of the trees for F > 12,
as the left side contains longer branches and more children. Moreover, the “width” and the
number of vertices vary dramatically from tree to tree. Further exploration of the structure
of the trees can be found in the next section.

Example 4.4. Figure 7 is an image of G(I(27)).

S1

S2 S3 S4 S5 S6 S7

S8S9 S10S11 S12S13 S14 S15 S16 S17

S18 S19S20 S21 S22 S23 S24

S25 S26

S27

S28

S29 S30 S31 S32

S33 S34

S35

S36S37 S38 S39 S40

S41S42 S43S44 S45

Figure 7



RHIT Undergrad. Math. J., Vol. 14, No. 1 Page 65

5 New Results

In our investigation we have been especially interested in finding explicit formulas for the
number of vertices, the width and the height of any given tree. This has in general been
difficult, so we have resorted to examining less complicated properties of the trees which may
lead to finding of formulas. For instance, we have investigated which minimal generators will
spawn children in G(I(F )) and how often, and we have examined the longest branches in the
trees. To this end, the trees have been split into two categories, the odd Frobenius number
trees and the even Frobenius number trees. The following properties of G(I(F )) have been
found:

Proposition 5.1. Let F = 2k + 1. Then:

1. If 3|F , then the minimal generator k + k+2
3

does not spawn children in G(I(F )).

2. If k is even, then the minimal generators of C(F ) greater than or equal to k + k
2

+ 1
will not spawn children of C(F ).

3. If k is odd, then the minimal generators of C(F ) greater than or equal to k + k+1
2

+ 1
will not spawn children of C(F ).

Proof. To prove part (1), note that 3(k + k+2
3

) = 4k + 2 = 2F . This violates condition 3 in
Theorem 4.1, and thus the minimal generator k + k+2

3
is barren.

For (2), note that 2(k + k
2

+ 1) − (2k + 1) = k + 1. Since k + 1 is a minimal generator
of C(F ), 2(k + k

2
+ 1) − F ∈ C(F ), which violates condition 2 in Theorem 4.1. Also, if

n > k
2

+ 1, then 2(k + n)− F > k + 1, which means that 2n− F ∈ C(F ). Therefore, k + n
will not spawn children of C(F ).

Finally, for part (3) note that 2(k + k+1
2

+ 1) − (2k + 1) = k + 2, and since k + 2 is a
minimal generator of C(F ), k + k+1

2
+ 1 − F ∈ C(F ), which violates condition 2. Likewise

for n ≥ k+1
2

+ 2, note that 2(k + n) − F > k + 2, so 2n − F ∈ C(F ). Thus, k + n will not
spawn children of C(F ).

The following is another small, yet useful result we have found for studying the odd
Frobenius number trees.

Proposition 5.2. Let F = 2k + 1, k > 1. The smallest odd minimal generator of C(F ) will
always spawn a child of C(F ).

Proof. For this proof we must show that the smallest odd minimal generator of C(F ) satisfies
all conditions of Theorem 4.1. For the first condition, suppose k is odd. The smallest odd
minimal generator of C(F ) is then k + 2. Note that F

2
= k + 1

2
, hence F

2
< k + 2 < F . For

the second condition, note that 2(k+ 2)−F = 3, and since F > 3, k > 2. Thus k+ 1 > 3, so
2(k+ 1)−F /∈ S. For the third condition, suppose 3(k+ 2) = 2F . Then 3k+ 6 = 4k+ 2 and
k = 4, which contradicts the assumption that k is odd. Therefore, 3(k + 2) 6= 2F . To show
that the fourth condition is satisfied, suppose that 4(k + 2) = 3F . Then 4k + 8 = 6k + 3,
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which implies that 2k = 5, which is false. Therefore, 4(k + 2) 6= 3F . For the fifth condition,
note that F − (k+2) = k−1 and m(C(F )) = k+1, thus F − (k+2) < m(C(F )). Therefore,
k + 2 will spawn a child of C(F ).

Next, suppose k is even. Then the smallest odd minimal generator of C(F ) is k + 1. For
the first condition, note that F

2
< k + 1 < F . For the second condition, note 2(k + 1)−F =

1 < k+1, hence 2(k+1)−F /∈ C(F ). For the third condition, note that 3(k+1) = 2F implies
that k = 1, which is false because k > 1. Therefore, 3(k+1) 6= 2F . For the fourth condition,
4(k + 1) = 3F implies that 2k = 1, which is false. Therefore, 4(k + 1) = 3F . Finally, for the
fifth condition, note that F − (k + 1) = k and m(C(F )) = k + 1, so F − (k + 1) < m(C(F )).
Therefore, k + 1 will spawn a child of C(F ).

We have also derived analogous results for even Frobenius number trees:

Proposition 5.3. Let F = 2k. Then:

1. If 4|F , then the minimal generator k + F
4

does not spawn children in G(I(F )).

2. If 6|F , then the minimal generator k + F
6

does not spawn children in G(I(F )).

3. If k is even, 4 6 |F and 6 6 |F , then the minimal generators of C(F )), k + n, where
1 ≤ n ≤ k

2
will each spawn a child of C(F ).

Proof. For the proof of part (1), note that 4(k + F
4

) = 4(k + 2k
4

) = 6k, and 3F = 6k. Thus,
4(k + F

4
) = 3F , which violates condition 4 in Theorem 4.1. Therefore, k + F

4
is barren

in G(I(F )). For part (2), note that 3(k + F
6

) = 3(k + 2k
6

) = 4k, and 2F = 4k. Thus,
3(k + F

6
) = 2F , which violates condition 3.

Finally, for part (3), note that to prove that a minimal generator spawns a child, it must be
shown that the 5 conditions in Theorem 4.1 are satisfied. Let 1 ≤ n ≤ k

2
. For condition one,

note that F
2

= k, so F
2
< k+n < F . For condition 2, note that 2(k+n)−F = 2n < m(C(F )).

For condition 3, note that if 3(k+n) = 2F , then 3k+3n = 4k, and 3n = k, which contradicts
the assumption 6 6 |F . Also, for condition 4, if 4(k+n) = 3F , then 4k+4n = 6k and 4n = F ,
which contradicts the assumption 4 6 |F . Finally, for condition 5, note that F − k − n, so
F − (k + n) ≤ m(C(F )) since n ≥ 1. Therefore k + n, 1 ≤ n ≤ k

2
will each spawn a child of

C(F ).

We have devoted a great deal of effort toward determining the heights of these trees. We
have been especially interested in the longest branches of trees with odd Frobenius number
greater than 11. For this study, the following lemma has been found to be useful.

Lemma 5.1. Let S be an irreducible numerical semigroup with Frobenius number F = 2k+1
such that S is spawned by k +n, where k +n is an odd minimal generator of C(F ) for some
positive integer n. Stated differently: S = S∗\{k + n} ∪ {F − (k + n)}, where S is a child of
S∗ ∈ G(I(F )). Then:

1. If k is even and w is the smallest odd such that k + n < k + w < F and k + w is the
smallest odd minimal generator of S, then k + w will spawn a child of S.
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2. If k is odd and h is the smallest even such that k + n < k + h < F and k + h is the
smallest odd minimal generator of S, then k + h will spawn a child of S.

Proof. First, suppose k is even. We must show that the minimal generators k + n satisfiy
conditions 1-5. For the first condition, note that F

2
= k + 1

2
< k + w, so F

2
< k + w < F .

For the second condition, note that 2(k + w) − F = 2w − 1 and since w < k + 1, then
2w < k + w + 1 and 2w − 1 < k + w, and since k + w is the smallest odd in S, then
2w − 1 /∈ S. For the third condition, note that if 3(k + w) = 2F , then k = 3w − 2. But k is
even and 3w−2 is odd. Thus, 3(k+w) 6= 2F . To show that the fourth condition is satisfied,
note that 4(k+w) = 3F implies that 4w = 2k+ 3. But 2k+ 3 is odd and 4w is even. Hence,
4(k +w) 6= 3F . Finally, for the fifth condition, note that F − (k +w) = k + 1−w, and since
w > n, then k + 1−w < k + 1−n. Thus, F − (k +w) < m(S). Therefore, k +w will spawn
a child of S.

For the second part, suppose that k is odd. For the first condition, note that F
2

= k + 1
2
,

so F
2
< k + h < F . For the second condition, note that 2(k + h) − F = 2h − 1 and recall

that h < k + 1, so 2h − 1 < k + h. Since k + h is the smallest odd in S, then 2h − 1 /∈ S.
For the third condition, note that 3(k + h) = 2F implies that k = 3h− 2. But k is odd and
3h− 2 is even. Thus, 3(k + h) 6= 2F . For the fourth condition, note that if 4(k + h) = 3F ,
then 4h− 3 = 2k, but 4h− 3 is odd, a contradiction. Thus, 4(k + h) 6= 3F . Finally, for the
fifth condition, note that F − (k + h) = k + 1− h. Since m < h, then k + 1− h < k + 1−m.
Thus, k + 1− h < m(S). Therefore, k + h will spawn a child of S.

To illustrate what Lemma 5.1 says, we present the following example:

Example 5.1. Let F = 2k + 1 = 11. Then k = 5. Consider the child of C(11) S spawned
by k + 2 = 7:

S = C(11) \ {7} ∪ {11− 7}
= 〈4, 6, 9〉.

Note that k is odd, and 4 is the smallest even integer such that k + 2 < k + 4 < 11 and
k + 4 = 9 is the smallest odd minimal generator of S. Thus, by Lemma 5.1, the minimal
generator 9 will spawn a child of S.

The study of the odd Frobenius number trees led to the following:

Theorem 5.1. Let F = 2k + 1, k > 5. Note that C(F ) = 〈k + 1, k + 2, k + 3, ..., 2k〉. Then:

1. If k is even, G(I(F )) contains a branch whose vertices are spawned by k+1, k+3, ..., k+
k − 1 in this order.

2. If k is odd, G(I(F )) contains a branch whose vertices are spawned by k+2, k+4, ..., k+
k − 1 in this order.
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Proof. Let k be even. Note that C(F ) = 〈k+1, k+2, ..., k+k〉. By Proposition 5.2, k+1 will
spawn a child of C(F ). Suppose k + n is the smallest odd minimal generator of a numerical
semigroup S ∈ G(I(F )), where S is spawned by k + n− 2 and 1 ≤ k + n− 2 ≤ 2k − 1. By
Lemma 5.1, k + n will spawn a child, S ′, of S.

Assuming the above, we must show that k + n + 2 will spawn a child of S ′. Note that
F − (k + n) = 2k + 1− (k + n) is even and all minimal generators of S ′ less than k + n are
even. Thus k + n+ 2 is the smallest odd minimal generator of S ′. By Lemma 5.1, k + n+ 2
will spawn a child of S ′, as long as n + 2 < 2k + 3, as desired. A similar argument is used
to prove part 2 and the result follows.

Example 5.2. Figure 8 is an image of G(I(19)). Note that the longest branch is the one
described in Theorem 5.1 .

〈10, 11, 12, 13, 14, 15, 16, 17, 18〉

S2 〈8, 10, 12, 13, 14, 15, 17〉 S4 S5 S6

S14 S15 S16

S8 S19 S20

S18 〈6, 8, 10, 15, 17〉 S10 S11

〈4, 6, 17〉S17

S7

〈2, 21〉

1111

1313

1515

1717

Figure 8

We have generated images for all odd Frobenius number trees between F = 7 and F = 67,
and in all of these trees, where F > 11, the longest branch is the one described in Theorem
5.1 above. This leads us to the following conjecture.

Conjecture 5.1. If F = 2k + 1, then the branch described in Theorem 5.1 is the unique
longest branch in G(I(F )).

6 Open Questions

We have yet to find a formula for the number of vertices in a given tree. This is an
especially mysterious and difficult problem to explore since the number of vertices in the
trees is not strictly increasing as the Frobenius numbers increase, as can be seen in Figure 9
below which shows the number of levels and vertices in G(I(F )).
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F (S) Levels Vertices
14 2 6
15 3 7
16 2 7
17 4 15
18 2 7
19 4 20
20 3 11
21 5 18
22 3 20
23 5 36
24 3 14
25 6 44
26 4 35

F (S) Levels Vertices
27 6 45
28 4 37
29 7 83
30 4 36
31 7 109
32 5 70
33 8 101
34 5 106
35 8 174
36 5 77
37 9 246
38 6 182
39 9 227

F (S) Levels Vertices
40 6 196
41 10 420
42 6 203
43 10 546
44 7 342
45 11 498
46 7 527
47 11 926
48 7 411
49 12 1182
50 8 844
51 12 1121
52 8 981

Figure 9

Note that the Frobenius numbers which appear to be responsible for the non-increasing
behavior of the numbers of vertices appear to always be divisible by 4 or 6 in the even case,
and divisible by 3 in the odd case, which correspond to Propositions 5.1 and 5.3, respectively.
Interesting as they are, these observations have not led to a conjecture for the number of
vertices in a tree. As shown in the table, the number of vertices grows quite rapidly, making
it very difficult to generate images of the trees with larger Frobenius numbers. The largest
tree for which we have an image of is G(I(67)), which has 11972 vertices.

Determining the height of the trees is slightly less mysterious, and has led to the following
conjecture.

Conjecture 6.1. The height of G(I(F )) is bk
2
c for F = 2k + 1 (corresponding to a unique

branch of this length) and bk−1
3
c for F = 2k (corresponding to non-unique branches of this

length) for k > 6.

Note that the conjectured height of the odd trees corresponds to the length of the branch
described in Theorem 5.1. In our future work we hope to prove this conjecture. We also
hope to find a formula for, or relatively sharp bounds on, the number of vertices in a given
tree.
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