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Cold positions of the restricted
Wythoff’s game

Ryoma Aoki Junpei Sawada Yuki Miyake Hiroaki Fujiwara

Abstract. Wythoff’s game is a kind of 2-pile Nim game, which admits taking the
same number of stones from both piles. It differs only a little from the 2-pile Nim
game, but their winning strategies are quite different from each other. Amazingly the
winning strategy of Wythoff’s game is directly related to a real number, specifically
the golden ratio. In this paper we add two restrictions to this game, and investigate
the winning strategy of the revised game.
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1 Introduction

Nim games are mathematical two player games in which two players take at least one stone
alternately. The most simple Nim game is the 1-pile Nim game, in which two players take
stones alternately from a pile. The next simple example of Nim games is the 2-pile Nim
game, in which two players can take stones from one of two piles but can not take stones
from both piles each round. For a natural number n = 3, the n-pile Nim game can be defined
similarly. Namely, it is a Nim game in which two players can take stones only from one of n
piles each round.

It is said that the origin of Nim games is in ancient China, and there are various kinds
of Nim games now (cf. [2], [3]). Among them Wythoff’s game 1 which is a kind of the
2-pile Nim game that is especially interesting; its winning strategy is known very well and
has a beautiful structure (cf. [1]). In Wythoff’s game, two players can take stones not only
from one of two piles, but also from both piles, provided that the numbers of stones taken
from each pile must be equal. When one of two piles has no stones in it, Wythoff’s game is
equivalent to the 1-pile Nim game above. The aim of this paper is to investigate the winning
strategy of a certain 2-pile Nim game which is similar to Wythoff’s game.

Before we discuss about winning strategies of Nim games, we have to define the victory
or defeat. A Nim game is called of regular type when a player who takes the last stone wins.
Otherwise it is called of misère type. In this paper we investigate winning strategies of Nim
games which are of regular type. From now on we denote (m1,m2, · · · ,mn) for n piles of
stones which consist of m1,m2, · · · ,mn stones and call it a position. Since we do not consider
the order of n piles, we identify (m1,m2, · · · ,mn) (m1 = m2 = · · · = mn) with all positions
which are realized from it by permutations. For simplicity we define two terms below.

Definition 1.1. When a player can definitely win by taking stones suitably, we call such a
state a hot position. Otherwise we call such a state a cold position.

In short, the winning strategy is nothing but the method of confronting the opponent
with cold positions. Therefore our aim is equivalent to determining cold positions completely.

We can find cold positions for Wythoff’s game easily as below. First, (0, 0) is a cold posi-
tion by the rule of this game. Therefore we see that (n, 0), (0, n), (n, n) are hot positions for
every n ∈ N. Thus (1, 2), (2, 1) must be cold positions and so (1 +n, 2), (1, 2 +n), (1 +n, 2 +
n), (2+n, 1), (2, 1+n), (2+n, 1+n) are hot positions for every n ∈ N. Therefore (3, 5), (5, 3)
must be cold positions. In a similar way, we see that (4, 7), (7, 4), (6, 10), (10, 6), (8, 13), (13, 8),
and so on, are cold positions. In Figure 1 we represent a part of these cold positions by dots.

In 1907, Wythoff [1] determined all cold positions of this game completely in his paper.
Amazingly, we see that the winning strategy of it is directly related to the golden ratio as
below.

1The name of this game comes from a Dutch mathematician Willem Abraham Wythoff. Wythoff’s game
was played in ancient China, and it was called jiǎn shiži.
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Figure 1: cold positions of Wythoff’s game

Theorem 1.1 (cold positions of Wythoff’s game). The set of cold positions of Wythoff’s
game CPWythoff is

CPWythoff =
{

(bφic+ i, bφic) ∈ Z2
=0 | i = 0, 1, 2, · · ·

}
where φ = (1 +

√
5)/2 = 1.61803398875 · · · .

For n ∈ N, we add the following restrictions to Wythoff’s game, and investigate how cold
positions appear.

(1) The number of stones one can take from a pile is fewer than n.

(2) The numbers of stones one can take from each pile are fewer than n.

We call Wythoff’s game with these restrictions n Wythoff’s game. The following is our main
result.

Theorem 1.2 (cold positions of n Wythoff’s game). The set of cold positions of n Wythoff’s
game CPn Wythoff is

CPn Wythoff =
{
a1(n+ 1, 0) + a2(0, n+ 1) + a3(bφic+ i, bφic) ∈ Z2

=0

| a1, a2 ∈ Z=0, a3 ∈ {0, 1}, i = 1, 2, · · · ,m
}

where m = max
{
i ∈ Z=0 | bφic+ i < n+ 1

}
.

Here is an outline of the contents of the individual sections. In Section 2 we introduce
previously-known results with proofs and provide the necessary background. In Section 3 we
prove our main result. In Section 4 we state the difference between CPWythoff and CPn Wythoff,
and conclude our paper.
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2 Background

In this section we introduce some winning strategies for various kinds of Nim games. And
then we introduce the winning strategy of Wythoff’s game.

In general a Nim game has two patterns, one of which admits taking an arbitrary number
of stones and the other does not. We first treat the former case, and then the latter.

The 1-pile Nim game is a game which the first player definitely wins, so it is a trivial
game.

Lemma 2.1 (the cold position of the 1-pile Nim game). (0) is the only cold position of the
1-pile Nim game.

Proof. Needless to say, (0) is a cold position. For any n ∈ N, the first player can take n
stones, so (n) is a hot position.

The 2-pile Nim game is also a trivial game.

Lemma 2.2 (cold positions of the 2-pile Nim game). The set of cold positions of the 2-pile
Nim game is {

(m,m) ∈ Z2
=0 | m = 0, 1, 2, · · ·

}
.

Proof. By the rule of the 2-pile Nim game, we see that (0, 0) is a cold position easily. For
m ∈ N, the first player cannot help making (m,m) into (m,n) or (n,m), where n is a
natural number such that n < m. The second player can make (m,n), (n,m) into (n, n).
By repeating this process, the second player can definitely win. Thus we see that (m,m)
is a cold position. For (m,n) such that m 6= n, we may assume that m > n since we do
not consider the order of two piles. In this case, the first player can make (m,n) into a cold
position (n, n), therefore we see that (m,n) is a hot position. Thus the claim is proved.

Compared to the 1-pile and the 2-pile Nim games, the 3-pile Nim game is rather compli-
cated. Before we state the winning strategy of it, we look at two examples.

Example 2.1. (3, 2, 1) is a cold position. In fact possible positions which one can realize from
(3, 2, 1) are (2, 2, 1), (3, 2, 0), (0, 2, 1), (3, 1, 1), (3, 0, 1), (1, 2, 1). Among them, one can make
(2, 2, 1), (3, 2, 0) into (2, 2, 0), and this is a cold position as we have seen in Theorem 2.2. Sim-
ilarly, one can make (0, 2, 1), (3, 1, 1) into a cold position (0, 1, 1), and make (3, 0, 1), (1, 2, 1)
into a cold position (1, 0, 1). Thus all of the positions (2, 2, 1), (3, 2, 0), (0, 2, 1), (3, 1, 1), (3, 0, 1), (1, 2, 1)
are hot positions, and we see (3, 2, 1) is a cold position.

Example 2.2. (3, 3, 1) is a hot position. In fact, one can make (3, 3, 1) into (3, 2, 1), and
this is a cold position as we have seen in the above.

In order to state the winning strategy of the 3-pile Nim game, it is convenient to use
the binary digital sum ⊕. Here the binary digital sum ⊕ is a operation for natural numbers
which make a1, a2, · · · ∈ N into binary numbers, sum each place of them modulo 2, and



RHIT Undergrad. Math. J., Vol. 13, No. 1 Page 179

finally make it into a decimal number. For example 5 = 101(2), 7 = 111(2), and by summing
each place of them modulo 2 we obtain 010(2). 010(2) equals to 2 in the decimal system and
hence 5⊕ 7 = 2. Let us look at one more example. Since 4 = 100(2), 6 = 110(2), 9 = 1001(2),
by summing each place of them modulo 2 we obtain 1011(2). Thus 4⊕ 6⊕ 9 = 11.

By using the binary digital sum ⊕, we can state the winning strategy of the 3-pile Nim
game as below.

Theorem 2.1 (cold positions of the 3-pile Nim game). The set of cold positions of the 3-pile
Nim game is {

(l,m, n) ∈ Z3
=0 | l ⊕m⊕ n = 0

}
.

We will give a proof of this theorem in a more general situation later. Here we confirm
Example 2.1 and 2.2 by using this theorem.

Example 2.3. In the binary system 3, 2 and 1 are represented as

3 = 11(2), 2 = 10(2), 1 = 01(2).

Therefore,

3⊕ 2⊕ 1 = 00(2) = 0.

Thus we see that (3, 2, 1) is certainly a cold position.
On the other hand,

3⊕ 3⊕ 1 = 01(2) = 1 6= 0,

thus we see that (3, 3, 1) is a hot position.

Generalizing the number of piles, we state the winning strategy of the n-pile Nim game
next.

Theorem 2.2 (cold positions of the n-pile Nim game). The set of cold positions of the n-pile
Nim game is {

(m1,m2, · · · ,mn) ∈ Zn
=0 | m1 ⊕m2 ⊕ · · · ⊕mn = 0

}
.

Proof. Needless to say, (0, 0, · · · , 0) is a cold position and 0 ⊕ 0 ⊕ · · · ⊕ 0 = 0. Assuming
that m1 ⊕m2 ⊕ · · · ⊕mn = 0, we have

m1 ⊕ · · · ⊕mi−1 ⊕mi+1 ⊕ · · · ⊕mn = mi.

Thus if mi 6= 0 then for any m
′
i < mi

m1 ⊕ · · · ⊕mi−1 ⊕m
′
i ⊕mi+1 ⊕ · · · ⊕mn = mi ⊕m

′
i 6= 0.
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On the other hand, if m1 ⊕m2 ⊕ · · · ⊕mn = s 6= 0 then there exists i such that s ⊕mi =
m

′
i < mi. For this m

′
i we have

m1⊕ · · · ⊕mi−1 ⊕m
′

i ⊕mi+1 ⊕ · · · ⊕mn

= m
′

i ⊕ (m1 ⊕ · · · ⊕mi−1 ⊕mi+1 ⊕ · · · ⊕mn)

= m
′

i ⊕ (s⊕mi) = m
′

i ⊕m
′

i = 0.

Therefore, if (m1,m2, · · · ,mn) such that m1 ⊕m2 ⊕ · · · ⊕mn = 0 is the first position, the
second player can definitely win by repeating the above process, and thus we see that such
a position is a cold position. On the other hand, if (m1,m2, · · · ,mi, · · · ,mn) such that
m1 ⊕m2 ⊕ · · · ⊕mi ⊕ · · · ⊕mn 6= 0 (mi 6= 0) is the first position, the first player can make
it into (m1,m2, · · · ,m

′
i, · · · ,mn) such that m1⊕m2⊕ · · · ⊕m

′
i⊕ · · · ⊕mn = 0 (m

′
i < mi) as

above. Thus by repeating the above process, the first player can definitely win, and we see
that such a position is a hot position. Thus the claim is proved.

So far we have stated winning strategies for Nim games which admit taking an arbitrary
number of stones. The following is the winning strategy for a Nim game which restricts the
number of stones one can take each round. From now on we call n-pile Nim game in which
one can take fewer than q stones q n-pile Nim game. For q n-pile Nim game, we obtain the
following result by using Theorem 2.2.

Theorem 2.3 (cold positions of the q n-pile Nim game). The set of cold positions of the
q n-pile Nim game is{

(m1,m2, · · · ,mn) ∈ Zn
=0 | m1 ⊕m2 ⊕ · · · ⊕mn = 0

}
where mi means the remainder which we obtain by dividing mi by q + 1.

Proof. When the first player takes i(1 5 i 5 q) stones from a pile, the next player can take
q+ 1− i(1 5 q+ 1− i 5 q) stones from the same pile. Thus integral multiples of q+ 1 do not
concern the winning strategy at all. Therefore, in the q n-pile Nim game, (m1,m2, · · · ,mn)
is a cold position if and only if (m1,m2, · · · ,mn) is a cold position. Furthermore, since
mi 5 q for any i, (m1,m2, · · · ,mn) is a cold position in the q n-pile Nim game if and only if
it is a cold position in the n-pile Nim game. Thus the claim follows from Theorem 2.2.

Winning strategies of various 1-pile Nim games are well known. Here we introduce some
of them. Let p1, p2, · · · denote numbers of stones one can take at a time in a 1-pile Nim
game. The next theorem is fundamental.

Theorem 2.4. Assume that there exists q ∈ N such that p1 = 1, p2 = 2, · · · , pq = q and all
of pq+1, pq+2, · · · are not divisible by q + 1. Then the set of cold positions of this 1-pile Nim
game equals to that of the q 1-pile Nim game.

Proof. Since one can take 1, 2, · · · , q stones but can not take integral multiples of q+1 stones,
this game is substantially equivalent to the q 1-pile Nim game. Thus cold positions of them
naturally coincide.
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Example 2.4. Suppose that pi = ni−1(i = 1, 2, · · · ). When n = 2, p1 = 1, p2 = 2 and all of
p3, p4, · · · are not divisible by 3, so the set of cold positions of this 1-pile Nim game equals
to that of the 2 1-pile Nim game. When n is a odd number greater than 3, p1 = 1 and all of
p2, p3 · · · are not divisible by 2, so the set of cold positions of this 1-pile Nim game equals
to that of the 1 1-pile Nim game.

Example 2.5. When pi are 1 and prime numbers, namely p1 = 1, p2 = 2, p3 = 3, p4 = 5, · · · ,
the set of cold positions of this 1-pile Nim game equals to that of the 3 1-pile Nim game.

At last we introduce the winning strategy of Wythoff’s game. As we stated in a previous
section, it is a kind of 2-pile Nim game which admits taking the same number of stones from
both piles. See [1] for a detailed proof.

Theorem 2.5 (cold positions of Wythoff’s game). The set of cold positions of Wythoff’s
game CPWythoff is

CPWythoff =
{

(bφic+ i, bφic) ∈ Z2
=0 | i = 0, 1, 2, · · ·

}
where φ = (1 +

√
5)/2 = 1.61803398875 · · · .

3 The restricted Wythoff’s game

In this section we state our main result. For n ∈ N, we add the following restrictions to
Wythoff’s game, and investigate its cold positions.

(1) The number of stones one can take from a pile is fewer than n.

(2) The numbers of stones one can take from each pile are fewer than n.

We call Wythoff’s game with these restrictions n Wythoff’s game. Although we only changed
the number of stones which we can take each round, we shall see that the set of its cold
positions is quite different from that of Wythoff’s game. Let CPn Wythoff denotes the set of
cold positions of n Wythoff’s game.

For the simplicity of notations we define three subsets of Z2
=0 below:

A(n) =
{
a1(n+ 1, 0) + a2(0, n+ 1)+a3(bφic+ i, bφic) ∈ Z2

=0

| a1, a2 ∈ Z=0, a3 ∈ {0, 1}, i = 1, 2, · · · ,m
}

where m = max
{
i ∈ Z=0 | bφic+ i < n+ 1

}
, and for k, l ∈ N
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Figure 2: F
(n)
k,l Figure 3: I

(n)
k,l

F
(n)
k,l =

{
(a, b) ∈ Z2

=0 | (k − 1)(n+ 1) 5 a 5 k(n+ 1), (l − 1)(n+ 1) 5 b 5 l(n+ 1)
}
,

I
(n)
k,l =

{
(a, b) ∈ Z2

=0 | (k − 1)(n+ 1) 5 a < k(n+ 1), (l − 1)(n+ 1) 5 b < l(n+ 1)
}
.

F
(n)
k,l and I

(n)
k,l represent sets of lattice points as above. I

(n)
k,l is obtained by removing points

in the upper end and the right end of F
(n)
k,l . Using F

(n)
k,l , we divide Z2

=0 as below, and we shall

prove our main result by induction. I
(n)
k,l will simplify our discussions.

Figure 4: Z2
=0 =

∞⋃
k,l=1

F
(n)
k,l

First, we investigate cold positions of n Wythoff’s game in F
(n)
1,1 .

Proposition 3.1. CPn Wythoff ∩ F (n)
1,1 = A(n) ∩ F (n)

1,1 .
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Proof. Since one can take fewer than n stones from a pile (0, 0), (n + 1, 0), (0, n + 1) ∈
CPn Wythoff ∩ F (n)

1,1 . And for i ∈ N such that 1 5 i 5 n, one can make (n + 1 − i, n +
1 − i), (n + 1, n + 1 − i), (n + 1 − i, n + 1) into (0, 0), (n + 1, 0), (0, n + 1) respectively, so

(n+1, n+1) ∈ CPn Wythoff∩F (n)
1,1 . The rest of the cold positions can exist in CPn Wythoff∩I(n)1,1 ,

but by the definition of I
(n)
1,1 , CPn Wythoff ∩ I(n)1,1 = CPWythoff ∩ I(n)1,1 . Namely,

CPn Wythoff ∩ I(n)1,1 =
{

(bφic+ i, bφic) ∈ Z2
=0 | i = 0, 1, 2, · · · ,m

}
.

Therefore,

CPn Wythoff ∩ F (n)
1,1 =

{
(0, 0), (n+ 1, 0), (0, n+ 1), (n+ 1, n+ 1)

}
∪
{

(bφic+ i, bφic) ∈ Z2
=0 | i = 0, 1, 2, · · · ,m

}
=
{
a1(n+ 1, 0) + a2(0, n+ 1) + a3(bφic+ i, bφic) ∈ Z2

=0

| a1, a2, a3 ∈ {0, 1}, i = 1, 2, · · · ,m
}

= A(n) ∩ F (n)
1,1 .

As an example we draw a figure of CP5 Wythoff ∩F (5)
1,1 below. In this figure, dots represent

elements of CP5 Wythoff ∩ F (5)
1,1 .

Figure 5: CP5 Wythoff ∩ F (5)
1,1

Before we state the theorem, we present a lemma as a preparation.
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Lemma 3.1. For distinct (a, b), (a
′
, b

′
) ∈ A(n) ∩ I(n)k,l , we have

b
′ − b 6≡ a

′ − a (mod n+ 1).

Proof. By the definition of A(n) we may assume that k, l = 1. Since (bφ·0c+0, bφ·0c) = (0, 0),

A(n) ∩ I(n)1,1 =
{

(bφic+ i, bφic) ∈ Z2
=0 | i = 0, 1, · · · ,m

}
.

For distinct (bφic+ i, bφic), (bφjc+ j, bφjc) ∈ A(n) ∩ I(n)1,1 , we assume that

bφjc − bφic ≡ (bφjc+ j)− (bφic+ i) (mod n+ 1).

Then we have

i− j ≡ 0 (mod n+ 1).

Since 0 5 i, j 5 m < n+ 1 we must have i = j, and this is a contradiction.

The following is our main result.

Theorem 3.1 (cold positions of n Wythoff’ s game). The set of cold positions of n Wythoff’s
game CPn Wythoff is

CPn Wythoff =
{
a1(n+ 1, 0) + a2(0, n+ 1) + a3(bφic+ i, bφic) ∈ Z2

=0

| a1, a2 ∈ Z=0, a3 ∈ {0, 1}, i = 1, 2, · · · ,m
}

where m = max
{
i ∈ Z=0 | bφic+ i < n+ 1

}
.

Proof. Our goal is to prove that CPn Wythoff = A(n). First, we have

CPn Wythoff ∩ F (n)
1,1 = A(n) ∩ F (n)

1,1

by Proposition 3.1. We assume that

CPn Wythoff ∩ F (n)
k,1 = A(n) ∩ F (n)

k,1

for k ∈ N and show

CPn Wythoff ∩ F (n)
k+1,1 = A(n) ∩ F (n)

k+1,1.

For any (a, b) ∈ A(n) ∩ F (n)
k+1,1, (a− i, b) is a hot position for any i = 1, 2, · · · , n by the above

assumption. (a, b − i) is also a hot postion for any i = 1, 2, · · · , b since if (a, b − i) is a
cold position then (a− (n+ 1), b− i) must be a cold position but this contradicts the above
assumption. We see that (a− i, b− i) is also a hot postion for any i = 1, 2, · · · , b by Lemma

3.1 as below. Assume that (a− i, b− i) is a cold position. If (a− i, b− i) ∈ F (n)
k,1 then by the

above assumption (a− i, b− i) ∈ A(n) ∩ F (n)
k,1 . For (a− (n+ 1), b) ∈ A(n) ∩ F (n)

k,1 , we have
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{b− (b− i)} − {(a− (n+ 1))− (a− i)} = n+ 1,

and this contradicts Lemma 3.1. If (a − i, b − i) ∈ F
(n)
k+1,1 then by the above assumption

(a− i− (n+ 1), b− i) ∈ A(n) ∩ F (n)
k,1 . For (a− (n+ 1), b) ∈ A(n) ∩ F (n)

k,1 , we have

{b− (b− i)} − {(a− (n+ 1))− (a− i− (n+ 1))} = 0,

and this also contradicts Lemma 3.1. Thus (a − i, b − i) is also a hot position for any

i = 1, 2, · · · , b. Therefore (a, b) ∈ A(n) ∩ F (n)
k+1,1 is a cold position, and we have

CPn Wythoff ∩ F (n)
k+1,1 ⊃ A(n) ∩ F (n)

k+1,1.

If (a, b) 6∈ A(n) ∩ F (n)
k+1,1 is a cold position then (a− (n + 1), b) 6∈ A(n) ∩ F (n)

k,1 must be a cold
position but this contradicts the above assumption. Therefore

CPn Wythoff ∩ F (n)
k+1,1 = A(n) ∩ F (n)

k+1,1.

Thus by k-induction, for any k ∈ N we have

CPn Wythoff ∩ F (n)
k,1 = A(n) ∩ F (n)

k,1 .

Next, we assume that

CPn Wythoff ∩ F (n)
k,l = A(n) ∩ F (n)

k,l

for k, l ∈ N and show

CPn Wythoff ∩ F (n)
k,l+1 = A(n) ∩ F (n)

k,l+1.

When k = 1, we can show this equality in a similar way to the above discussion. Thus we may
assume k = 2. For any (a, b) ∈ A(n)∩F (n)

k,l+1, (a, b− i) is a hot position for any i = 1, 2, · · · , n
by the above assumption. (a − i, b) is also a hot position for any i = 1, 2, · · · , n since if
it is a cold position then (a − i, b − (n + 1)) must be a cold position but this contradicts
the above assumption. Next we show that (a − i, b − i) is also a hot position for any

i = 1, 2, · · · , n. Assume that (a − i, b − i) is a cold position. If (a − i, b − i) ∈ F
(n)
k,l+1

then (a − i, b − i − (n + 1)) ∈ F
(n)
k,l must be a cold position. By the above assumption

(a− i, b− i− (n+ 1)) ∈ A(n) ∩ F (n)
k,l . For (a, b− (n+ 1)) ∈ A(n) ∩ F (n)

k,l we have

{(b− (n+ 1))− (b− i− (n+ 1))} − {a− (a− i)} = 0

and this contradicts Lemma 3.1. If (a−i, b−i) ∈ F (n)
k−1,l+1 then (a−i+(n+1), b−i−(n+1)) ∈

A(n) ∩ F (n)
k,l by the above assumption. For (a, b− (n+ 1)) ∈ A(n) ∩ F (n)

k,l we have

{(b− (n+ 1))− (b− i− (n+ 1))} − {a− (a− i+ (n+ 1))} = 2(n+ 1)

and this also contradicts Lemma 3.1. If (a− i, b− i) ∈ F (n)
k−1,l then (a− i+ (n+ 1), b− i) ∈

A(n) ∩ F (n)
k,l by the above assumption. For (a, b− (n+ 1)) ∈ A(n) ∩ F (n)

k,l we have
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{(b− (n+ 1))− (b− i)} − {a− (a− i+ (n+ 1))} = 0

and this also contradicts Lemma 3.1. If (a− i, b− i) ∈ F (n)
k,l then (a− i, b− i) ∈ A(n) ∩ F (n)

k,l

by the above assumption. For (a, b− (n+ 1)) ∈ A(n) ∩ F (n)
k,l we have

{(b− (n+ 1))− (b− i)} − {a− (a− i)} = −(n+ 1)

and this also contradicts Lemma 3.1. Thus we see that (a − i, b − i) is also a hot position
for any i = 1, 2, · · · , n. Thus we have

CPn Wythoff ∩ F (n)
k,l+1 ⊃ A(n) ∩ F (n)

k,l+1.

If (a, b) 6∈ A(n) ∩ F (n)
k,l+1 is a cold position then (a, b − (n + 1)) 6∈ A(n) ∩ F (n)

k,l must be a cold
position but this contradicts the above assumption. Hence we have

CPn Wythoff ∩ F (n)
k,l+l = A(n) ∩ F (n)

k,l+1.

Thus by l-induction, for any k, l ∈ N we have

CPn Wythoff ∩ F (n)
k,l = A(n) ∩ F (n)

k,l .

Therefore,

CPn Wythoff = CPn Wythoff ∩
( ∞⋃
k,l=1

F
(n)
k,l

)
=

∞⋃
k,l=1

CPn Wythoff ∩ F (n)
k,l

=
∞⋃

k,l=1

A(n) ∩ F (n)
k,l

= A(n) ∩
( ∞⋃
k,l=1

F
(n)
k,l

)
= A(n).

4 Conclusions

As we have seen in the previous section, CPn Wythoff has a doubly periodic structure. Namely,

CPn Wythoff∩F (n)
k,l is just a copy of CPn Wythoff∩F (n)

1,1 for any k, l ∈ N. On this point CPn Wythoff

differs greatly from CPWythoff. But as n increases this defference gets smaller and smaller.

We describe the figure of CPn Wythoff ∩ F (n)
1,1 for n = 5, 7 below.

In this paper we treated Nim games which are of regular type. We would like to investigate
winning strategies of Nim games which are of misère type next.
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Figure 6: CP5 Wythoff ∩ F (5)
1,1

Figure 7: CP7 Wythoff ∩ F (7)
1,1
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